用户名: 密码: 验证码:
成都平原土壤重金属空间分布及经济损失初步估算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据成都平原2005年土壤样点的调查资料,采用GPS、GIS与地统计学结合的方法,对大尺度下成都平原土壤重金属污染在空间分布和污染发生的风险概率进行了模拟,以及基于社会经济因素的影响分析了成都平原土壤重金属Cd、Cr、Cu、Pb、Zn、As、Hg在空间维度上产生污染的原因,并对其造成的经济损失量进行了初步的估算且提出了相应的对策措施。研究结果分述如下:
     (1)成都平原土壤样品中Cd、Cr、Cu、Zn、As、Hg的检出率均为100%,超标率分别为2.11%、0.70%、21.59%、1.33%、4.48%、4.48%,铅含量未超出土壤环境质量二级标准。
     (2)成都平原土壤Cd、Cr、Zn空间分布以斑块状为主,但高值中心分布不同。土壤Cd高值中心主要集中在两个区域在三环路外以南(0.30~2.28mgkg~(-1))呈团块分布和平原西北部都江堰和彭州的部分区域(0.20~0.30mg kg~(-1))。土壤Cr总体上未超过土壤环境质量二级标准,其高值区(100~168mg kg~(-1))位于平原北部彭州一带。土壤Zn的高值区(100~221 mg kg~(-1))和风险概率(取100mg kg~(-1)为阈值)较高的区域(50%~76%)位于平原中部。土壤Cu主要呈块状和条带状分布,其高值区(100~141mg kg~(-1))仅在都江堰、温江、成都市、双流、金堂和龙泉驿等区域内有小范围的超标。土壤Pb在平原东部含量(25~81 mg kg~(-1))与风险概率(取35mg kg~(-1)为阈值)明显高于西部。平原东北部与西南部其值范围与风险发生概率(<100 mg kg~(-1),<23%)均较低。成都平原土壤As含量西南高于东北部,其高值中心包括崇州、新津、大邑和邛崃约占平原面积的40%。土壤Hg的分布以条带状为主,部分为斑块状。其高值中心位于成都市中心城区(0.5~0.8 mg kg~(-1))和都江堰中心城区(0.4~0.5 mg kg~(-1))附近,超过土壤环境质量二级标准。
     (3)污染的存在主要是由社会经济因素在空间上的差异性所造成的。因此,分别从工业布局、城市生活垃圾的排放、距中心城区的远近、高速公路、河流分布等方面进行了探讨。土壤重金属Cu,Pb,Hg含量分布与工业布局存在极显著的关系,工业越发达的地区特别是特定的污染行业越发达,其含量越高;城区垃圾排放量总体上与其土壤Cd,Cr,Hg平均含量存在一定关系。在4km的范围内,距主城区的远近与土壤Pb含量呈显著的指数相关关系,但不排除未来对土壤造成危害污染的可能。研究区主要高速公路段之间土壤Cr、Cu、Pb、As、Hg含量差异极显著。受河流运移影响,土壤重金属在出江河-南河-斜江河段、蒲阳河-毗河-北河段和府河段具有不同分布特征,这主要是由于区内烧碱、汞化物、油漆、蓄电池等工厂排出的废水带来的污染,同时也对土壤重金属污染的跨行政区扩散产生作用造成的;不同土地利用下农户对蔬菜或水田作物投入的施肥和管理水平是造成土壤中不同重金属累积差异的主要原因。
     (4)成都平原土壤重金属污染经济损失计量总面积为282.93hm~2,占研究区面积的0.04%。分别运用恢复费用法和市场估值法、人力资本法对土壤中重金属残留造成的损失进行了估算,其中恢复费用法得到重度污染区土壤重金属造成的经济损失为339.52万元,而市场估值法、人力资本法从三方面得到农产品品质下降损失、人群发病率提高的损失、土壤重金属重度污染事故损失分别为52.82万元、175.28万元、1.02万元,总共为229.12万元。最后,对这两种估算结果作了比较。
     (5)针对成都平原土壤重金属污染现状,应按污染发生的不同程度,采取经济、法律、行政、技术手段相配合,以达到综合治理污染的目的。
In order to assess the amount and spatial distribution of soil heavy metals in Chengdu plain, 142samples were collected from soil, around roadside soil and riverside soil of 7 districts and geostatisticaltools were used. Data of Chengdu plain soil in 2005 were adopt to simulate the spatial distribution ofsoil heavy metals and the risk probability of pollution occurrence in Chengdu plain under macro-scale,and analyzed the reason that caused industry pollution by soil heavy metal Cd,Cr, Cu,Pb,Zn, As and Hgin spatial dimension. Furthermore, this paper discussed the main influencing factors of soil heavy metals,such as municipal solid waste, distances to the downtown, roads and rivers,and based on the influenceof social economy factors, the economic losses put forward.The result showed that as follows:.
     (1) From the overall characteristic analyses of soil heavy metals pollution degrees in Chengdu plain,the results showed that all the detectable rates of cadmium, chromium, copper, zinc, arsenic, mercurywere 100%, the exceeding limit rates were 2.11%,0.70%,21.59%,1.33%,4.48%,4.48%, respectively.Thelead content had not Surpassed environmental quality standard for soils.
     (2) The soil heavy metal pollution of spatial simulation results in these regions showed that all thepollution tendency in the overall presents east, north were higher than the west, the south except Ascontent, which were mainly correlated with the distribution of pollution sources.
     (3) The influencing factors analyses indicated that, the existence of pollution sources mainly causedby the spatial variances of the economy factors especially the Area place factors. The social economyfactors affected the space differences of different heavy metals were more complicated. Discussed thedistribution characteristics of heavy metals under different industrial arrangements, the distribution ofCu,Pb,Hg contents had extremely remarkable relations with industrial distribution under different scales.the more the industry especially the specially appointed contaminate developed, the higher the heavymetal contents, but the variances of soil Cd,Cr,Zn,As contents had less differences under the industrialand enterprise layout. Furthermore, discussed the influences of municipal solid waste to the heavy metalcontents, finally results indicated that the drainage of municipal solid waste had a certain relations with the mean values of Cd,Cr,Hg in general, but the heavy metal contents of Cu, Pb, Zn were not obvious.Combined with data of the five main districts in Chengdu, the Cd, Cr, Hg contents in Qingyang andWuhou district which had high waste drainages was higher than those of Qingbaijiang and Longquanyidistricts. The Changes of heavy metal contents in different distances outside the downtown indicatedthat the difference distances to the downtown has no direct relation with the changes of theCd,Cr,Cu,Zn,As,Hg contents, but assumed the remarkable indexes correlation relations with the soilPb content within 4 km range outside the city center. Analyzed the main highway such as Chengpeng,Cheng-Wenqiong, Chengle, all the elements levels reached safety levels except the average contents ofPb and Cu near the city highways section which surpassed the environment quality standard for soils,but would not remove the pollution possibility caused by the soil in the future. In study area, thedifferences among the main around highway section, Chengpeng, Cheng-Wenqiong, Chengle and thesoil contents of Cr,Cu,Pb was remarkablely, but the differences of Cd, Zn were not obvious. Influencedby the river transporting changings, soil heavy metal present different distributing characteristics indifferent rivers, one of the most reasons of the pollution was caused by the waste water dischargedwhich come from the caustic soda, mercurate thing, paint, accumulator cell factories. In a certaindegrees, water loss and soil erosion was also lead to soil heavy metals pollutions between regions inChengdu Plain.The heavy metal characteristic research under the different land utilization indicated that,the fertilizer and management level to the vegetables'and paddy field crops was the main reason causingdifferent heavy metal accumulation.
     (4) Economy loses amounts estimating result indicated that,area for economic loss was282.93hm~2 and was 2.67%in the whole study area.From four aspects,the economic loss for heavymetals pollution in 2005 was 339,520,0 RMB.
     (5) In view of the heavy metal pollution present situation in Chengdu plain,measures should betaken including the economy, the law, the administration,the technical method,to achieve comprehensivetreatment contaminates purposes.
引文
[1] 王永生.遏制土地污染,确保生命线安全.国土资源,2006,12:30-31.
    [2] 牟雁.环境经济学的发展趋势及其在我国的应用.环境科学动态,2005,2:40-41.
    [3] 张宝莉.农业环境保护.北京:化学工业出版社,2002:67-78.
    [4] 梁小民.微观经济学.北京:中国社会科学出版社,1996:233-240.
    [5] 陈国庆.环境经济学理论发展的评析.南京政治学院学报,2000,16(89):65-68.
    [6] 严法善.环境经济学概论.上海:复旦大学出版社,2003:18-20.
    [7] 王玉庆.环境经济学.北京:中国环境科学出版社,2002:20-23.
    [8] 张金屯,Sta P.城市化对森林植被、土壤和景观的影响.生态学报,1999,19(5):654-658.
    [9] 倪建华,李晓东,周华.南通市交通干线周围土壤铅污染调查.交通医学,1997,11(4):549-551.
    [10] 赵剑强,陈鹏郎.土壤重金属累积模式在公路建设项目影响评价中的应用探讨.西安公路交通大学学报,1999.19(4):58-61.
    [11] 刘京媛,徐海云.我国城市生活垃圾分类收集与收费方式探讨.环境卫生工程,2004,12(1):1-2.
    [12] 黄启飞,高定,丁德蓉,等.城市垃圾堆肥对Cr污染土壤的修复效应.应用生态学报,2002,13(2):167-170.
    [13] 孙路石,陆继东,张娟,等.城市垃圾焚烧过程中重金属释放行为的试验研究.燃烧科学与技术,2003,9(6):516-520.
    [14] 倪建华,李晓东,周华.南通市交通干线周围土壤铅污染调查.交通医学,1997,11(4):549-551.
    [15] 谭启玲,胡成孝,周后建,等.城市污泥中的重金属形态及其对潮土酶活性的影响.华中农业大学学报,2002,21(1):36-39.
    [16] 徐亚幸,郑政伟,辛国荣.制糖工业废水处理后的灌溉生态效应.中山大学学报,2003,42(6):78-82.
    [17] 柴世伟,温琰茂,张云霓.广州市郊区农业土壤重金属含量特征_中国环境科学,2003,23(6):592-596.
    [18] 周启星.某铅锌矿开采区土壤镉的污染及有关界面过程.土壤通报,2002,33(4):300-302.
    [19] 孙泰森,师学义,杨玉敏.五阳矿区采煤塌陷地复垦土壤的质量变化研究.水土保持学报,2003,17:35-38.
    [20] 廖文华.磷肥施用与镉污染的研究现状及防治对策.河北农业大学学报,2001,24(3):90-94.
    [21] 房世波,潘剑君,杨武年.南京市土壤重金属污染调查评价.城市环境与城市生态,2003,16(4):4-6.
    [22] 吴新民,潘根兴.影响城市土壤重金属污染因子的关联度分析.土壤学报,2003,40(6):921-928.
    [23] 孟凡乔,巩晓颖,葛建国,等.污灌对土壤重金属含量的影响及其定量估算.农业环境科学学报,2004,23(2):277-280.
    [24] 安森,周琪,李永秋.城市污泥中重金属的形态分布和处理方法的研究.农业环境科学学报,2003,22(2):199-202.
    [25] 吴新民,潘根兴,姜海洋.南京市土壤的特性与重金属污染的研究.生态环境,2003,12(1):19-23.
    [26] 李佑国,房世波,潘剑君,等.城市化进程中的南京市土壤重金属污染调查.四川师范大学学报(自然科学版),2004(27):93-96.
    [27] 王美青,章明奎.杭州市城郊土壤重金属和形态的研究.环境科学学报,2002,22(5):603-608
    [28] 杨娟.成都平原土壤重(类)金属演变的社会经济驱动研究.四川农业大学,2005.
    [29] 王政权.地统计学及在生态学中的应用.北京:科学出版社,1999.
    [30] 江景宽,赵永存,张旭东,等.海伦县土壤重金属的空间变异性研究.土壤通报,2003,34(5):398-403.
    [31] 王作雷,蔡国梁,李玉秀,等.土壤重金属污染的非线性可拓综合评价.土壤,2004,36(2):151-156.
    [32] 孟宪林,沈晋,周定.改进灰色聚类法在土壤重金属污染评价中的应用.哈尔滨工业大学学报,1994,26(6):134-139.
    [33] 孟宪林,郭威.改进层次法在土壤重金属污染评价中的应用.环境保护科学.2001,103(27):34-36.
    [34] 侯景儒,伊镇南,李维明,等.实用地统计学.北京:地质出版社,1998,37-50.
    [35] 李凡修,辛焰,陈武.理想点法用于区域土壤重金属污染评价研究.新疆环境保护,2003,25(1):47-50.
    [36] 张超兰,白厚义.用模糊综合评判法评价土壤重金属污染程度.广西农业生物科学,2003,22(1):54-57.
    [37] 大卫皮尔斯.绿色经济的蓝图(1).北京:北京师范大学出版社,1997:25-43.
    [38] 大卫皮尔斯.绿色经济的蓝图(2)——绿化世界经济.北京:北京师范大学出版社,1997:28-39.
    [39] 徐中民.生态环境损失价值计算初步研究.地球科学进展,1999,7(5):498-499.
    [40] 吴迪梅,张从,孟凡乔.河北省污水灌溉农业环境污染经济损失评估.中国生态农业学报,2004,12(2):211-216.
    [41] 刘敏超,李迪强,温琰茂,等.三江源地区生态系统生态功能分析及其价值评估.环境科学学报,2005,25(9):1-6.
    [42] 李锦秀,徐嵩龄.流域水污染经济损失计量模型.水利学报,2003,10:1-8.
    [43] 吕耀.太湖地区农田氮素非点源污染及环境经济分析.环境管理,2000,19(4):143-148.
    [44] 鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,1999.474-490.
    [45] 国家环境保护局科技标准司.GB15618-1995.1995-12-06.土壤环境监测技术规范.北京,国家环境保护局科技标准司,1995.
    [46] 鲁传一.资源与环境经济学[M].北京:清华大学出版社,2004:138-145.
    [47] 魏甦,张世熔,邓良基,等.四川郫县土壤耕层有机质时空变异特征.土壤通报,2004,35(3):261-263.
    [48] 张世熔,黄元仿,李保国,等.河北曲周土壤氮素养分的时空变异特征.土壤学报,2003,40(3):475-479.
    [49] 张世熔,黄元仿.黄淮海冲积平原区土壤有机质时空变异特征.生态学报,2002,22(12):2041-2047.
    [50] 王浒,刘宇.基于遥感和GIS技术城市边缘区用地分布的应用研究.测绘科学,2000,25(4):44-47.
    [51] 刘小勇,董新光.农业工程水资源管理中GIS区域分析方法的应用.农业机械学报,2004,3(4):196-197.
    [52] 周慧珍,龚子同.土壤空间变异性研究.土壤学报,1996,33(3):232-241.
    [53] 王学锋.土壤特性时空变异性研究方法的评述与展望.土壤学进展,1993,21(4):42-49.
    [54] 何建邦,钟耳顺.论地理信息系统及其在地理学中的地位.地理学报,1993,48(1):84-90.
    [55] 张世熔,龚国淑.黄壤耕层土壤性质的空间分布特征.西南农业学报,2002,15(2):73~77.
    [56] 姚学良,朱礼学,游再平.成都平原汞污染探源.四川地质学报,2000,20(2):130-135.
    [57] 朱礼学.成都平原西部元素的分布特征及其与农业、环境的关系.物探化探计算技术,1999,21(4):295-300.
    [58] 姚学良,廖远安.成都市金牛区土壤重金属污染状况——浅谈土壤生态环境治理的紧迫性问题.四川地质学报,2002,22(3):158-160.
    [59] 陆胜勇,池涌,严建华,等.垃圾焚烧中重金属污染物的的迁移和分布规律.热力发电,2003,3:24-27.
    [60] 曹立新.公路和水稻中铅的分布、累积及临界含量.环境科学,1996,16(6):66-68.
    [61] 霍斯特·西伯特.蒋敏元译.环境经济学.北京:中国林业出版社,2002:26-45.
    [62] 顾继光,周启星,王新.土壤重金属污染的治理途径及其研究进展.应用基础与工程科学学报,2003,11(2):143-151.
    [63] 夏增禄,主编.土壤环境容量研究.气象出版社,1986:198-120.
    [64] 陈怀满,赵其国,朱兆良,等.土壤.植物系统中的重金属污染.北京:科学出版社,1996.203-205.
    [65] 武维华,主编.现代植物生理学.科学出版社,2003:25-28.
    [66] 华珞,陈承慈,刘全义.土壤污染的治理方法研究.农业工程学报,1992,8:90-99.
    [67] 姜向阳,朱迎春,李蓉.汞在土壤.水稻系统中的吸收与转移环境保护,1995,3:27-28.
    [68] 青长乐等.抑制土壤Hg进入陆生食物链.环境科学学报,1995,15(2):148-155.
    [69] 张乃明,张守萍,武丕武.污水灌溉的生态效应与损益分析.农业环境科学学报,1999,18(4):21-23.
    [70] 张健,孙根年.土壤重金属污染与植物修复研究进展.云南师范大学学报,2004,24(2):52-57.
    [71] Johansson R C, Randall J R. Incorporating economics into the phosphorus index: An application to U.S. watershed. Journal of So5il and Water Conservation, 2003, 58(5): 224-231.
    [72] Richard T C. The Economic valuation of the environment and public policy: A Hedonic Approach. Environment, 2004, 46(2): 43.
    [73] Donald E A. The Price of Water: Studies in water resource economics and management. Journal of the American Water Resources Association, 2005, 41(5): 1246-1247.
    [74]Pueyo M, Sastre J, Hernandez E, Vidal M, et al. Heavy metals in the environment: Prediction of trace element mobility in contaminated soil by Sequential Extraction.Journal of Environmental Quality,2003, 32(6):2054-2066.
    [75]Qasem M Jaradat,Adnan M,Mohammed A Z,Baheyah M M.Heavy metal contamination of soil, plant and air of scrapyard of discarded vehicles at Zarqa City,Jordan. Soil and Sediment Contamination,2005, 14(5):449-462.
    [76] Chen H M,Zheng C R,Sun X H. Effects of different Lead compounds on growth and heavy metal uptake of wetland rice. Pedosphere, 1991, 1(3):253-264.
    [77] Ramakrishnaiah,Somashekar R K.Heavy metal contamination in roadside soil and their mobility in relations to pH and Organic carbon. Soil and Sediment Contamination, 2002,11(5): 643-654.
    [78] Madrid L, Diaz B E, Madrid F. Distribution of heavy metal contents of urban soils in parks of Seville. Chemosphere, 2002,49(10):1301-1308.
    [79] Nicholson F A, Smith S R, Alloway B J, Carlton S C, Chambers B J. An inventory of heavy metals inputs to agricultural soils in England and Wales. Science of the Total Environment, 2003,311:1-3,205-219.
    [80] Kent S M, Daniel T R, Martin M K.Heavy metals in an Urban watershed in southeastern Michigan. Journal of Environmental Quality,2004,33(1): 163-172.
    [81]Vandecasteele B,Vos B D,Tack F M G., De V B. Heavy metal contents in surface soils along the upper Scheldt river (Belgium) affected by historical upland disposal of dredged materials. Science of the Total Environment. 2002,290:1-14.
    [82] Zhao Y,Marriott S,Rogers J,Iwugo K A. Preliminary study of heavy metal distribution on the floodplain of the River Severn, UK by a single flood event. Science of the Total Environment, 1999,244:219-231.
    [83]Scancar J, Milacic R, Strazar M, Burica O. Total metal concentrations and partitioning of Cd, Cr, Cu, Fe, Ni and Zn in sewage sludge. Science of the Total Environment,2000,250:1-3,9-19.
    [84] Horn A L, During R A, Gath S. Comparison of decision support systems for an optimised application of compost and sewage sludge on agricultural land based on heavy metal accumulation in soil. Science of the Total Environment,2003,311:1-3, 35-48.
    [85] Sippola J,Makela K R,Rantala P R. Effects of composted pulp and paper industry wastewater treatment residuals on soil properties and cereal yield. Compost Science and Utilization,2003,11:3, 228-237.
    [86] Temmerman L D,Vanongeval L, Boon W, Hoenig M,Geypens M.Heavy metal content of arable soils in Northern Belgium. Water, Air and Soil Pollution.,2003,148:1-4, 61-76.
    [87] Li D C,Li Z P,Zhou X, Zhang T L. Contents of heavy metal elements in soils of vegetable greenhouses different in age. Rural Eco-Environment,2003,19(3):38-41.
    [88]Andreas.Spatial distribution of soil heavy metal concentrations as indicator of pollution sources at Mount Krizna (Great Fatra, central Slovakia).plant Nutr.Soil Sci.1999:162,421-428.
    
    [89]Goobaerts P.Geostatistics in soil science: state-of-the-art and perspectives.geoderma.1998,89:l-45.
    [90]Navin K C T, Jagath J K.Aquifer Vulnerability Assessment to Heavy Metals Using Ordinal Logistic Regression.Ground Water.,2005,43(2):200-215.
    [91]Carme H S, Eusebi J B,Yulian G T, Oleg B B. Indirect geostatistical methods to assess environmental pollution by heavy Metals. Case Study: Ukraine,2005,21(2):661-667.
    [92] Wei K, Juang DY L.Simple Indicator Kriging for estimating the probability of incorrectly delineating hazardous areas in a contaminated Site.Environ.Sci.Technology,1998,32: 2487-2493.
    [93] Jornel A G. Non-parametric estimation of spatial distribution. Mathematical Geology, 1983,15:445-468.
    [94] Jornel A G, Alabert F.Non-Gaussian data expansion in the earth science.Terra Nova, 1989,1:123-134. [95] Jornel A G, Alabert F.New method for reservoir mapping. Journal of Petroleum Technology, 1990, 42:212-218.
    [96] Walter M S. Mercury emissions from MSW incinerators::An assessment of the current situation in the United States and Forcast of future emissions. Resource, Conservation and Recycling, 1993, 9:31-59.
    [97] Shahalam A, Japadat A, Abu Z B M. Wastewater irrigation effect on soil, crop and environment: a pilot scale study at Irbid, Jordan. Water, Air, and Soil Pollution, 1998, 106(3):425-445.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700