用户名: 密码: 验证码:
高氨氮污泥消化液生物脱氮工艺与优化控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
污泥消化液来自污泥厌氧消化过程中产生的上清液和污泥脱水液,其氨氮浓度高,C/N比低,采用常规处理工艺难以达到理想的脱氮效果。除此之外,污泥消化液产生的氮负荷对污水处理厂的出水水质有显著影响,因此针对高氨氮污泥消化液脱氮处理新工艺和新技术的开发和研究,可降低污水处理厂氨氮负荷,起到提高水质和节能降耗的作用,同时该研究可丰富污水生物脱氮技术体系,具有重要的理论和应用价值。
     以某污水处理厂实际污泥消化液为主要研究对象,以连续A/O工艺考察了短程硝化的启动和稳定的影响因素及作用机理,在短程硝化的基础上重点开发了利用污泥内碳源强化反硝化的污泥发酵耦合反硝化工艺和复合式生物膜一体化厌氧氨氧化工艺,在反应机理、影响因素及过程控制等方面对两种新型工艺行了系统考察。基于以上研究结果,考察了污泥消化液处理工艺选择的综合控制策略。
     本论文首先研究了连续流反应器中高氨氮废水短程硝化的启动、稳定及其影响因素。试验结果表明进水氨氮负荷对启动和维持短程硝化反应有重要作用。短程硝化可通过增加进水氨氮负荷快速实现,而在低氨氮负荷条件下短程硝化难以长期维持。荧光原位杂交结果表明污泥消化液短程硝化稳定维持的机制为游离氨和游离亚硝酸对亚硝酸氧化菌的选择性抑制作用。当进水氨氮负荷降低后,游离氨抑制的减弱导致系统短程硝化的稳定性受到影响,进一步分析表明游离亚硝酸抑制对维持稳定的短程硝化更有效。在高氨氮废水短程硝化研究的基础上,考察了生物技术强化实现城市污水短程硝化的可行性。该工艺中采用吸附-再生法处理城市污水,在再生反应器中投加高氨氮处理系统的活性污泥进行强化。再生反应器的亚硝酸盐累积率从26%迅速提高至86%,并在后续两个月的运行中保持稳定。该结果表明该生物强化技术可以有效的促进城市污水短程硝化的应用。
     开发了新型的污泥内碳源强化生物脱氮工艺。该工艺中经硝化处理后的高氨氮废水直接进入到初沉污泥发酵体系中,通过同步的污泥发酵和反硝化反应实现强化生物脱氮。对不同出水方式、出水回流比、污泥投加策对系统脱氮性能的影响进行考察。试验结果表明该系统可实现良好的脱氮效果。该工艺处理污泥消化液,系统稳定阶段系统的氨氮和总氮去除率分别为85%和75%。该工艺在实现生物脱氮的同时,初沉污泥也得到初步稳定。在12~15d的固体停留时间,约50%的VSS被降解。通过序批和连续流试验进一步考察发酵和反硝化反应的相互影响机制。试验结果表明硝态氮的存在可以促进污泥发酵反应的进行,碳源开发的总量较之传统工艺明显增高。而且硝态氮的存在显著降低了污泥发酵过程中氨氮和磷的释放,有利于提高营养物去除率。
     厌氧氨氧化技术应用于污泥消化液处理中可产生显著的经济效益和环境效益。本论文分别研究两段式和一体化厌氧氨氧化工艺处理高氨氮废水的启动和优化。两段式厌氧氨氧化工艺的研究中,通过接种城市污水处理厂活性污泥,在中试反应器内成功启动厌氧氨氧化反应。反应器最高去除总氮去除负荷为1.2kg/(m~3·d),总氮去除率为85%。对两段式厌氧氨氧化颗粒污泥的形成和影响因素进行了研究。结果表明提高系统上升流速和投加厌氧颗粒污泥,可以促进系统内厌氧氨氧化颗粒污泥的形成。反应器内红色的厌氧氨氧化颗粒污泥形成后系统去除负荷稳步提高,而且抗冲击负荷能力增强。
     首次在中试规模的复合式生物膜反应器中启动厌氧氨氧化反应并取得良好的效果。通过接种普通硝化污泥6个月内成功启动了短程硝化-厌氧氨氧化工艺。该工艺进一步应用在污泥消化液的处理中,在稳定阶段系统的最大去除负荷为1.2kg/(m~3·d),总氮去除率为90%。对系统的微生物分布和群落结构进行了考察。分子生物学结果表明系统中氨氧化菌和厌氧氨氧化菌的分布有显著不同。AOB在活性污泥中占主导地位,而厌氧氨氧化菌主要存在于生物膜中。两者的分离生长有利于提高一体化厌氧氨氧化工艺的去除效率和运行稳定性。通过16srRNA基因对微生物的多样性进行分析。结果表明厌氧氨氧化菌在活性污泥和生物膜中的优势菌种不同,分别为Candidatus Kuenenia和Candidate Brocadia。该结果表明厌氧氨氧化菌的分布可能受污泥形态的影响,但是影响机制仍需要进一步研究。
Wastewater originated from the anarobic digestion process is called reject water,which mainly includes the digerster supertanant and sludge dewatering liquros.Reject water is difficult to treat due to its high strength ammonium and unfavorableC/N ratio. Therefore, development the novel porcess and technology for reject watertreatment presents signifcantly application value, which is benefical to improve theeffluent quality of the wastewater treatment plant (WWTP) and derecease theoperational cost. Besides, this study is useful to for the treatment of other kinds ofhigh strengten ammonoium wastewater.
     In this thesis, sludge dewatering liquors from a WWTP were used toconduncted the experiment. Initially, the nitrite pathway of the high ammoniumwastewater was studied. The affacting factors and the mechnisms for start-up andmaintanence of the nitrite pathway were investigated. Two novel processes forsludge dewatering liquors treatment were afterwards developed, which were sludgefermentation and denitrification process and intergrated biofilm anammox process.The reaction mechnisim, affacting factor as well as the porcess control of the twonovel reactors were investigated. Based on above resluts, the feasiblity of theapplication of the novel process on sewage treatment was estimated. The strategy forchosing optimum porcesses for reject water treatment was also discussed.
     A continuous bioreactor was used to investigate the nitrite pathway of the highammonium wastewater, including start-up, maintanence and affecting factors.Experimental results indicated that influent ammonium loading rate (ALR) was oneof the key factors that determined the nitrite pathway. Nitrite pathway was difficultto control when ALR was lower than0.5kg N/(m~3·d). The maintanence of thepartial nitrification was mainly attributed to the selective inhition of free ammonia(FA) and free nitrous acid (FNA) on nitrite-oxidizing bacteria. The inhibitive effectof FA was reduce when ALR was deceased, but partial nitrification could be stillmaintained when FNA inhibition exsited. The feasibility of bio-augmentationprocesses in promoting start-up of partial nitrification of sewage was investigated.Appropriate bio-augmentation strategies could significantly improve the build uppartial nitrification of sewage. Sewage was treated in the adsorption/biodegradationreactor. The nitrite pathway was obviously promoted by addition of the previousactivated sludge from high ammonia wastewater treatment. Nitrite accumulationefficiency of sewage was quickly increased from26%to86%and maintained at ahigh level for two months.
     A novel nitrogen removal approach using primary sludge as additional carbon source was studied. In the novel process, the nitritation effluent was injected into thesludge fermentation reactor for enhancing denitrificaiton. At optimum conditions,85%removal of ammonium and75%of total nitrogen were obtained in a continuoussystem, resulting in a suitable effluent for recycling into the inlet of the wastewatertreatment plant. Primary sludge could be well degraded in the novel reactor. Over50%volatile suspended solid (VSS) of primary sludge was utilized, and the ratio ofVSS/SS declined from0.76to0.39. Compared to conventional sludge fermentation,the integration of denitrification and fermentation was better at carbon production.The release of phosphate and ammonium during sludge degradation process wasalso obviously reduced.
     Anammox process is a promsing technology for high ammonoum wastewatertreatment, which presents significant ecnomical and eviromental value. In this thesis,two-stage and single-stage anammox processes were respectively investigated. Apliot-sacle upflow anarobic sludge reactor was used to start the two-stage process.Anammox process was started with the activated sludge as the seed sludge.Maximum nitrogen removal rate of1.2kgN/(m~3·d) was achieved, with a nitrogenremoval efficiency of85%. The granulation of the anammox process was alsoinvestigated. The experimental results showed increase of upflow velocity andinjection of anaerobic granular were useful to the formation of the anammoxgranular. Nitrogen removal rate and resistance of the reactor was promoted by thegranulation.
     A pilot-scale integrated fixed-film activated sludge (IFAS) reactor wasinoculated with normal nitrifying activated sludge, and this reactor started nitritationanammox process after six months operation. Moreover, the segregation of AOB andanammox bacteria was achieved by providing different niches in the reactor. AOBpopulations were more abundant in suspended activated sludge phase whileanammox bacteria were primarily located in the biofilm phase. Biomass segregationallows for applying different conditions for different microbial groups, leading toconvenient operation and efficient nitrogen removal performance by achieving amaximum nitrogen removal rate of1.2kg N m-3d-1and an average nitrogen removalefficiency of90%. Clone libraries established with16S rRNA genes amplified fromgenomic DNA of the microbial consortia in the IFAS reactor demonstrated thatNitrosomonas was the predominant AOB in both suspended activated sludge and thebiofilm. However, the predominant anammox bacteria in the activated sludge andbiofilm were Candidatus Kuenenia and Candidate Brocadia, respectively.
引文
[1] Verstraete W, Morgan-Sagastume F, Aiyuk S, Waweru M, Rabaey K, LissensG. Anaerobic digestion as a core technology in sustainable management oforganic matter. Water Sci. Technol.,2005,52(1-2):59-66.
    [2] Janus H M, vanderRoest H F. Don't reject the idea of treating reject water[J].Water Sci. Technol.,1997,35(10):27-34.
    [3] van Loosdrecht M C M, Salem S. Biological treatment of sludge digesterliquids[J]. Water Sci. Technol.,2006,53(12):11-20.
    [4] Nikolavcic B, Schweighofer P, Kroiss H. COD balance and nitrogen removalin a biofilter pilot plant[J]. Water Sci. Technol.,2000,41(4-5):69-76.
    [5] Verstraete W, Morgan-Sagastume F, Aiyuk S, Waweru M, Rabaey K, LissensG. Anaerobic digestion as a core technology in sustainable management oforganic matter[J]. Water Sci. Technol.,2005,52(1-2):59-66.
    [6] Krylova N I, Khabiboulline R E, Naumova R P, Nagel M A. The influence ofammonium and methods for removal during the anaerobic treatment ofpoultry manure[J]. J. Chem. Technol. Biotechnol.,1997,70(1):99-105.
    [7] Vadivelu V M, Keller J, Yuan Z G. Effect of free ammonia and free nitrousacid concentration on the anabolic and catabolic processes of an enrichedNitrosomonas culture[J]. Biotechnol. Bioeng.,2006,95(5):830-839.
    [8] Yang SF, Tay JH, Liu Y. Inhibition of free ammonia to the formation ofaerobic granules[J]. Biochem. Eng. J.,2004,17(1):41-48.
    [9] Anthonisen A C, Loehr R C, Prakasam T B S, Srinath E G. inhibition ofnitrification by ammonia and nitrous acid[J]. J.Water.Pollution,1976,48(5):835-852.
    [10] Park S, Bae W. Modeling kinetics of ammonium oxidation and nitriteoxidation under simultaneous inhibition by free ammonia and free nitrousacid[J]. Process. Biochem.,2009,44(6):631-640.
    [11] Rongsayamanont C, Limpiyakorn T, Law B, Khan E. Relationship betweenrespirometric activity and community of entrapped nitrifying bacteria:Implications for partial nitrification[J]. Enzyme. Microb. Tech.,2010,46(3-4):229-236.
    [12] Chung J, Bae W, Lee Y W, Ko G B, Lee S U, Park S J. Investigation of theeffect of free ammonia concentration upon leachate treatment by shortcutbiological nitrogen removal process[J]. J. Environ. Sci. Health., Part A.,2004,39(7):1655-1665.
    [13] Balmelle B, Nguyen K M, Capdeville B. Study of factors controlling nitritebuildup in biological processes for water nitrification[J]. Water Sci. Technol.,1992,26(5-6):1017-1025.
    [14] Kim D J, Chang J S, Lee D I, Han D W, Yoo I K, Cha G C. Nitrification ofhigh strength ammonia wastewater and nitrite accumulation characteristics[J].Water Sci. Technol.,2003,47(11):45-51.
    [15] Vadivelu V M, KellerJ, Yuan Z. Effect of free ammonia on the respiration andgrowth process of an enriched Nitrobacter culture[J]. Water Res.,2007,4(1):826-834.
    [16] Park S, Bae W, Rittmann B E. Operational boundaries for nitrite accumulationin nitrification based on minimum/maximum substrate concentrations thatinclude effects of oxygen limitation, ph, and free ammonia and free nitrousacid inhibition[J]. Environ. Sci. Technol.,2010,44(1):335-342.
    [17] Wett B, Rauch W. The role of inorganic carbon limitation in biologicalnitrogen removal of extremely ammonia concentrated wastewater[J]. WaterRes.,2003,37(5):1100-1110.
    [18] Ganigue R, Lopez H, Balaguer M D, Colprim J. Partial ammonium oxidationto nitrite of high ammonium content urban land fill leachates[J]. Water Res.,2007,41(15):3317-3326.
    [19] Tora J A, Lafuente J, Baeza J A, Carrera J. Combined effect of inorganiccarbon limitation and inhibition by free ammonia and free nitrous acid onammonia oxidizing bacteria[J]. Bioresource. Technol.,2010,101(15):6051-6058.
    [20] Jubany I, Carrera J, Lafuente J, Baeza J A. Start-up of a nitrification systemwith automatic control to treat highly concentrated ammonium wastewater:Experimental results and modeling[J]. Chem. Eng. J.,2008,144(3):407-419.
    [21] Pambrun V, Paul E, Sprandio M. Modeling the partial nitrification insequencing batch reactor for biomass adapted to high ammoniaconcentrations[J]. Biotechnol. Bioeng.,2006,95(1):120-131.
    [22] Perez J, Costa E, Kreft J U. Conditions for partial nitrification in biofilmreactors and a kinetic explanation[J]. Biotechnol. Bioeng.,2009,103(2):282-295.
    [23] Beline F, Boursier H, Guiziou F, Paul E. Modelling of biological nitrogenremoval during treatment of piggery wastewater[J]. Water Sci. Technol.,2007,55(10):11-19.
    [24] Turk O, Mavinic D S. Maintaining nitrite build-up in a system acclimated tofree ammonia[J]. Water Res.,1989,23(11):1383-1388.
    [25] Fux C, Huang D, Monti A, Siegrist H. Difficulties in maintaining long-termpartial nitritation of ammonium-rich sludge digester liquids in a moving-bedbiofilm reactor (MBBR)[J]. Water Sci. Technol.,2004,49(11-12):53-60.
    [26] Vadivelu V M, Keller J, Yuan Z. Free ammonia and free nitrous acidinhibition on the anabolic and catabolic processes of Nitrosomonas andNitrobacter[J]. Water Sci. Technol.,2007,56(7):89-97.
    [27] Villaverde S, Fdz-Polanco F, Garcia P A. Nitrifying biofilm acclimation tofree ammonia in submerged biofilters. start-up influence[J]. Water Res.,2000,34(2):602-610.
    [28] Jeavons J, Stokes L, Upton J, Bingley M. Successful sidestream nitrificationof digested sludge liquors[J]. Water Sci. Technol.,1998,38(3):111-118.
    [29] Meyer S S, Wilderer P A. Reject water: Treating of process water in largewastewater treatment plants in Germany-A case study[J]. J. Environ. Sci.Health., Part A.,2004,39(7):1645-1654.
    [30] van Kempen R, Mulder J W, Uijterlinde C A, Loosdrecht M C M. Overview:full scale experience of the SHARON (R) process for treatment of rejectionwater of digested sludge dewatering[J]. Water Sci. Technol.,2001,44(1):145-152.
    [31] Guo C H, Stabnikov V, Ivanov V. The removal of nitrogen and phosphorusfrom reject water of municipal wastewater treatment plant using ferric andnitrate bioreductions[J]. Bioresource. Technol.,2010,101(11):3992-3999.
    [32] Mayer M, Smeets W, Braun R, Fuchs W. Enhanced ammonium removal fromliquid anaerobic digestion residuals in an advanced sequencing batch reactorsystem[J]. Water Sci. Technol.,2009,60(7):1649-1660.
    [33] Somogyi V, Fazekas B, Domokos E, Redey A. Model development fordetermining processes of reject water treatment in moving bed bioreactor.2ndInternational Conference on Waste Management, Water Pollution, AirPollution, Indoor Climate, Corfu, GREECE,2008. World Scientific andEngineering Acad and Soc:19-23.
    [34] Arnold E, Bohm B, Wilderer P A. Application of activated sludge and biofilmsequencing batch reactor technology to treat reject water from sludgedewatering systems: a comparison[J]. Water Sci. Technol.,2000,41(1):115-122.
    [35] Yang Y, Zhao Y Q, Babatunde A O, Kearney P. Two strategies for phosphorusremoval from reject water of municipal wastewater treatment plant usingalum sludge[J]. Water Sci. Technol.,2009,60(12):3181-3188.
    [36] Qiao S, Kanda R, Nishiyama T, Fujii T, Bhatti Z, Furukawa K. Partialnitrification treatment for high ammonium wastewater from magnesiumammonium phosphate process of methane fermentation digester liquor[J]. J.Biosci. Bioeng.,2009,109(2):124-129.
    [37] Guo C H, Stabnikov V, Kuang S L, Ivanov V. The removal of phosphate fromwastewater using anoxic reduction of iron ore in the rotating reactor[J].Biochem. Eng. J.,2009,46(2):223-226.
    [38] Shimamura K, Ishikawa H, Mizuoka A, Hirasawa I. Development of a processfor the recovery of phosphorus resource from digested sludge bycrystallization technology[J]. Water Sci. Technol.,2008,57(3):451-456.
    [39] Chen J, Zheng P, Yu Y, Mahmood Q, Tang C. Enrichment of high activitynitrifers to enhance partial nitrification process[J]. Bioresource. Technol.,2010,101(19):7293-7298.
    [40] Ivanov V, Kuanga S, Stabnikovb V, Guoa C. The removal of phosphorus fromreject water in amunicipal wastewater treatment plant using iron ore[J]. J.Chem. Technol. Biotechnol.,2009,84(1):78-82.
    [41] Guo C H, Stabnikov V, Ivanov V. The removal of nitrogen and phosphorusfrom reject water of municipal wastewater treatment plant using ferric andnitrate bioreductions[J]. Bioresource. Technol.,2010,101(11):3992-3999.
    [42] Leu S Y, Stenstrom M K. Bioaugmentation to improve nitrification inactivated sludge treatment[J]. Water Environ. Res.,2010,82(6):524-535.
    [43] Salem S, Berends D, van der Roest H F, van der Kuij R J, van Loosdrecht MC M. Full-scale application of the BABE technology[J]. Water Sci. Technol.,2004,50(7):87-96.
    [44] Salem S, Berends D H J G, Heijnen J J, Van Loosdrecht M C M.Bio-augmentation by nitrification with return sludge[J]. Water Res.,2003,37(8):1794-1804.
    [45] Podmirseg S M, Schoen M A, Murthy S, Insam H, Wett B. Quantitative andqualitative effects of bioaugmentation on ammonia oxidisers at a two-stepWWTP[J]. Water Sci. Technol.,2010,61(4):1003-1009.
    [46] Krhutkova O, Novak L, Pachmanova L, Benakova A, Wanner J, Kos M. Insitu bioaugmentation of nitrification in the regeneration zone: practicalapplication and experiences at full-scale plants[J]. Water Sci. Technol.,2006,53(12):39-46.
    [47] Gil K I, Choi E. Nitrogen removal by recycle water nitritation as an attractivealternative for retrofit technologies in municipal wastewater treatmentplants[J]. Water Sci. Technol.,2004,49(5-6):39-46.
    [48] Head M A, Oleszkiewicz J A. Bioaugmentation for nitrification at coldtemperatures[J]. Water Res.,2004,38(3):523-530.
    [49] Smith R C, Oerther D B. Respirometric evaluation of side-stream treatment ofreject water as a source of nitrifying bacteria for main-stream activatedsludge bioreactors[J]. Water Sci. Technol.,2009,60(10):2677-2684.
    [50] Johnson B R, Daigger G T. Integrated nutrient removal design for very lowphosphorus levels[J]. Water Sci. Technol.,2009,60(9):2455-2462.
    [51] Zupancic G D, Ros M. Aerobic and two-stage anaerobic-aerobic sludgedigestion with pure oxygen and air aeration[J]. Bioresource. Technol.,2008,99(1):100-109.
    [52] Novak J T, Banjade S, Murthy S N. Combined anaerobic and aerobicdigestion for increased solids reduction and nitrogen removal[J]. Water Res.,2011,45(2):618-624.
    [53] Al-Ghusain I, Hamoda M F, Abd El-Ghany M. Nitrogen transformationsduring aerobic/anoxic sludge digestion[J]. Bioresource. Technol.,2002,85(2):147-154.
    [54] Parravicini V, Svardal K, Hornek R, Kroiss H. Aeration of anaerobicallydigested sewage sludge for COD and nitrogen removal: optimization atlarge-scale[J]. Water Sci. Technol.,200857(2):257-264.
    [55] Husband J A, Phillips J, Coughenour J R, Walz T, Blatchford G. Innovativeapproach to centrate nitrification accomplishes multiple goals: nitrogenremoval and odour control[J]. Water Sci. Technol.,2010,61(5):1097-1103.
    [56] Dosta J, Gali A, El-Hadj T B, Mace S, Mata-Alvarez J. Operation and modeldescription of a sequencing batch reactor treating reject water for biologicalnitrogen removal via nitrite[J]. Bioresource. Technol.,2007,98(11):2065-2075.
    [57] Modin O, Fukushi K, Rabaey K, Rozendal R A, Yamamoto K. Redistributionof wastewater alkalinity with a microbial fuel cell to support nitrification ofreject water[J]. Water Res.,2011,45(8):2691-2699.
    [58] Peng Y, Zhang S, Zeng W, Zheng S, Mino T, Satoh H. Organic removal bydenitritation and methanogenesis and nitrogen removal by nitritation fromlandfill leachate[J]. Water Res.,2008,42(4-5):883-892.
    [59] Yang J, Zhang L, Daisuke H, Takahiro S, Ma Y, Li Z, Furukawa K. High ratepartial nitrification treatment of reject wastewater[J]. J. Biosci. Bioeng.,2010,110(4):436-440.
    [60] Jubany I, Baeza J A, Lafuente J, Carrera J. Model-based study of nitriteaccumulation with OUR control in two continuous nitrifying activated sludgeconfigurations[J]. Water Sci. Technol.,2009,60(10):2685-2693.
    [61] Tokutomi T, Shibayama C, Soda S, Ike M. A novel control method fornitritation: The domination of ammonia-oxidizing bacteria by highconcentrations of inorganic carbon in an airlift-fluidized bed reactor[J]. WaterRes.,2010,44(14):4195-4203.
    [62] Yoo I K, Lim K J, Lee W S, Kim D J, Cha G C. Study on operational factorsin a nitrite-accumulating submerged membrane bioreactor[J]. J. Microbiol.Biotechn,2006,16(3):469-474.
    [63] Zhang L, Yang J, Furukawa K. Stable and high-rate nitrogen removal fromreject water by partial nitrification and subsequent anammox[J]. J. Biosci.Bioeng.,2010,110(4):441-448.
    [64] Yang W, Vollertsen J, Hvitved-Jacobsen T. Nitrite accumulation in thetreatment of wastewaters with high ammonia concentration[J]. Water Sci.Technol.,2003,48(3):135-141.
    [65] Qiao S, Kawakubo Y, Koyama T, Furukawa K. Partial nitritation of rawanaerobic sludge digester liquor by swim-bed and swim-bed activated sludgeprocesses and comparison of their sludge characteristics[J]. J. Biosci. Bioeng.,2008,106(5):433-441.
    [66] Fux C, Huang D, Monti A, Siegrist H. Difficulties in maintaining long-termpartial nitritation of ammonium-rich sludge digester liquids in a moving-bedbiofilm reactor (MBBR). Water Sci. Technol.,2004,49(11-12):53-60
    [67] Lee S M, Jung J Y, Chung Y C. Measurement of ammonia inhibition ofmicrobial activity in biological wastewater treatment process usingdehydrogenase assay[J]. Biotechnol. Lett.,2000,22(12):991-994.
    [68] Chung J, Bae W, Lee Y W, Rittmann B E. Shortcut biological nitrogenremoval in hybrid biofilm/suspended growth reactors[J]. Process. Biochem.,2007,42(3):320-328.
    [69] Fernandez B, Vilar A, Ben M, Kennes C, Veiga M C. Partial nitrification ofwastewater from an aminoplastic resin producing factory[J]. Water Sci.Technol.,2005,52(10-11):517-524.
    [70] Cecen F. Investigation of partial and full nitrification characteristics offertilizer wastewaters in a submerged biofilm reactor[J]. Water Sci. Technol.,1996,34(11):77-85.
    [71] Xue Y, Yang F L, Liu S T, Fu Z M. The influence of controlling factors on thestart-up and operation for partial nitrification in membrane bioreactor[J].Bioresource. Technol.,2009,100(3):1055-1060.
    [72] Kim JH, Guo X, Park HS. Comparison study of the effects of temperature andfree ammonia concentration on nitrification and nitrite accumulation[J].Process. Biochem.,2008,43(2):154-160.
    [73]韩晓宇,张树军,甘一萍,王洪臣,彭永臻.以FA与FNA为控制因子的短程硝化启动与维持[J].环境科学,2009,30(3):809-814.
    [74]张树军,彭永臻,薇曾,郑淑文,利周.高氮城市生活垃圾渗滤液短程生物脱氮[J].环境科学学报,2006,26(5):751-756.
    [75] Gali A, Dosta J, van Loosdrecht M C M, Mata-Alvarez J. Two ways toachieve an anammox influent from real reject water treatment at lab-scale:Partial SBR nitrification and SHARON process[J]. Process. Biochem.,2007,42(4):715-720.
    [76] Fux C, Lange K, Faessler A, Huber P, Grueniger B, Siegrist H. Nitrogenremoval from digester supernatant via nitrite–SBR or SHARON?[J]. WaterSci. Technol.,2003,48(8):9-18.
    [77] Gali A, Dosta J, van Loosdrecht M C M, Mata-Alvarez J. Biological nitrogenremoval via nitrite of reject water with a SBR and chemostatSHARON/denitrification process[J]. Ind. Eng. Chem. Res.,2006,45(22):7656-7660.
    [78] Elefsiniotis P, Wareham D G, Smith M O. Use of volatile fatty acids from anacid-phase digester for denitrification[J]. J. Biotechnol.,2004,114(3):289-297.
    [79] Barnard J L, H.D.Stensel. Design and retrofit of wastewater treatment plantsfor biological nutrient removal[M]. Technomic Publishing Company,1992,5-85.
    [80] Moser-Engeler R, Udert K M, Wild D, Siegrist H. Products from primarysludge fermentation and their suitability for nutrient removal[J]. Water Sci.Technol.,1998,38(1):265-273.
    [81] Gali A, Dosta J, Mata-Alvarez J. Use of hydrolyzed primary sludge as internalcarbon source for denitrification in a SBR treating reject water via nitrite[J].Ind. Eng. Chem. Res.,2006,45(22):7661-7666.
    [82] Wang J, Shi M, Lu H, Wu D, Shao M-F, Zhang T, Ekama G, Loosdrecht M M,Chen G-H. Microbial community of sulfate-reducing up-flow sludge bed inthe SANI process for saline sewage treatment[J]. Appl. Microbiol. Biot.,2011,90(6):2015-2025.
    [83] Perez R, Gali A, Dosta J, Mata-Alvarez J. Biological Nitrogen Removal (BNR)Using Sulfides for Autotrophic Denitrification in a Sequencing Batch Reactor(SBR) To Treat Reject Water[J]. Ind. Eng. Chem. Res.,2007,46(21):6646-6649.
    [84] Wett B, Rostek R, Rauch W. pH-controlled reject water treatment[J]. WaterSci. Technol.,1998,37(12):165-172.
    [85] Dosta J, Gali A, El-Hadj T B, Mata-Alvarez J. Operation of the SHARONdenitrification process to treat sludge reject water using hydrolyzed primarysludge to denitrify[J]. Water Environ. Res.,2008,80(3):197-204.
    [86] Kolisch G, Rolfs T. Integrated sidestream treatment for enhanced enlargementof sewage plants[J]. Water Sci. Technol.,2000,41(9):155-162.
    [87] Kuenen J G. Anammox bacteria: from discovery to application[J]. Nat RevMicro,2008,6(4):320-326.
    [88] van Niftrik L, Jetten M S M. Anaerobic ammonium-oxidizing bacteria: uniquemicroorganisms with exceptional properties[J]. Microbiology and MolecularBiology Reviews,2012,76(3):585-596.
    [89] van de Vossenberg J, Rattray J E, Geerts W, Kartal B, van Niftrik L, vanDonselaar E G, Damste J S S, Strous M, Jetten M S M. Enrichment andcharacterization of marine anammox bacteria associated with global nitrogengas production[J]. Environ. Microbiol.,2008,10(11):3120-3129.
    [90] Wang S, Zhu G, Peng Y, Jetten M S M, Yin C. Anammox Bacterial Abundance,Activity, and Contribution in Riparian Sediments of the Pearl RiverEstuary[J]. Environ. Sci. Technol.,2012,46(16):8834-8842.
    [91] Zhu G, Wang S, Wang Y, Wang C, Risgaard-Petersen N, Jetten M S M, Yin C.Anaerobic ammonia oxidation in a fertilized paddy soil[J]. ISME J,2011,5(12):1905-1912.
    [92] Yoshinaga I, Amano T, Yamagishi T, Okada K, Ueda S, Sako Y, Suwa Y.Distribution and diversity of anaerobic ammonium oxidation (Anammox)bacteria in the sediment of a eutrophic freshwater lake, Lake Kitaura,Japan[J]. Microbes Environ.,2011,26(3):189-197.
    [93] Terada A, Zhou S, Hosomi M. Presence and detection of anaerobicammonium-oxidizing (anammox) bacteria and appraisal of anammox processfor high-strength nitrogenous wastewater treatment: a review[J]. CleanTechnol. Envir.,2011,13(6):759-781.
    [94] Schmid M C, Hooper A B, Klotz M G, Woebken D, Lam P, Kuypers M M M,Pommerening-Roeser A, op den Camp H J M, Jetten M S M. Environmentaldetection of octahaem cytochrome c hydroxylamine/hydrazine oxidoreductasegenes of aerobic and anaerobic ammonium-oxidizing bacteria[J]. Environ.Microbiol.,2008,10(11):3140-3149.
    [95] Damste J S S, Strous M, Rijpstra W I C, Hopmans E C, Geenevasen J A J, vanDuin A C T, van Niftrik L A, Jetten M S M. Linearly concatenatedcyclobutane lipids form a dense bacterial membrane[J]. Nature,2002,419(6908):708-712.
    [96] Kartal B, Maalcke W J, de Almeida N M, Cirpus I, Gloerich J, Geerts W, denCamp H J M O, Harhangi H R, Janssen-Megens E M, Francoijs K-J,Stunnenberg H G, Keltjens J T, Jetten M S M, Strous M. Molecularmechanism of anaerobic ammonium oxidation[J]. Nature,2011,479(7371):127-130.
    [97] Joss A, Salzgeber D, Eugster J, Konig R, Rottermann K, Burger S, Fabijan P,Leumann S, Mohn J, Siegrist H. Full-scale nitrogen removal from digesterliquid with partial nitritation and anammox in one SBR[J]. Environ. Sci.Technol.,2009,43(14):5301-5306.
    [98] Weissenbacher N, Takacs I, Murthy S, Fuerhacker M, Wett B. Gaseousnitrogen and carbon emissions from a full-scale deammonification plant[J].Water Environ. Res,2010,82(2):169-175.
    [99] Okabe S, Oshiki M, Takahashi Y, Satoh H. N2O emission from a partialnitrification–anammox process and identification of a key biological processof N2O emission from anammox granules[J]. Water Res.,2011,45(19):6461-6470.
    [100]Van Hulle S W H, Vandeweyer H J P, Meesschaert B D, Vanrolleghem P A,Dejans P, Dumoulin A. Engineering aspects and practical application ofautotrophic nitrogen removal from nitrogen rich streams[J]. Chem. Eng. J.,2010,162(1):1-20.
    [101]Schmidt I, Sliekers O, Schmid M, Bock E, Fuerst J, Kuenen J G, Jetten M SM, Strous M. New concepts of microbial treatment processes for the nitrogenremoval in wastewater[J]. Fems Microbiol. Rev.,2003,27(4):481-492.
    [102]Li Z, Ma Y, Hira D, Fujii T, Furukawa K. Factors affecting the treatment ofreject water by the anammox process[J]. Bioresource. Technol.,2011,102(3):5702-5708.
    [103]Jin RC, Yang GF, Yu JJ, Zheng P. The inhibition of the Anammox process: Areview[J]. Chem. Eng. J.,2012,197(1):67-79.
    [104]Zhou Y, Oehmen A, Lim M, Vadivelu V, Ng W J. The role of nitrite and freenitrous acid (FNA) in wastewater treatment plants[J]. Water Res.,2011,45(15):4672-4682.
    [105]Tang C J, Zheng P, Wang C H, Mahmood Q. Suppression of anaerobicammonium oxidizers under high organic content in high-rate AnammoxUASB reactor[J]. Bioresource. Technol.,2010,101(6):1762-1768.
    [106]Strous M, Heijnen J J, Kuenen J G, Jetten M S M. The sequencing batchreactor as a powerful tool for the study of slowly growing anaerobicammonium-oxidizing microorganisms[J]. Appl. Microbiol. Biotechnol.,1998,50(5):589-596.
    [107]Quan L M, Khanh D P, Hira D, Fujii T, Furukawa K. Reject water treatmentby improvement of whole cell anammox entrapment using polyvinylalcohol/alginate gel[J]. Biodegradation.,2011,22(6):1155-1167.
    [108]Wett B. Solved upscaling problems for implementing deammonification ofrejection water[J]. Water Sci. Technol.,2006,53(12):121-128.
    [109]van der Star W R L, Abma W R, Blommers D, Mulder J-W, Tokutomi T,Strous M, Picioreanu C, van Loosdrecht M C M. Startup of reactors foranoxic ammonium oxidation: Experiences from the first full-scale anammoxreactor in Rotterdam[J]. Water Res.,2007,41(18):4149-4163.
    [110]Zhang L, Yang J, Hira D, Fujii T, Zhang W, Furukawa K. High-rate nitrogenremoval from anaerobic digester liquor using an up-flow anammox reactorwith polyethylene sponge as a biomass carrier[J]. J. Biosci. Bioeng.,2011,111(3):306-311.
    [111]Furukawa K, Inatomi Y, Qiao S, Quan L, Yamamoto T, Isaka K, Sumino T.Innovative treatment system for digester liquor using anammox process[J].Bioresource. Technol.,2009,100(22):5437-5443.
    [112]Vázquez-Padín J R, Pozo M J, Jarpa M, Figueroa M, Franco A,Mosquera-Corral A, Campos J L, Méndez R. Treatment of anaerobic sludgedigester effluents by the CANON process in an air pulsing SBR[J]. J. Hazard.Mater.,2009,166(1):336-341.
    [113]Jeanningros Y, Vlaeminck S E, Kaldate A, Verstraete W, Graveleau L. Faststart-up of a pilot-scale deammonification sequencing batch reactor from anactivated sludge inoculum[J]. Water Sci. Technol.,2010,61(6):1393-1400.
    [114]Abma W R, Driessen W, Haarhuis R, van Loosdrecht M C M. Upgrading ofsewage treatment plant by sustainable and cost-effective separate treatmentof industrial wastewater[J]. Water Sci. Technol.,2010,61(7):1715-1722.
    [115]Wett B. Development and implementation of a robust deammonificationprocess[J]. Water Sci. Technol.,2007,56(7):81-88.
    [116]Vázquez-Padín J, Fernádez I, Figueroa M, Mosquera-Corral A, Campos J-L,Méndez R. Applications of Anammox based processes to treat anaerobicdigester supernatant at room temperature[J]. Bioresource. Technol.,2009,100(12):2988-2994.
    [117]Kalyuzhnyi S V, Gladchenko M A, Kang H, Mulder A, Versprille A.Development and optimisation of VFA driven DEAMOX process fortreatment of strong nitrogenous anaerobic effluents[J]. Water Sci. Technol.,2008,57(3):323-328.
    [118]Liu J, Zuo J E, Yang Y, Zhu S Q, Kuang S L, Wang K J. An autotrophicnitrogen removal process: Short-cut nitrification combined with ANAMMOXfor treating diluted effluent from an UASB reactor fed by landfillleachatee[J]. J Environ Sci-China.,2010,22(5):777-783.
    [119]Park H, Rosenthal A, Ramalingam K, Fillos J, Chandran K. Linkingcommunity profiles, gene expression and N-removal in anammox bioreactorstreating municipal anaerobic digestion reject water[J]. Environ. Sci. Technol.,2010,44(16):6110-6116.
    [120]Villaverde S, S.H.Isaacs, A.garicaa P. Nitrifying biofilm acclimation to freeammonia in submerged biofilters:start-up influence [J]. Water Res.,2000,34(2):602-610.
    [121]国家环境保护总局.水和废水监测分析方法[M].北京:中国环境科学出版社,2002.
    [122]Amann R I. In situ identification of microorganisms by whole cellhybridization with rRNA-targeted nucleic acid probes[M]. In: Akkermans,A.D.L., van Elsas, J.D., de Bruijn, F.J.(Eds.), Molecular Microbial EcologyManual. Kluwer Academic Publications, Dordrecht, Holland,1995:1-15.
    [123]Crocetti G R, Banfield J F, Keller J, Bond P L, Blackall L L.Glycogen-accumulating organisms in laboratory-scale and full-scalewastewater treatment processes[J]. Microbiol-SGM.,2002,148:3353-3364.
    [124]Guo J, Peng Y, Wang S, Zheng Y, Huang H, Wang Z. Long-term effect ofdissolved oxygen on partial nitrification performance and microbialcommunity structure[J]. Bioresource. Technol.,2009,100(11):2796-2802.
    [125]Gustavsson D J I, Nyberg U, Jansen J l C. Operation for nitritation of sludgeliquor in a full-scale SBR[J]. Water Sci. Technol.,2008,58(2):439-444.
    [126]Bernet N, Dangcong P, Delgenes J P, Moletta R. Nitrification at low oxygenconcentration in biofilm reactor[J]. J. Environ. Eng-ACSE.,2001,127(3):266-271.
    [127]Blackburne R, Yuan Z Q, Keller J. Demonstration of nitrogen removal vianitrite in a sequencing batch reactor treating domestic wastewater[J]. WaterRes.,2008,42(8-9):2166-2176.
    [128]Ma Y, Peng Y Z, Wang S Y, Yuan Z G, Wang X L. Achieving nitrogenremoval via nitrite in a pilot-scale continuous pre-denitrification plant[J].Water Res.,2009,43(3):563-572.
    [129]Campos J L, Mosquera-Corral A, Sánchez M, Méndez R, Lema J M.Nitrification in saline wastewater with high ammonia concentration in anactivated sludge unit[J]. Water Res.,2002,36(10):2555-2560.
    [130]Yusof N, Hassan M A, Phang L Y, Tabatabaei M, Othman M R, Mori M,Wakisaka M, Sakai K, Shirai Y. Nitrification of ammonium-rich sanitarylandfill leachate[J]. Waste Manage.,2010,30(1):100-109.
    [131]Kartal B, Kuenen J G, van Loosdrecht M C M. Sewage Treatment withAnammox[J]. Science,2010,328(5979):702-703.
    [132]BartrolíA, Carrera J, Pérez J. Bioaugmentation as a tool for improving thestart-up and stability of a pilot-scale partial nitrification biofilm airliftreactor[J]. Bioresource. Technol.,2011,102(6):4370-4375.
    [133]Guo J H, Wang S Y, Huang H J, Peng Y Z, Ge S J, Wu C Y, Sun Z R.Efficient and integrated start-up strategy for partial nitrification to nitritetreating low C/N domestic wastewater[J]. Water Sci. Technol.,2009,60(12):3243-3251.
    [134]Wu G, Rodgers M, Zhan X. Nitrification in sequencing batch reactors withand without glucose addition at11°C[J]. Biochem. Eng. J.,2008,40(2):373-378.
    [135]Ma B, Zhang S J, Zhang L, Yi P, Wang J M, Wang S Y, Peng Y Z. Thefeasibility of using a two-stage autotrophic nitrogen removal process to treatsewage[J]. Bioresource. Technol.,2011,102(17):8331-8334.
    [136]Sinha B, Annachhatre A P. Assessment of partial nitrification reactorperformance through microbial population shift using quinone profile, FISHand SEM[J]. Bioresource. Technol.,2007,98(18):3602-3610.
    [137]Kim DJ, Seo D. Selective enrichment and granulation of ammonia oxidizersin a sequencing batch airlift reactor[J]. Process. Biochem.,2006,41(5):1055-1062.
    [138]Yuan Z, Bogaert H, Leten J, Verstraete W. Reducing the size of a nitrogenremoval activated sludge plant by shortening the retention time of inert solidsvia sludge storage[J]. Water Res.,2000,34(2):539-549.
    [139]Gao Y, Peng Y, Zhang J, Wang S, Guo J, Ye L. Biological sludge reductionand enhanced nutrient removal in a pilot-scale system with2-step sludgealkaline fermentation and A2O process[J]. Bioresource. Technol.,2011,102(5):4091-4097.
    [140]Moser-Engeler R, Kühni M, Bernhard C, Siegrist H. Fermentation of rawsludge on an industrial scale and applications for elutriating its dissolvedproducts and non-sedimentable solids[J]. Water Res.,1999,33(16):3503-3511.
    [141]Novak J T, Sadler M E, Murthy S N. Mechanisms of floc destruction duringanaerobic and aerobic digestion and the effect on conditioning anddewatering of biosolids[J]. Water Res.,2003,37(13):3136-3144.
    [142]Rustrian E, Delgenes J P, Bernet N, Moletta R. Nitrate reduction inacidogenic reactor: influence of wastewater COD/N-NO3ratio ondenitrification and acidogenic activity[J]. Environ. Technol.,1997,18(3):309-315.
    [143]Vigneron V, Ponthieu M, Barina G, Audic J M, Duquennoi C, Mazeas L,Bernet N, Bouchez T. Nitrate and nitrite injection during municipal solidwaste anaerobic biodegradation[J]. Waste Manage.,2007,27(6):778-791.
    [144]Mosquera-Corral A, Sanchez M, Campos J L, Mendez R, Lema J M.Simultaneous methanogenesis and denitrification of pretreated effluents froma fish canning industry[J]. Water Res.,2001,35(2):411-418.
    [145]An Y, Yang F, Chua H C, Wong F S, Wu B. The integration ofmethanogenesis with shortcut nitrification and denitrification in a combinedUASB with MBR[J]. Bioresource. Technol.,2008,99(9):3714-3270.
    [146]Dong X, Tollner E W. Evaluation of anammox and denitrification duringanaerobic digestion of poultry manure[J]. Bioresource. Technol.,2003,86(2):139-145.
    [147]Koop-Jakobsen K, Giblin A E. The effect of increased nitrate loading onnitrate reduction via denitrification and DNRA in salt marsh sediments[J].Limnol. Oceanogr.,2010,55(2):789-802.
    [148]Rütting T, Huygens D, Müller C, Cleemput O, Godoy R, Boeckx P.Functional role of DNRA and nitrite reduction in a pristine south ChileanNothofagus forest[J]. Biogeochemistry,2008,90(3):243-258.
    [149]Tomaszek J A, Gruca-Rokosz R. Rates of dissimilatory nitrate reduction toammonium in two polish reservoirs: Impacts of temperature, organic mattercontent, and nitrate concentration[J]. Environ. Technol.,2007,28(7):771-778.
    [150]Tugtas A E, PavlostathisS G. Electron donor effect on nitrate reductionpathway and kinetics in a mixed methanogenic culture[J]. Biotechnol.Bioeng.,2007,98(4):756-763.
    [151]Ahna Y H, Speeceb R E. Elutriated acid fermentation of municipal primarysludge[J]. Water Res.,2006,40:2210-2220.
    [152]Chen Y G, Jiang S, Yuan H Y, Zhou Q, Gu G W. Hydrolysis and acidificationof waste activated sludge at different pHs[J]. Water Res.,2007,41(3):683-689.
    [153]Gerardi M H. Nitrification and Denitrification in the Activated SludgeProcess[M].2002.
    [154]Mulder A, van de Graaf A A, Robertson L A, Kuenen J G. Anaerobicammonium oxidation discovered in a denitrifying fluidized bed reactor[J].FEMS Microbiol. Ecol.,1995,16(3):177-184.
    [155]Daverey A, Su S H, Huang YT, Lin JG. Nitrogen removal fromopto-electronic wastewater using the simultaneous partial nitrification,anaerobic ammonium oxidation and denitrification (SNAD) process insequencing batch reactor[J]. Bioresource. Technol.,2011,(SI):225-231.
    [156]Yang Q, Peng Y Z, Liu X H, Zeng W, Mino T, Satoh H. Nitrogen removal vianitrite from municipal wastewater at low temperatures using real-time controlto optimize nitrifying communities[J]. Environ. Sci. Technol.,2007,41(23):8159-8164.
    [157]Puig S, van Loosdrecht M C M, Flameling A G, Colprim J, Meijer S C F. Theeffect of primary sedimentation on full-scale WWTP nutrient removalperformance[J]. Water Res.,2010,44(11):3375-3384.
    [158]Yuan H, Chen Y, Zhang H, Jiang S, Zhou Q, Gu G. Improved bioproductionof short-chain fatty acids (SCFAs) from excess sludge under alkalineconditions[J]. Environ. Sci. Technol.,2006,40(6):2025-2029.
    [159]Tugtas A E, Pavlostathis S G. Electron donor effect on reduction pathway andkinetics in a mixed methanogenic culture[J]. Biotechnol. Bioeng.,2007,98(4):756-763.
    [160]Tang CJ, Zheng P, Wang CH, Mahmood Q, Zhang JQ, Chen XG, Zhang L,Chen JW. Performance of high-loaded ANAMMOX UASB reactorscontaining granular sludge[J]. Water Res.,2011,45(1):135-144.
    [161]Ni B J, Hu B L, Fang F, Xie W M, Kartal B, Liu X W, Sheng G P, Jetten M,Zheng P, Yu H Q. Microbial and physicochemical characteristics of compactanaerobic ammonium-oxidizing granules in an upflow anaerobic sludgeblanket reactor[J]. Appl. Environ. Microb.,2010,76(8):2652-2656.
    [162]Ni SQ, Gao BY, Wang CC, Lin JG, Sung S. Fast start-up, performance andmicrobial community in a pilot-scale anammox reactor seeded with exoticmature granules[J]. Bioresource. Technol.,2011,102(3):2448-2454.
    [163]Liu S T, Gong Z, Yang F L, Zhang H M, Shi L J, Furukawa K. Combinedprocess of urea nitrogen removal in anaerobic Anammox co-culture reactor[J].Bioresource. Technol.,2008,99(6):1722-1728.
    [164]Vandegraaf A A, Mulder A, Debruijn P, Jetten M S M, Robertson L A,Kuenen J G. Anaerobic oxidation of ammonium is a biologically mediatedprocess[J]. Applied and Environmental Micr.,1995,61(4):1246-1251.
    [165]Geets J, de Cooman M, Wittebolle L, Heylen K, Vanparys B, De Vos P,Verstraete W, Boon N. Real-time PCR assay for the simultaneousquantification of nitrifying and denitrifying bacteria in activated sludge[J].Appl. Microbiol. Biotechnol.,2007,75(1):211-221.
    [166]Ahn J H, Yu R, Chandran K. Distinctive microbial ecology and biokinetics ofautotrophic ammonia and nitrite oxidation in a partial nitrificationBioreactor[J]. Biotechnol. Bioeng.,2008,100(6):1078-1087.
    [167]Zhu G B, Wang S Y, Feng X J, Fan G N, Jetten M S M, Yin C Q. Anammoxbacterial abundance, biodiversity and activity in a constructed wetland[J].Environ. Sci. Technol.,2011,45(23):9951-9958.
    [168]Koike S, Krapac I G, Oliver H D, Yannarell A C, Chee-Sanford J C, AminovR I, Mackie R I. Monitoring and source tracking of tetracycline resistancegenes in lagoons and groundwater adjacent to swine production facilitiesover a3-year period[J]. Applied and Environmental Micr.,2007,73(15):4813-4823.
    [169]Gao D, Tao Y. Versatility and application of anaerobic ammonium-oxidizingbacteria[J]. Appl. Microbiol. Biotechnol.,2011,91(4):887-894.
    [170]van der Star W R L, Miclea A I, van Dongen U, Muyzer G, Picioreanu C, vanLoosdrecht M C M. The membrane bioreactor: A novel tool to growanammox bacteria as free cells[J]. Biotechnol. Bioeng.,2008,101(2):286-294.
    [171]Tsushima I, Kindaichi T, Okabe S. Quantification of anaerobicammonium-oxidizing bacteria in enrichment cultures by real-time PCR[J].Water Res.,2007,41(4):785-794.
    [172]Tang C J, Zheng P, Mahmood Q. The shear force amendments on theslugging behavior of upflow Anammox granular sludge bed reactor[J]. Sep.Purif. Technol.,2009,69(3):262-268.
    [173]Carvajal-Arroyo J M, Sun W, Sierra-Alvarez R, Field J A. Inhibition ofanaerobic ammonium oxidizing (anammox) enrichment cultures by substrates,metabolites and common wastewater constituents[J]. Chemosphere,2013,91(1):22-27.
    [174]Jin RC, Yang GF, Zhang QQ, Ma C, Yu JJ, Xing BS. The effect of sulfideinhibition on the ANAMMOX process[J]. Water Res.,2013,47(3):1459-1469.
    [175]Jiang T, Zhang H, Qiang H, Yang F, Xu X, Du H. Start-up of the anammoxprocess and membrane fouling analysis in a novel rotating membranebioreactor[J]. Desalination,2013,311:46-53.
    [176]Yang G F, Jin R C. Reactivation of effluent granular sludge from a high-rateAnammox reactor after storage[J]. Biodegradation,2013,24(1):13-32.
    [177]Vlaeminck S E, Terada A, Smets B F, Van der Linden D, Boon N, VerstraeteW, Carballa M. Nitrogen removal from digested black water by one-stagepartial nitritation and anammox[J]. Environ. Sci. Technol.,2009,43(13):5035-5041.
    [178]Zubrowska-Sudol M, Yang J, Trela J, Plaza E. Evaluation ofdeammonification process performance at different aeration strategies[J].Water Sci. Technol.,2011,63(6):1168-1176.
    [179]Wantawin C, Juateea J, Noophan P L, Munakata-Marr J. Autotrophic nitrogenremoval in sequencing batch biofilm reactors at different oxygen supplymodes[J]. Water Sci. Technol.,2008,58(10):1889-1894.
    [180]Vlaeminck S E, Dierick K, Boon N, Verstraete W. Vertical migration ofaggregated aerobic and anaerobic ammonium oxidizers enhances oxygenuptake in a stagnant water layer[J]. Appl. Microbiol. Biotechnol.,2007,75(6):1455-1461.
    [181]Volcke E I P, Picioreanu C, De Baets B, van Loosdrecht M C M. Effect ofgranule size on autotrophic nitrogen removal in a granular sludge reactor[J].Environ. Technol.,2010,31(11):1271-1280.
    [182]Innerebner G, Insam H, Franke-Whittle I H, Wett B. Identification ofanammox bacteria in a full-scale deammonification plant making use ofanaerobic ammonia oxidation[J]. Syst. Appl. Microbiol.,2007,30(5):408-412.
    [183]Nielsen M, Bollmann A, Sliekers O, Jetten M, Schmid M, Strous M, SchmidtI, Larsen L H, Nielsen L P, Revsbech N P. Kinetics, diffusional limitation andmicroscale distribution of chemistry and organisms in a CANON reactor[J].FEMS Microbiol. Ecol.,2005,51(2):247-256.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700