用户名: 密码: 验证码:
城市污水连续流短程硝化厌氧氨氧化脱氮工艺与技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体富营养化日益严重,使城市水环境恶化,甚至造成饮用水水源供应中断,严重影响了工业生产与居民的日常生活,造成了巨大的直接和间接经济损失。污水中氮磷排放是引起水体富营养化的重要原因,因此为了控制水体富营养化而兴建了大量的污水处理厂。现有污水处理厂属于能耗大户,在能源危机不断凸显的背景下,如何在实现高效脱氮的同时降低水处理能耗,降低处理费用,对于污水处理的可持续发展有着重要意义。
     现有污水脱氮技术需要利用有机物作为反硝化碳源才能达到污水总氮去除的目的,因此污水中的大部分有机物不能用于产甲烷。厌氧氨氧化菌的发现为污水自养脱氮提供了可能,因为厌氧氨氧化菌可以利用亚硝酸盐氧化氨氮生成氮气,而无需有机物作为碳源。现有厌氧氨氧化技术主要集中在高温高氨氮废水处理中,而城市污水厌氧氨氧化脱氮技术的研究报道甚少。
     为了推动厌氧氨氧化技术在城市污水处理中的应用,本文首先提出城市污水短程硝化厌氧氨氧化脱氮(自养脱氮)工艺,随后以连续流反应器作为研究对象处理实际城市污水考察了两段式城市污水自养脱氮的技术可行性。确认其技术可行性之后,提出并考察了生物强化方法快速启动与稳定维持城市污水短程硝化;在UASB反应器中成功培养出了厌氧氨氧化颗粒污泥,并考察了温度降低过程中城市污水厌氧氨氧化脱氮性能、菌群结构变化及N2O释放情况。
     本文对污水有机物去除、短程硝化及厌氧氨氧化技术现状进行了总结分析,提出了城市污水自养脱氮新工艺。该工艺首先将污水中的有机物富集到污泥中,污泥再去产甲烷实现能量的回收利用;随后通过短程硝化厌氧氨氧化技术将污水中的氮去除,此技术有望实现城市污水厂能量自给或能量外供。随后以去除有机物后城市污水为研究对象,采用短程硝化厌氧氨氧化工艺,考察城市污水自养脱氮技术可行性。试验结果表明在进水TN和溶解性COD浓度分别为45.87mg/L和44.40mg/L的条件下,自养脱氮工艺的TN去除率可达88.38%,证明了两段式城市污水自养脱氮具有技术可行性。
     提出了生物强化策略快速启动与稳定维持城市污水短程硝化,即在城市污水厂旁侧高氨氮废水处理系统实现短程硝化,将其排放的短程硝化剩余污泥投至城市污水硝化系统,从而达到快速启动与稳定维持城市污水短程硝化。试验结果表明:高氨氮废水A/O硝化系统可通过FA与FNA联合抑制实现稳定的短程硝化,亚硝酸盐积累率在95%以上;通过微孔曝气改善气液传质效果,氨氧化速率可达2.71kgN/m3/d。通过生物强化策略,即定期向城市污水硝化系统投加短程硝化污泥,同时控制反应器内溶解氧不要过高,可重复实现稳定短程硝化。在城市污水短程硝化破坏后,15天即可重建短程硝化,亚硝酸盐积累率由1%增至89%。
     在城市污水厌氧氨氧化UASB反应器中,通过逐渐提高进水流量来提高上升流速,成功培养出了厌氧氨氧化颗粒污泥。颗粒污泥粒径主要分布在0.5-0.9mm范围内,且颗粒污泥空隙较多,有利于传质。颗粒污泥的形成实现了厌氧氨氧化菌的富集,其丰度为1.68±0.08×109copies/ml混合液,厌氧氨氧化菌主要为Candidatus “Kuenenia stuttgartiensis”。进水量逐渐提高的过程中,HRT由1.24h降至0.12h,容积氮去除速率由0.57kg N/m3/d增至5.72kg N/m3/d;NH4+-N去除率为76.47-100.00%,平均值为92.81%; NO2--N的去除率为78.75-99.65%,平均值为94.35%,表明厌氧氨氧化菌的富集使得污水的中氮得以高效去除。在此厌氧氨氧化反应器中,N2O释放量极少,其释放速率平均为0.30×10-4kg N/m3/d,低于容积氮去除速率的0.0016%;进水中的N2O-N浓度为0.08-0.13mg/L,出水中N2O-N浓度却低于0.02mg/L,可以看出在厌氧氨氧化过程中可去除水中溶解态的N2O。
     通过逐渐降低厌氧氨氧化UASB反应器运行温度,研究了降温过程中城市污水厌氧氨氧化脱氮特性及菌群结构变化。温度由30℃变为16℃时,厌氧氨氧化污泥仍保持颗粒状,使得厌氧氨氧化菌在UASB内得以有效持留,颗粒污泥中厌氧氨氧化菌丰度为1.93±0.41×109copies/ml混合液。降温过程中UASB反应器容积氮去除速率逐渐降低,但16℃时容积氮去除速率仍可达2.28kgN/m3/d,NO2--N和NH4+-N去除率分别为92.31%和78.45%。降温过程中颗粒污泥中厌氧氨氧化菌由Candidatus “Kuenenia stuttgartiensis”变为Candidatus “Brocadiaanammoxidans”和Candidatus “Kuenenia stuttgartiensis”的混合菌。
Eutrophication is increasingly serious, making urban water environment systemdeterioration, and even making a break of drinking water supply. This phenomenonseriously affected industrial production and people’s daily life, and caused heavydirect and indirect economic losses. The main cause of eutrophication is nutrientover enrichment, so lots of wastewater treatment plants (WWTP) were built tocontrol eutrophication. Currently, the energy consumption of WWTP is too high, sohow to reduce energy consumption and operation cost is very important for thecontinuous development of wastewater treatment.
     Currently, organic matter is needed as carbon source of denitrification fornitrogen removal from wastewater, so lots of organic matter can’t be used toproduce methane. The discovery of anaerobic ammonium oxidation (anammox)bacteria makes it possible to achieve autotrophic nitrogen removal. Becauseanammox bacteria can directly convert nitrite and ammonium to nitrogen gaswithout organic carbon source. Now most studies about anammox were focused onammonium rich wastewater treatment under high temperature, the studies aboutsewage treatment via anammox were very limited.
     In order to apply anammox in sewage treatment, a novel nitritation anammox(autotrophic nitrogen removal) process was proposed in this study. Then thetechnical feasibility of two stage autotrophic nitrogen removal from real sewage wasinvestigated in continuous reactors. Bio-augmentation strategy was proposed toachieve stable nitritation in sewage treatment. Anammox granular sludge wasformed in an upflow anaerobic sludge blanket reactor treating low strengthwastewater. Meanwhile, nitrogen removal performance, microbial communitystructure and nitrous oxide (N2O) emission were also investigated.
     Based on the analysis of organic matter removal, nitritation and anammoxtechnology status, a novel autotrophic nitrogen removal process treating sewage wasproposed. In this process, organic matter was firstly concentrated into activatedsludge which was used to produce methane. After then, nitrogen removal fromsewage was achieved in the nitritation/anammox process. This process makes itpossible to make wastewater treatment energy-neural or even energy-generating.The technical feasibility of two-stage autotrophic nitrogen removal from sewagewas investigated, and the result indicated that total nitrogen (TN) removal efficiencywas up to88.38%when the influent TN concentration and chemical oxygen demand(COD) concentration were45.87mg/L and44.40mg/L, respectively. This resultindicated that autotrophic nitrogen removal from sewage was feasible.
     Bio-augmentation strategy was proposed to achieve stable nitritation in sewagetreatment system. Firstly, nitritation was achieved in the side-line system treatingN-rich wastewater (i.e. reject water), then nitritation sludge discharged from theside-line system was added into main stream system in order to achieve a faststart-up of nitritation and maintain a stable nitritation. The results indicated thatnitritation could be achieved in N-rich wastewater treatment system with over95%of nitrite accumulation rate (NAR), and ammonium oxidation rate was up to2.71kgN/m3/d through using micro-porous aeration. In the main stream systemnitritation could be repeatedly and reliably achieved by using bio-augmentationstrategy and controlling the dissolved oxygen (DO) at relative low level. After thedeterioration of nitritation, it can be reconstructed with an increased in NAR from1%to89%within15days.
     Anammox granular sludge was formed in an UASB reactor treating sewagethrough gradually increasing upflow rate under moderate temperature. The majorityof granules had a diameter of0.5-0.9mm, and interstice appeared in the granulesgive an advantage for improving substrate mass transfer. The anammox bacteria wasaccumulated by forming granular sludge, and it’s aboundance was observed at1.68±0.08×109copies/ml mixed liquor. The anammox sequences in granules weremost closely affiliated to Candidatus “Kuenenia stuttgartiensis”. When the inflowrate progressively increased, HRT decreased from1.26h to0.12h, and nitrogenremoval rate (NRR) increased from0.57kg N/m3/d to5.72kg N/m3. Ammoniumremoval efficiency of the was76.47-100.00%, and the average was92.81%. Nitriteremoval efficiency of the was78.75-99.65%, and the average was94.35%. Thisindicated that nitrogen could be efficiently removed via anammox granular sludgewith a high nitrogen removal rate. The N2O emission from the anammox reactor wasvery low, and the N2O emission rate was0.30×10-4kg N/m3/d which was below0.006%of NRR. The influent N2O-N concentration was0.08-0.13mg/L, while theN2O-N in the effluent was below0.02mg/L. This indicated that N2O in influentcould be removed in the anammox reactor.
     Autotrophic nitrogen removal performance and microbial community structurewere studied in anammox reactor treating sewage during the decrease of temperature.When the temperature decreased from30℃to16℃, the anammox granules wasmaintained, which made a good anammox bacteria retention in the UASB reactor.The anammox bacteria aboundance was1.93±0.41×109copies/ml mixed liquor at16℃. NRR of the UASB reactor decreased with the decrease of temperature, andmaintained at2.28kg N/m3/d at16℃, while nitrite and ammonium removalefficiency were92.31%and78.45%, respectively. A shift of community from singleCandidatus ‘‘Kuenenia stuttgartiensis’’ to a combination of Candidatus ‘Brocadia fulgida’ and Candidatus ‘‘Kuenenia stuttgartiensis’’ was observed.
引文
[1]张悦.科学发展与城镇减排——对城镇污水和垃圾处理的几点思考.2010年全国博士学术会议-城镇人居环境科学与工程论坛.重庆.2010.
    [2]杨凌波,曾思育,鞠宇平,等.我国城市污水处理厂能耗规律的统计分析与定量识别[J].给水排水,2008,34(10):42-45.
    [3] Verstraete W, de Caveye P V and Diamantis V. Maximum Use of ResourcesPresent in Domestic "Used Water"[J]. Bioresource Technology,2009,100(23):5537-5545.
    [4] Siegrist H, Salzgeber D, Eugster J, et al. Anammox Brings Wwtp Closer toEnergy Autarky Due to Increased Biogas Production and Reduced AerationEnergy for N-Removal[J]. Water Science and Technology,2008,57(3):383-388.
    [5] deGraaf A A V, deBruijn P, Robertson L A, et al. Autotrophic Growth ofAnaerobic Ammonium-Oxidizing Micro-Organisms in a Fluidized BedReactor[J]. Microbiology-Uk,1996,142(2187-2196.
    [6] Vandegraaf A A, Mulder A, Debruijn P, et al. Anaerobic Oxidation ofAmmonium Is a Biologically Mediated Process[J]. Applied and EnvironmentalMicrobiology,1995,61(4):1246-1251.
    [7] Kartal B, Kuenen J G and van Loosdrecht M C M. Sewage Treatment withAnammox[J]. Science,2010,328(5979):702-703.
    [8] Staley J T, Bryant M P, Pfenning N, et al. Bergey's Manual of SystematicBacterilogy (Vol.3)[M]. Williams&Wilkins2001:1807-1835.
    [9]郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术[M].北京:科学出版社,2004:22-24.
    [10] Head M A and Oleszkiewicz J A. Bioaugmentation for Nitrification at ColdTemperatures[J]. water research,2004,38(3):523-530.
    [11]施汉昌,胡志荣,周军,等.污水生物处理:原理、设计及模拟[M].北京:中国建筑工业出版社,2011:92-93..
    [12] Anthonisen A, Loehr R, Prakasam T, et al. Inhibition of Nitrification byAmmonia and Nitrous Acid[J]. Journal of Water Pollution Control Federation,1976,835-852.
    [13] Vadivelu V M, Keller J and Yuan Z G. Effect of Free Ammonia and FreeNitrous Acid Concentration on the Anabolic and Catabolic Processes of anEnriched Nitrosomonas Culture[J]. Biotechnology and Bioengineering,2006,95(5):830-839.
    [14] Vadivelu V M, Keller J and Yuan Z G. Effect of Free Ammonia on theRespiration and Growth Processes of an Enriched Nitrobacter Culture[J]. WaterResearch,2007,41(4):826-834.
    [15] Vadivelu V M, Keller J and Yuan Z. Free Ammonia and Free Nitrous AcidInhibition on the Anabolic and Catabolic Processes of Nitrosomonas andNitrobacter[J]. Water Science and Technology,2007,56(7):89-97.
    [16] Vadivelu V M, Yuan Z G, Fux C, et al. The Inhibitory Effects of FreeNitrous Acid on the Energy Generation and Growth Processes of an EnrichedNitrobacter Culture[J]. Environmental Science&Technology,2006,40(14):4442-4448.
    [17] Park S and Bae W. Modeling Kinetics of Ammonium Oxidation and NitriteOxidation under Simultaneous Inhibition by Free Ammonia and Free NitrousAcid[J]. Process Biochemistry,2009,44(6):631-640.
    [18] Tchobanoglous G, Burton F L and Stensel H D. Wastewater Engineering:Treatment and Reuse (Fourth Edition,影印版)[M].北京:清华大学出版社,2003:615.
    [19] Skinner F A and Walker N. Growth of Nitrosomonas Europaea in Batch andContinuous Culture[J]. Archives of Microbiology,1961,38,339.
    [20] Kartal B, Rattray J, van Niftrik L A, et al. Candidatus "AnammoxoglobusPropionicus" A New Propionate Oxidizing Species of Anaerobic AmmoniumOxidizing Bacteria[J]. Systematic and Applied Microbiology,2007,30(1):39-49.
    [21] McCarty PL B L a S A P and Purdue Univ. L, Ind, pp.1271-1285.Biological Denitrification of Wastewater by Addition of Organic Materials.Proceedings of24th Industrial Waste Conference. Purdue University, Indiana,USA.1969,1271-1285.
    [22]马勇,彭永臻,王淑莹.不同外碳源对污泥反硝化特性的影响[J].北京工业大学学报,2009,35(6):820-824.
    [23]孙永利,许光明,游佳,等.城镇污水处理厂外加商业碳源的选择[J].中国给水排水,2010,26(19):84-86.
    [24]邵留,徐祖信,王晟,等.新型反硝化固体碳源释碳性能研究[J].环境科学,2011,32(8):2323-2327.
    [25]葛士建,王淑莹,杨岸明,等.反硝化过程中亚硝酸盐积累特性分析[J].土木建筑与环境工程,2011,33(1):140-146.
    [26]马娟,彭永臻,王丽,等.温度对反硝化过程的影响以及ph值变化规律[J].中国环境科学,2008,28(11):1004-1008.
    [27] Skerman V B D and Macrae J C. The Influence of Oxygen Availability onthe Degree of Nitrate Reducation by Psudomonas Denitrificans[J].CanadaJournal of Microbiology,1957,3,505.
    [28] Ma J, Yang Q, Wang S, et al. Effect of Free Nitrous Acid as Inhibitors onNitrate Reduction by a Biological Nutrient Removal Sludge[J]. Journal ofHazardous Materials,2010,175(518-523.
    [29]彭永臻,马斌.低C/N比条件下高效生物脱氮策略分析[J].环境科学学报,2009,29(02):225-230.
    [30] Zhu G B, Peng Y Z, Wang S Y, et al. Effect of Influent Flow RateDistribution on the Performance of Step-Feed Biological Nitrogen RemovalProcess[J]. Chemical Engineering Journal,2007,131(1-3):319-328.
    [31] Peng Y Z and Zhu G B. Biological Nitrogen Removal with Nitrification andDenitrification Via Nitrite Pathway[J]. Applied Microbiology andBiotechnology,2006,73(1):15-26.
    [32] Camilla G and Gunnel D. Development of Nitrification Inhibition AssaysUsing Pure Cultures of Nitrosomonas and Nitrobacter[J]. Water Research,2001,35(2):433-440.
    [33] Tonkovic Z. Nitrite Accumulation at the Mornington Sewage TreatmentPlant—Causes and Significance19th Biennial International Conference, WaterQuality International. Vancouver, Canada.1998,165-172.
    [34] Hellinga C, Schellen A A J C, Mulder J W, et al. The Sharon Process: AnInnovative Method for Nitrogen Removal from Ammonium-Rich Wastewater[J].Water Science and Technology,1998,37(9):135-142.
    [35] Mulder J W, Loosdrecht M C M v, Hellinga C, et al. Full-Scale Applicationof the Sharon Process for the Treatment of Rejection Water of Digested SludgeDewatering[J]. Water Science and Technology,2001,43(11):127-134.
    [36] Bae W, Baek S, Chung J, et al. Optimal Operational Factors for NitriteAccumulation in Batch Reactors[J]. Biodegradation,2001,12(5):359-366
    [37] Tokutomi T. Operation of a Nitrite-Type Airlift Reactor at Low DoConcentration[J]. Water Science and Technology,2004,49(5-6):81-88.
    [38] Perez J, Costa E and Kreft J U. Conditions for Partial Nitrification inBiofilm Reactors and a Kinetic Explanation[J]. Biotechnology andBioengineering,2009,103(2):282-295.
    [39] Laanbroek H J and Gerards S. Competition for Limiting Amounts ofOxygen between Nitrosomonas-Europaea and Nitrobacter-WinogradskyiGrown in Mixed Continuous Cultures[J]. Archives of Microbiology,1993,159(5):453-459.
    [40] Laanbroek H J, Bodelier P L E and Gerards S. Oxygen-ConsumptionKinetics of Nitrosomonas-Europaea and Nitrobacter-Hamburgensis Grown inMixed Continuous Cultures at Different Oxygen Concentrations[J]. Archives ofMicrobiology,1994,161(2):156-162.
    [41] Guisasola A, Jubany I, Baeza J A, et al. Respirometric Estimation of theOxygen Affinity Constants for Biological Ammonium and Nitrite Oxidation[J].Journal of Chemical Technology and Biotechnology,2005,80(4):388-396.
    [42] Ciudad G, Werner A, Bornhardt C, et al. Differential Kinetics of Ammonia-and Nitrite-Oxidizing Bacteria: A Simple Kinetic Study Based on OxygenAffinity and Proton Release During Nitrification[J]. Process Biochemistry,2006,41(8):1764-1772.
    [43] Blackburne R, Yuan Z G and Keller J. Partial Nitrification to Nitrite UsingLow Dissolved Oxygen Concentration as the Main Selection Factor[J].Biodegradation,2008,19(2):303-312.
    [44] Villaverde S, Fdz-Polanco F and Garcia P A. Nitrifying BiofilmAcclimation to Free Ammonia in Submerged Biofilters. Start-up Influence[J].Water Research,2000,34(2):602-610.
    [45] Wongchong G M and Loehr R C. Kinetics of Microbial Nitrification-Nitrite-Nitrogen Oxidation[J]. Water Research,1978,12(8):605-609.
    [46] Tan N C G, Kampschreur M J, Wanders W, et al. Physiological andPhylogenetic Study of an Ammonium-Oxidizing Culture at High NitriteConcentrations[J]. Systematic and Applied Microbiology,2008,31(2):114-125.
    [47] Tora J A, Lafuente J, Baeza J A, et al. Combined Effect of Inorganic CarbonLimitation and Inhibition by Free Ammonia and Free Nitrous Acid onAmmonia Oxidizing Bacteria[J]. Bioresource Technology,2010,101(15):6051-6058.
    [48] Jubany I, Lafuente J, Baeza J A, et al. Total and Stable Washout of NitriteOxidizing Bacteria from a Nitrifying Continuous Activated Sludge SystemUsing Automatic Control Based on Oxygen Uptake Rate Measurements[J].Water Research,2009,43(11):2761-2772.
    [49] Fux C, Lange K, Faessler A, et al. Nitrogen Removal from DigesterSupernatant Via Nitrite-Sbr or Sharon?[J]. Water Science and Technology,2003,48(8):9-18.
    [50] Jubany I, Carrera J, Lafuente J, et al. Start-up of a Nitrification System withAutomatic Control to Treat Highly Concentrated Ammonium Wastewater:Experimental Results and Modeling[J]. Chemical Engineering Journal,2008,144(3):407-419.
    [51] Wickins J F. Studies on Marine Biological Filters-Model Filters[J]. WaterResearch,1983,17(12):1769-1780.
    [52] Jun B H, Tanji Y and Unno H. Stimulating Accumulation of NitrifyingBacteria in Porous Carrier by Addition of Inorganic Carbon in aContinuous-Flow Fluidized Bed Wastewater Treatment Reactor[J]. Journal ofBioscience and Bioengineering,2000,89(4):334-339.
    [53] Green M, Ruskol Y, Shaviv A, et al. The Effect of Co2Concentration on aNitrifying Chalk Reactor[J]. Water Research,2002,36(8):2147-2151.
    [54] Tarre S and Green M. High-Rate Nitrification at Low Ph in Suspended-andAttached-Biomass Reactors[J]. Applied and Environmental Microbiology,2004,70(11):6481-6487.
    [55] Guisasola A, Petzet S, Baeza J A, et al. Inorganic Carbon Limitations onNitrification: Experimental Assessment and Modelling[J]. Water Research,2007,41(2):277-286.
    [56] Kornaros M, Dokianakis S N and Lyberatos G. PartialNitrification/Denitrification Can Be Attributed to the Slow Response of NitriteOxidizing Bacteria to Periodic Anoxic Disturbances[J]. Environmental Science&Technology,2010,44(19):7245-7253.
    [57] Katsogiannis A N, Kornaros M and Lyberatos G. Enhanced NitrogenRemoval in Sbrs Bypassing Nitrate Generation Accomplished by MultipleAerobic/Anoxic Phase Pairs[J]. Water Science and Technology,2003,47(11):53-59.
    [58] Kornaros M, Marazioti C and Lyberatos G. A Pilot Scale Study of aSequencing Batch Reactor Treating Municipal Wastewater Operated Via theup-Pnd Process[J]. Water Science and Technology,2008,58(2):435-438.
    [59] Gikas P. Single and Combined Effects of Nickel (Ni(Ii)) and Cobalt (Co(Ii))Ions on Activated Sludge and on Other Aerobic Microorganisms: A Review[J].Journal of Hazardous Materials,2008,159(2-3):187-203.
    [60] Aslan S and Gurbuz B. Influence of Operational Parameters and LowNickel Concentrations on Partial Nitrification in a Submerged Biofilter[J].Applied Biochemistry and Biotechnology,2011,165(7-8):1543-1555.
    [61] Hu Z Q, Chandran K, Grasso D, et al. Effect of Nickel and CadmiumSpeciation on Nitrification Inhibition[J]. Environmental Science&Technology,2002,36(14):3074-3078.
    [62] Hu Z Q, Chandran K, Grasso D, et al. Impact of Metal Sorption andInternalization on Nitrification Inhibition[J]. Environmental Science&Technology,2003,37(4):728-734.
    [63] Hu Z Q, Chandran K, Grasso D, et al. Comparison of NitrificationInhibition by Metals in Batch and Continuous Flow Reactors[J]. WaterResearch,2004,38(18):3949-3959.
    [64] Mertoglu B, Semerci N, Guler N, et al. Monitoring of Population Shifts inan Enriched Nitrifying System under Gradually Increased Cadmium Loading[J].Journal of Hazardous Materials,2008,160(2-3):495-501.
    [65]韩晓宇,张树军,甘一萍,等.以FA与FNA为控制因子的短程硝化启动与维持[J].环境科学,2009,03):809-814.
    [66] Ma Y, Peng Y, Wang S, et al. Achieving Nitrogen Removal Via Nitrite in aPilot-Scale Continuous Pre-Denitrification Plant[J]. Water Research,2009,43(563-572.
    [67] Zeng W, Li L, Yang Y Y, et al. Nitritation and Denitritation of DomesticWastewater Using a Continuous Anaerobic-Anoxic-Aerobic (a(2)O) Process atAmbient Temperatures[J]. Bioresource Technology,2010,101(21):8074-8082.
    [68] Yang Q, Peng Y Z, Liu X H, et al. Nitrogen Removal Via Nitrite fromMunicipal Wastewater at Low Temperatures Using Real-Time Control toOptimize Nitrifying Communities[J]. Environmental Science&Technology,2007,41(23):8159-8164.
    [69] Guo J H, Yang Q, Peng Y Z, et al. Biological Nitrogen Removal withReal-Time Control Using Step-Feed Sbr Technology[J]. Enzyme and MicrobialTechnology,2007,40(6):1564-1569.
    [70] van Kempen R, ten Have C C R, Meijer S C F, et al. Sharon ProcessEvaluated for Improved Wastewater Treatment Plant Nitrogen EffluentQuality[J]. Water Science and Technology,2005,52(4):55-62.
    [71] van Kempen R, Mulder J W, Uijterlinde C A, et al. Overview: Full ScaleExperience of the Sharon (R) Process for Treatment of Rejection Water ofDigested Sludge Dewatering[J]. Water Science and Technology,2001,44(1):145-152.
    [72] Hwang I S, Min K S, Choi E, et al. Nitrogen Removal from Piggery WasteUsing the Combined Sharon and Anammox Process[J]. Water Science andTechnology,2005,52(10-11):487-494.
    [73] Vilar A, Eiroa M, Kennes C, et al. The Sharon Process in the Treatment ofLandfill Leachate[J]. Water Science and Technology,2010,61(1):47-52.
    [74] Ruiz G, Jeison D and Chamy R. Nitrification with High NitriteAccumulation for the Treatment of Wastewater with High AmmoniaConcentration[J]. Water Research,2003,37(6):1371-1377.
    [75] Peng Y Z, Chen Y, Peng C Y, et al. Nitrite Accumulation by AerationControlled in Sequencing Batch Reactors Treating Domestic Wastewater[J].Water Science and Technology,2004,50(10):35-43.
    [76]刘秀红.生活污水全程与短程生物脱氮过程中N2O产生与控制[D].哈尔滨:哈尔滨工业大学,2008:78-79.
    [77] Blackburne R, Yuan Z and Keller J. Demonstration of Nitrogen RemovalVia Nitrite in a Sequencing Batch Reactor Treating Domestic Wastewater[J].Water Research,2008,42(8-9):2166-2176.
    [78] Kuenen J G. Anammox Bacteria: From Discovery to Application[J]. NatureReviews Microbiology,2008,6(4):320-326.
    [79] Mulder A, Graaf A A, Robertson L A, et al. Anaerobic AmmoniumOxidation Discovered in a Denitrifying Fluidized Bed Reactor[J]. FEMSMicrobiology Ecology,1995,16(3):177-184.
    [80] Strous M, Pelletier E, Mangenot S, et al. Deciphering the Evolution andMetabolism of an Anammox Bacterium from a Community Genome[J]. Nature,2006,440(7085):790-794.
    [81] Schouten S, Strous M, Kuypers M M M, et al. Stable Carbon IsotopicFractionations Associated with Inorganic Carbon Fixation by AnaerobicAmmonium-Oxidizing Bacteria[J]. Applied and Environmental Microbiology,2004,70(6):3785-3788.
    [82] van de Graaf A A, de Bruijn P, Robertson L A, et al. Metabolic Pathway ofAnaerobic Ammonium Oxidation on the Basis of N-15Studies in a FluidizedBed Reactor[J]. Microbiology-Uk,1997,143(2415-2421.
    [83] Boran Kartal1, Wouter J. Maalcke1, Naomi M. de Almeida1, et al.Molecular Mechanism of Anaerobic Ammonium Oxidation[J]. Nature,2011,479(127-130.
    [84] Kartal B, Kuypers M M M, Lavik G, et al. Anammox Bacteria Disguised asDenitrifiers: Nitrate Reduction to Dinitrogen Gas Via Nitrite and Ammonium[J].Environmental Microbiology,2007,9(3):635-642.
    [85] Kartal B, van Niftrik L, Rattray J, et al. Candidatus 'Brocadia Fulgida': AnAutofluorescent Anaerobic Ammonium Oxidizing Bacterium[J]. FEMSMicrobiology Ecology,2008,63(1):46-55.
    [86] Boran Kartal, Wouter J. Maalcke, Naomi M. de Almeida, et al. MolecularMechanism of Anaerobic Ammonium Oxidation[J]. Nature,2011,479(127-130.
    [87] Isaka K, Date Y, Kimura Y, et al. Nitrogen Removal Performance UsingAnaerobic Ammonium Oxidation at Low Temperatures[J]. Fems MicrobiologyLetters,2008,282(1):32-38.
    [88] Egli K, Fanger U, Alvarez P J J, et al. Enrichment and Characterization ofan Anammox Bacterium from a Rotating Biological Contactor TreatingAmmonium-Rich Leachate[J]. Archives of Microbiology,2001,175(3):198-207.
    [89] Dalsgaard T and Thamdrup B. Factors Controlling Anaerobic AmmoniumOxidation with Nitrite in Marine Sediments[J]. Applied and EnvironmentalMicrobiology,2002,68(8):3802-3808.
    [90] Rysgaard S, Glud R N, Risgaard-Petersen N, et al. Denitrification andAnammox Activity in Arctic Marine Sediments[J]. Limnology andOceanography,2004,49(5):1493-1502.
    [91] Jaeschke A, den Camp H, Harhangi H, et al.16s Rrna Gene and LipidBiomarker Evidence for Anaerobic Ammonium-Oxidizing Bacteria (Anammox)in California and Nevada Hot Springs[J]. FEMS Microbiology Ecology,2009,67(3):343-350.
    [92] Isaka K, Sumino T and Tsuneda S. High Nitrogen Removal Performance atModerately Low Temperature Utilizing Anaerobic Ammonium OxidationReactions[J]. Journal of Bioscience and Bioengineering,2007,103(5):486-490.
    [93] Yang J, Zhang L, Hira D, et al. High-Rate Nitrogen Removal by theAnammox Process at Ambient Temperature[J]. Bioresource Technology,2011,102(2):672-676.
    [94] Dosta J, Fernández I, Vázquez-Padín J R, et al. Short-and Long-TermEffects of Temperature on the Anammox Process[J]. Journal of HazardousMaterials,2008,154(1-3):688-693.
    [95] Strous M, Kuenen J G and Jetten M S M. Key Physiology of AnaerobicAmmonium Oxidation[J]. Applied and Environmental Microbiology,1999,65(7):3248-3250.
    [96] Cho S, Takahashi Y, Fujii N, et al. Nitrogen Removal Performance andMicrobial Community Analysis of an Anaerobic up-Flow Granular BedAnammox Reactor[J]. Chemosphere,2010,78(9):1129-1135.
    [97] Dapena-Mora A, Fernandez I, Campos J L, et al. Evaluation of Activity andInhibition Effects on Anammox Process by Batch Tests Based on the NitrogenGas Production[J]. Enzyme and Microbial Technology,2007,40(4):859-865.
    [98] Wett B, Murthy S, Tak, et al. Key Parameters for Control of DemonDeammonification Process[J]. Water Practice,2007,1(5):1-11.
    [99] Fernández I, Dosta J, Fajardo C, et al. Short-and Long-Term Effects ofAmmonium and Nitrite on the Anammox Process[J]. Journal of EnvironmentalManagement,2012,95, Supplement(0):S170-S174.
    [100] Lotti T, van der Star W R L, Kleerebezem R, et al. The Effect of NitriteInhibition on the Anammox Process[J]. Water Research,2012,46(8):2559-69.
    [101] Jung J Y, Kang S H, Chung Y C, et al. Factors Affecting the Activity ofAnammox Bacteria During Start up in the Continuous Culture Reactor[J].Water Science and Technology,2007,55(1-2):459-468.
    [102] Martinelle K, Westlund A and Haggstrom L. Ammonium Ion Transport-aCause of Cell Death[J]. Cytotechnology,1996,22(1-3):251-254.
    [103] Liao D X, Li X M, Yang Q, et al. Effect of Inorganic Carbon on AnaerobicAmmonium Oxidation Enriched in Sequencing Batch Reactor[J]. Journal ofEnvironmental Sciences-China,2008,20(8):940-944.
    [104] Tang C J, Zheng P, Mahmood Q, et al. Start-up and Inhibition Analysis ofthe Anammox Process Seeded with Anaerobic Granular Sludge[J]. Journal ofIndustrial Microbiology&Biotechnology,2009,36(8):1093-1100.
    [105] Kimura Y, Isaka K and Kazama F. Effects of Inorganic Carbon Limitationon Anaerobic Ammonium Oxidation (Anammox) Activity[J]. BioresourceTechnology,2011,102(6):4390-4394.
    [106] van de Graaf A A V, de Bruijn P, Robertson L A, et al. Autotrophic Growthof Anaerobic Ammonium-Oxidizing Micro-Organisms in a Fluidized BedReactor[J]. Microbiology-Uk,1996,142(2187-2196.
    [107] Guven D, Dapena A, Kartal B, et al. Propionate Oxidation by and MethanolInhibition of Anaerobic Ammonium-Oxidizing Bacteria[J]. Applied andEnvironmental Microbiology,2005,71(2):1066-1071.
    [108] Isaka K, Suwa Y, Kimura Y, et al. Anaerobic Ammonium Oxidation(Anammox) Irreversibly Inhibited by Methanol[J]. Applied Microbiology andBiotechnology,2008,81(2):379-385.
    [109] Molinuevo B, Garcia M C, Karakashev D, et al. Anammox for AmmoniaRemoval from Pig Manure Effluents: Effect of Organic Matter Content onProcess Performance[J]. Bioresource Technology,2009,100(7):2171-2175.
    [110] Chen J W, Ji Q X, Zheng P, et al. Floataion and Control of Granular Sludgein a High-Rate Anammox Reactor[J]. Water Research,2010,44(3324-3328.
    [111] Strous M, vanGerven E, Kuenen J G, et al. Effects of Aerobic andMicroaerobic Conditions on Anaerobic Ammonium-Oxidizing (Anammox)Sludge[J]. Applied and Environmental Microbiology,1997,63(6):2446-2448.
    [112] Liu S T, Yang F L, Xue Y, et al. Evaluation of Oxygen Adaptation andIdentification of Functional Bacteria Composition for Anammox Consortium inNon-Woven Biological Rotating Contactor[J]. Bioresource Technology,2008,99(17):8273-8279.
    [113] Abma W R, Schultz C E, Mulder J W, et al. Full-Scale Granular SludgeAnammox Process[J]. Water Science and Technology,2007,55(8-9):27-33.
    [114] van der Star W R L, Abma W R, Blommers D, et al. Startup of Reactors forAnoxic Ammonium Oxidation: Experiences from the First Full-ScaleAnammox Reactor in Rotterdam[J]. Water Research,2007,41(18):4149-4163.
    [115] Wett B. Development and Implementation of a Robust DeammonificationProcess[J]. Water Science and Technology,2007,56(7):81-88.
    [116] Wett B, Nyhuis G, Tak, et al. Development of Enhanced DeammonificationSelector[J]. Proceedings of the Water Environment Federation,2010,2010(10):5917-5926.
    [117] Wett B, Nyhuis G, Hell M, et al. State of the Art inDeammonificationtechnology. IWA World Water Conference Montreal.2010,
    [118]国家环保总局.水与废水监测分析方法(第四版)[M].北京:中国环境出版社,2002.
    [119] APHA. Standard Methods for the Examination of Water and Wastewater,19th Ed[J]. American Public Health Association/American Water WorksAssociation/Water Envirionment Federation, Washington, DC, USA,1995.
    [120] Laguna A, Ouattara A, Gonzalez R O, et al. A Simple and Low CostTechnique for Determining the Granulometry of Upflow Anaerobic SludgeBlanket Reactor Sludge[J]. Water Science and Technology,1999,40(8):1-8.
    [121] Batstone D J and Keller J. Variation of Bulk Properties of AnaerobicGranules with Wastewater Type[J]. Water Research,2001,35(7):1723-1729.
    [122] Wu C Y, Peng Y Z, Wang S Y, et al. Enhanced Biological PhosphorusRemoval by Granular Sludge: From Macro-to Micro-Scale[J]. Water Research,2010,44(3):807-814.
    [123] Liu X, Peng Y, Wu C, et al. Nitrous Oxide Production During NitrogenRemoval from Domestic Wastewater in Lab-Scale Sequencing Batch Reactor[J].J. Environ. Sci.,2008,20(641-645.
    [124] Yang Q, Liu X H, Peng C Y, et al. N2o Production During NitrogenRemoval Via Nitrite from Domestic Wastewater: Main Sources and ControlMethod[J]. Environmental Science&Technology,2009,43(24):9400-9406.
    [125]范改娜,祝贵兵,王雨,等.河流湿地氮循环修复过程中的新型功能微生物[J].环境科学学报,2010,30(8):1558-1563.
    [126] Zhu G, Wang S, Wang Y, et al. Anaerobic Ammonia Oxidation in aFertilized Paddy Soil[J]. ISME Journal,2011,1-8.
    [127] Wang Y, Zhu G, Harhangi H R, et al. Quantitative Analyses ofNitrite-Dependent Anaerobic Ammonium and Methane Oxidizing Bacteria in aPaddy Soil Core[J]. FEMS Microbiol Lett.,2011,Under reviewing.
    [128] Mahmoud N. Anaerobic Pre-Treatment of Sewage under Low Temperature(15oC) Conditions in an Integrated Uasb-Digester System[D], Wageningen,The Netherlands: Wageningen University,2002:.
    [129] Zhang L, Zhang S J, Zhou J, et al. Nitrogen Removal from Reject Waterwith Primary Sludge as Denitrification Carbon Source[J]. Water Science andTechnology,2010,61(12):2965-2972.
    [130] Hellinga C, Schellen A A J C, Mulder J W, et al. The Sharon Process: AnInnovative Method for Nitrogen Removal from Ammonium-Rich Wastewater[J].Water Science and Technology,1998,37(9):135-142.
    [131] Gut L, Plaza E, Trela J, et al. Combined Partial Nitritation/AnammoxSystern for Treatment of Digester Supernatant[J]. Water Science&Technology,2005,53(12):149-159.
    [132] Ni S Q, Gao B Y, Wang C, et al. Fast Start-up, Performance and MicrobialCommunity in a Pilot-Scale Anammox Reactor Seeded with Exotic MatureGranules[J]. Bioresource Technology,2011,102(3):2448-2454.
    [133] Tang C, Zheng P, Wang C, et al. Performance of High-Loaded AnammoxUasb Reactors Containing Granular Sludge[J]. water Research,2011,45(1):135-144.
    [134] Wyffels S, Boeckx P, Pynaert K, et al. Nitrogen Removal from SludgeReject Water by a Two-Stage Oxygen-Limited Autotrophic NitrificationDenitrification Process[J]. Water Science and Technology,2004,49(5-6):57-64.
    [135] Strous M, Heijnen J J, Kuenen J G, et al. The Sequencing Batch Reactor asa Powerful Tool for the Study of Slowly Growing AnaerobicAmmonium-Oxidizing Microorganisms[J]. Applied Microbiology andBiotechnology,1998,50(5):589-596.
    [136]易鹏,张树军,孟春霖,等.城市污水连续流半亚硝化实现维持机理与工艺创新研究[J].环境科学学报,2010,08):1608-1614.
    [137] Balmelle B, Nguyen K, Capdeville B, et al. Study of Factors ControllingNitrite Build-up in Biological Processes for Water Nitrification[J]. WaterScience&Technology,1992,26(5-6):1017-1025.
    [138] Villaverde S, Fdz-Polanco F and Garcia P. Nitrifying Biofilm Acclimationto Free Ammonia in Submerged Biofilters. Start-up Influence[J]. WaterResearch,2000,34(2):602-610.
    [139] Pijuan M, Ye L and Yuan Z. Free Nitrous Acid Inhibition on the AerobicMetabolism of Poly-Phosphate Accumulating Organisms[J]. Water Research,2010,44(20):6063-6072.
    [140] Yoshida Y, Takahashi K, Saito T, et al. The Effect of Nitrite on AerobicPhosphate Uptake and Denitrifying Activity of Phosphate-AccumulatingOrganisms[J]. Water Science and Technology,2005,53(6):21-27.
    [141] Saito T, Brdjanovic D and van Loosdrecht M C M. Effect of Nitrite onPhosphate Uptake by Phosphate Accumulating Organisms[J]. Water Research,2004,38(17):3760-3768.
    [142] Pol L W H, Dezeeuw W J, Velzeboer C T M, et al. Granulation in UasbReactors[J]. Water Science and Technology,1983,15(8-9):291-304.
    [143] Ni B J, Hu B L, Fang F, et al. Microbial and PhysicochemicalCharacteristics of Compact Anaerobic Ammonium-Oxidizing Granules in anUpflow Anaerobic Sludge Blanket Reactor[J]. Applied and EnvironmentalMicrobiology,2010,76(8):2652-2656.
    [144] Sekiguchi Y, Kamagata Y, Nakamura K, et al. Fluorescence in SituHybridization Using16s Rrna-Targeted Oligonucleotides Reveals Localizationof Methanogens and Selected Uncultured Bacteria in Mesophilic andThermophilic Sludge Granules[J]. Applied and Environmental Microbiology,1999,65(3):1280-1288.
    [145] Ni B J, Chen Y P, Liu S Y, et al. Modeling a Granule-Based AnaerobicAmmonium Oxidizing (Anammox) Process[J]. Biotechnology andBioengineering,2009,103(3):490-499.
    [146] Tay J H, Ivanov V, Pan S, et al. Specific Layers in Aerobically GrownMicrobial Granules[J]. Letters In Applied Microbiology,2002,34(4):254-257.
    [147] Imajo U, Tokutomi T and Furukawa K. Granulation of AnammoxMicroorganisms in up-Flow Reactors[J]. Water Science and Technology,2004,49(5-6):155-163.
    [148] Shimamura M, Nishiyama T, Shigetomo H, et al. Isolation of a MultihemeProtein with Features of a Hydrazine-Oxidizing Enzyme from an AnaerobicAmmonium-Oxidizing Enrichment Culture[J]. Applied and EnvironmentalMicrobiology,2007,73(4):1065-1072.
    [149] Shimamura M, Nishiyama T, Shinya K, et al. Another Multiheme Protein,Hydroxylamine Oxidoreductase, Abundantly Produced in an AnammoxBacterium Besides the Hydrazine-Oxidizing Enzyme[J]. Journal of Bioscienceand Bioengineering,2008,105(3):243-248.
    [150] Berg L and Kennedy K. Support Materials for Stationary Fixed FilmReactors for High-Rate Methanogenic Fermentations[J]. Biotechnology Letters,1981,3(4):165-170.
    [151] Yu H Q, Tay J H and Fang H H P. Effects of Added Powdered and GranularActivated Carbons on Start-up Performance of Uasb Reactors[J].Environmental Technology,1999,20(10):1095-1101.
    [152] Park H, Rosenthal A, Ramalingam K, et al. Linking Community Profiles,Gene Expression and N-Removal in Anammox Bioreactors Treating MunicipalAnaerobic Digestion Reject Water[J]. Environmental Science&Technology,2010,.
    [153] van der Star W R L, Miclea A I, van Dongen U, et al. The MembraneBioreactor: A Novel Tool to Grow Anammox Bacteria as Free Cells[J].Biotechnology and Bioengineering,2008,101(2):286-294.
    [154] Ma B, Zhang S, Zhang L, et al. The Feasibility of a Two-Stage AutotrophicNitrogen Removal Process Treating Sewage[J]. Bioresource Technology,2011,102(17):8331-8334.
    [155] De Clippeleir H, Yan X G, Verstraete W, et al. Oland Is Feasible to TreatSewage-Like Nitrogen Concentrations at Low Hydraulic Residence Times[J].Applied Microbiology and Biotechnology,2011,90(4):1537-1545.
    [156] Koch G and Siegrist H. Denitrification with Methanol in TertiaryFiltration[J]. Water Research,1997,31(12):3029-3038.
    [157] Biesterfeld S, Farmer G, Figueroa L, et al. Quantification of DenitrificationPotential in Carbonaceous Trickling Filters[J]. Water Research,2003,37(16):4011-4017.
    [158] Graaff M S d, Temmink H, Zeeman G, et al. Autotrophic Nitrogen Removalfrom Black Water: Calcium Addition as a Requirement for Settleability [J].Water Research,2010,(2010), doi:10.1016/j.watres.2010.08.010.
    [159] Kampschreur M, Poldermans R, Kleerebezem R, et al. Emission of NitrousOxide and Nitric Oxide from a Full-Scale Single-Stage Nitritation-AnammoxReactor[J]. Water Science and Technology,2009,60(12):3211-3217.
    [160] Ahn J H, Kim S, Park H, et al. N2o Emissions from Activated SludgeProcesses,20082009: Results of a National Monitoring Survey in the UnitedStates[J]. Environmental Science&Technology,2010,44(12):4505-4511.
    [161] Desloover J, Clippeleir H D, Boeckx P, et al. Floc-Based Sequential PartialNitritation and Anammox at Full Scale with Contrasting N2o Emissions[J].Water Research,2011,45(9):2811-2821.
    [162] Joss A, Salzgeber D, Eugster J, et al. Full-Scale Nitrogen Removal fromDigester Liquid with Partial Nitritation and Anammox in One Sbr[J].Environmental Science&Technology,2009,43(14):5301-5306.
    [163] Kampschreur M J, van der Star W R L, Wielders H A, et al. Dynamics ofNitric Oxide and Nitrous Oxide Emission During Full-Scale Reject WaterTreatment[J]. Water Research,2008,42(3):812-826.
    [164] de Graaff M S, Temmink H, Zeeman G, et al. Autotrophic NitrogenRemoval from Black Water: Calcium Addition as a Requirement forSettleability[J]. Water Research,2011,45(1):63-74.
    [165] Zhu G B, Wang S Y, Feng X J, et al. Anammox Bacterial Abundance,Biodiversity and Activity in a Constructed Wetland[J]. Environmental Science&Technology,2011,45(23):9951-9958.
    [166] Okabe S, Oshiki M, Takahashi Y, et al. N2o Emission from a PartialNitrification-Anammox Process and Identification of a Key Biological Processof N2o Emission from Anammox Granules[J]. Water Research,2011,45(6461-6470.
    [167]田智勇,李冬,杨宏,等.上向流厌氧氨氧化生物滤池的启动与脱氮性能[J].北京工业大学学报,2009,35(4):509-514.
    [168]吕鑑,张莉, Furukawa K.海绵作填料在上流式厌氧固定床反应器中厌氧氨氧化[J].北京工业大学学报,2009,35(12):1670-1674.
    [169] Abma W, Schultz C, Mulder J-W, et al. The Advance of Anammox[J].Water21,20072):36-37.
    [170]易鹏,张树军,甘一萍,等.城市污水三污泥系统自养脱氮与强化生物除磷[J].环境科学,2010,31(10):2390-2397.
    [171] Rysgaard S and Glud R N. Anaerobic N-2Production in Arctic Sea Ice[J].Limnology and Oceanography,2004,49(1):86-94.
    [172] Byrne N, Strous M, Crepeau V, et al. Presence and Activity of AnaerobicAmmonium-Oxidizing Bacteria at Deep-Sea Hydrothermal Vents[J]. ISMEJournal,2009,3(1):117-123.
    [173] Hendrickx T L G, Wang Y, Kampman C, et al. Autotrophic NitrogenRemoval from Low Strength Waste Water at Low Temperature[J]. WaterResearch,2012,46(7):2187-2193.
    [174] Szatkowska B, Cema G, Plaza E, et al. A One-Stage System with PartialNitritation and Anammox Processes in the Moving-Bed Biofilm Reactor[J].Water Science and Technology,2007,55(8-9):19-26.
    [175] Vazquez-Padin J R, Fernandez I, Morales N, et al. Autotrophic NitrogenRemoval at Low Temperature[J]. Water Science and Technology,2011,63(6):1282-1288.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700