用户名: 密码: 验证码:
细菌碳酸酐酶催化碳酸钙沉积的动力学和形态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然界中碳酸钙(CaCO_3)的沉积过程极为缓慢,在CaCO_3-H2O-CO2反应体系中CO2 + H2O ? HCO_3- + H+为限速步骤,可利用生物催化剂来加速这一反应的进行。碳酸酐酶(Carbonic anhydrase, CA)是一种以锌为活性中心的金属酶,可以显著催化上述反应的进行。我们前期研究发现微生物CA在方解石沉积中具有显著促进作用。本文采用气体扩散体系,在不同初始pH、酶浓度和Ca~(2+)浓度条件下进一步研究细菌CA催化CaCO_3沉积的动力学,并采用XRD、FTIR和FESEM对沉积过程中CaCO_3晶体的形态学进行分析,获得的主要结果如下:
     (1)不同初始pH下细菌CA催化CaCO_3沉积过程中Ca~(2+)沉积量变化符合指数模型。在实验pH范围内(pH 6.0~8.0),CaCO_3沉积速率随初始pH的增加而增大。XRD和FESEM分析结果表明,CA存在时生成的CaCO_3晶体主要为方解石,晶体不太规则,且粒径较大。随时间的增加,晶体逐渐由棱形变为类锥形或聚集成不规则形体。
     (2)不同酶浓度下细菌CA催化CaCO_3沉积过程中Ca~(2+)沉积量变化符合指数模型。酶浓度在0.2~2.0 U/mL时有利于CaCO_3的沉积,而当酶浓度为8.0 U/mL时CaCO_3沉积速率受到抑制,说明细菌CA催化CaCO_3沉积时酶浓度并不是越大越有利。XRD、FTIR和FESEM分析结果表明,不同酶浓度下CaCO_3晶体的形态差异较大,且较低浓度CA作用下有球霰石存在,而较高浓度CA作用下有利于方解石的形成。
     (3)不同初始Ca~(2+)浓度下细菌CA催化CaCO_3沉积过程中Ca~(2+)沉积量变化不仅符合指数模型也符合多项式模型。在一定范围内CaCO_3沉积速率随初始Ca~(2+)浓度的增加而增大,但过高的初始Ca~(2+)浓度(100 mmol/L)使细菌CA催化沉积CaCO_3的作用效果受到一定程度的影响。XRD、FTIR和FESEM分析结果表明,初始Ca~(2+)浓度对细菌CA作用下产生的CaCO_3晶体的形态有较大影响,而且,较低的初始Ca~(2+)浓度有利于球霰石的形成,而较高的初始Ca~(2+)浓度有利于方解石的形成。
     综合上述结果认为,细菌CA催化CaCO_3沉积过程中,初始pH、酶浓度和盐浓度不仅影响CaCO_3沉积速率,而且对CaCO_3的晶型晶貌产生较大影响,可以利用上述不同初始条件来诱导产生不同晶型晶貌的CaCO_3材料。细菌CA对CaCO_3沉积的作用除了催化作用外,还与细菌CA的酶蛋白对Ca~(2+)的静电吸附以及酶蛋白对晶体晶面的选择性吸附有关。本文结果为丰富岩溶动力学理论提供了一定的科学依据,并为CaCO_3生物矿化材料的制备提供了新思路。
The precipitation process of calcium carbonate(CaCO_3)is very slow in nature. In the reactive system of CaCO_3-H2O-CO2, the reaction CO2 + H2O ? H + + HCO_3- is a rate-limiting step. A biological catalyst could be used to accelerate this reaction. Carbonic Anhydrase(CA)is a zinc-containing metalloenzyme that can remarkably catalyze the above reaction, and with a zinc ion as active centre. Our previous studies found that microbial CA had significant promoting effect on calcite precipitation. In this paper, the kinetics of CaCO_3 precipitation catalyzed by bacterial CA at different initial pH, enzyme concentrations and Ca~(2+) concentrations through the gaseous diffusion systems were further investigated, and the morphology of CaCO_3 crystals obtained in the precipitation process was analyzed using XRD, FTIR and FESEM. The main results are as follows.
     (1) The change of deposited Ca~(2+) during the process of CaCO_3 precipitation catalyzed by bacterial CA at different initial pH was well fitted by exponential model. In the experimental pH range (pH 6.0~8.0), the precipitation rate of CaCO_3 increased with initial pH. The results of XRD and FESEM analysis indicated that the CaCO_3 crystals were mainly calcite in the presence of bacterial CA. The crystals were not regular and their size was bigger. With increasing contact time, the crystals gradually changed from prism shape to pyramid-like shape or assembled into irregular polyhedral shape.
     (2) The change of deposited Ca~(2+) during the process of CaCO_3 precipitation catalyzed by bacterial CA at different enzyme concentrations was well fitted by exponential model. The enzyme concentrations of 0.2~2.0 U/mL were beneficial to CaCO_3 precipitation, however, the CaCO_3 precipitation was inhibited when the enzyme concentration was at 8.0 U/mL, which indicated that overhigh enzyme concentration was not more favorable for CaCO_3 precipitation catalyzed by bacterial CA. The results of XRD, FTIR and FESEM analysis showed that there were significant differences in the morphologies of CaCO_3 crystals among different enzyme concentrations. Vaterite was present at lower concentration of CA, and the higher concentration of CA favored the formation of calcite.
     (3) The change of deposited Ca~(2+) during the process of CaCO_3 precipitation catalyzed by bacterial CA at different initial Ca~(2+) concentrations was well fitted by not only exponential model but also polynomial model. The precipitation rate of CaCO_3 increased with the initial concentration of Ca~(2+), but overhigh initial concentration (100 mmol/L) of Ca~(2+) had a certain influence on the effect of CaCO_3 precipitation catalyzed by bacterial CA. The results of XRD, FTIR and FESEM analysis showed that the initial Ca~(2+) concentration had greater effect on the morphology of CaCO_3 crystals formed in the presence of bacterial CA. The lower initial Ca~(2+) concentration favored the formation of vaterite and the higher initial Ca~(2+) concentration favored the formation of calcite.
     In summary, the initial pH, enzyme concentration and Ca~(2+) concentration, et al., could not only influence the rate of CaCO_3 precipitation catalyzed by bacterial CA, but also greatly influence the polymorph and morphology of CaCO_3 crystals. Therefore, different crystalline feature of CaCO_3 materials could be induced by bacterial CA under above different initial conditions. The role of bacterial CA in CaCO_3 precipitation was related to the electrostatic adsorption of CA enzyme protein on Ca~(2+) and the selective adsorption of CA enzyme protein on the crystal faces, except for the enzymatic catalysis. The results in this paper provide scientific base for enriching the theory of karst dynamics, and also provide a new idea for preparation of CaCO_3 biomineralization materials.
引文
[1]刘再华, Dreybrodt W.方解石沉积速率控制的物理化学机制及其古环境重建意义.中国岩溶, 2002, 21(4): 252-257
    [2] Mann S. Biomineralization: principles and concepts in bioinorganic materials chemistry. Oxford University Press, USA, 2001
    [3]张昭,郭红丹.碳化法制备均一文石晶须的研究及机理探讨.中国粉体技术, 2002, 8(002): 46-48
    [4] Stanley S M, Ries J B, Hardie L A. Low-magnesium calcite produced by coralline algae in seawater of Late Cretaceous composition. Proceedings of the National Academy of Sciences, 2002, 99(24): 15323-15326
    [5] Ries J B, Anderson M A, Hill R T. Seawater Mg/Ca controls polymorph mineralogy of microbial CaCO3: A potential proxy for calcite-aragonite seas in Precambrian time. Geobiology, 2008, 6(2): 106-119
    [6] Ries J B. Aragonite production in calcite seas: effect of seawater Mg/Ca ratio on the calcification and growth of the calcareous alga Penicillus capitatus. Paleobiology, 2005, 31(3): 445-458
    [7] Sandberg P A. An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature, 1983, 305: 19-22
    [8]李华举,廖长君,姜殿强,等.钙华沉积机制的研究现状及展望.中国岩溶, 2006, 25(001): 57-62
    [9] Tambutte S, Tambutte E, Zoccola D, et al. Characterization and role of carbonic anhydrase in the calcification process of the azooxanthellate coral Tubastrea aurea. Marine Biology, 2007, 151(1): 71-83
    [10]严宏强,余克服,谭烨辉.珊瑚礁区碳循环研究进展.生态学报, 2009, 29(011): 6207-6215
    [11]宋金明,赵卫东,李鹏程,等.南沙珊瑚礁生态系的碳循环.海洋与湖沼, 2003, 34(6): 586-592
    [12] Metz B, Davidson O, Coninck H, et al. IPCC Special Report: Carbon dioxidecapture and storage. Cambridge University Press, UK, 2006: 1-429
    [13] Castanier S, Le Métayer-Levrel G, Perthuisot J P. Ca-carbonates precipitation and limestone genesis--the microbiogeologist point of view. Sedimentary Geology, 1999, 126(1-4): 9-23
    [14] De Muynck W, Debrouwer D, De Belie N, et al. Bacterial carbonate precipitation improves the durability of cementitious materials. Cement and concrete research, 2008, 38(7): 1005-1014
    [15] Fernandes P. Applied microbiology and biotechnology in the conservation of stone cultural heritage materials. Applied microbiology and biotechnology, 2006, 73(2): 291-296
    [16] Ranalli G, Alfano G, Belli C, et al. Biotechnology applied to cultural heritage: biorestoration of frescoes using viable bacterial cells and enzymes. Journal of applied microbiology, 2005, 98(1): 73-83
    [17] Adolphe J P, Loubière J F, Paradas J, et al. Procédéde traitement biologique d'une surface artificielle. European patent , 90400G97. 0, 1990
    [18] Rodriguez-Navarro C, Rodriguez-Gallego M, Ben Chekroun K, et al. Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization. Applied and Environmental Microbiology, 2003, 69(4): 2182
    [19]李为,刘丽萍,曹龙,等.碳酸盐生物沉积作用的研究现状与展望.地球科学进展, 2009, 24(6):597-605
    [20] Van Lith Y, Warthmann R, Vasconcelos C, et al. Microbial fossilization in carbonate sediments: a result of the bacterial surface involvement in dolomite precipitation. Sedimentology, 2003, 50(2): 237-245
    [21] Rivadeneyra M A, Martin-Algarra A, Sanchez-Navas A, et al. Carbonate and phosphate precipitation by Chromohalobacter marismortui. Geomicrobiology Journal, 2006, 23(2): 89-101
    [22] Konhauser K O, Phoenix V R, Bottrell S H, et al. Microbial–silica interactions in Icelandic hot spring sinter: possible analogues for some Precambrian siliceous stromatolites. Sedimentology, 2001, 48(2): 415-433
    [23] Dejong J T, Fritzges M B, Nusslein K. Microbially induced cementation to controlsand response to undrained shear. Journal of geotechnical and geoenvironmental engineering, 2006, 132(11): 1381-1392
    [24] Mitchell A C, Ferris F G. The coprecipitation of Sr into calcite precipitates induced by bacterial ureolysis in artificial groundwater: Temperature and kinetic dependence. Geochimica et Cosmochimica Acta, 2005, 69(17): 4199-4210
    [25] Knorre H, Krumbein W E. Bacterial calcification. Microbial sediments, 2000: 25-31
    [26] Schneider J, Campion-Alsumard T L. Construction and destruction of carbonates by marine and freshwater cyanobacteria. European Journal of Phycology. 1999, 34(4): 417-426
    [27] López-García P, Kazmierczak J, Benzerara K, et al. Bacterial diversity and carbonate precipitation in the giant microbialites from the highly alkaline Lake Van, Turkey. Extremophiles, 2005, 9(4): 263-274
    [28] Bosak T, Greene S E, Newman D K. A likely role for anoxygenic photosynthetic microbes in the formation of ancient stromatolites. Geobiology, 2007, 5(2): 119-126
    [29] Rodriguez-Navarro C, Jimenez-Lopez C, Rodriguez-Navarro A, et al. Bacterially mediated mineralization of vaterite. Geochimica et Cosmochimica Acta, 2007, 71(5): 1197-1213
    [30] Párraga J, Rivadeneyra M A, Delgado R, et al. Study of biomineral formation by bacteria from soil solution equilibria. Reactive and Functional Polymers, 1998, 36(3): 265-271
    [31] Hammes F, Verstraete W. Key roles of pH and calcium metabolism in microbial carbonate precipitation. Reviews in environmental science and biotechnology, 2002, 1(1): 3-7
    [32] Novitsky J A. Calcium carbonate precipitation by marine bacteria. Geomicrobiology Journal, 1981, 2(4): 375-388
    [33] Rivadeneyra M A, Párraga J, Delgado R, et al. Biomineralization of carbonates by Halobacillus trueperi in solid and liquid media with different salinities. FEMS microbiology ecology, 2004, 48(1): 39-46
    [34] Aloisi G, Gloter A, Kruger M, et al. Nucleation of calcium carbonate on bacterial nanoglobules. Geology, 2006, 34(12): 1017-1020
    [35] Banks E D, Taylor N M, Gulley J, et al. Bacterial Calcium Carbonate Precipitationin Cave Environments: A Function of Calcium Homeostasis. Geomicrobiology Journal, 2010, 27(5): 444-454
    [36] Meldrum N U, Roughton F. Carbonic anhydrase. Its preparation and properties. The Journal of Physiology, 1933, 80(2): 113-142
    [37] Li W, Yu L, Yuan D, et al. A study of the activity and ecological significance of carbonic anhydrase from soil and its microbes from different karst ecosystems of Southwest China. Plant and soil, 2005, 272(1): 133-141
    [38] Smith K S, Ferry J G. Prokaryotic carbonic anhydrases. FEMS microbiology reviews, 2000, 24(4): 335-366
    [39] Heck R W, Tanhauser S M, Manda R, et al. Catalytic properties of mouse carbonic anhydrase V. Journal of Biological Chemistry, 1994, 269(40): 24742
    [40] Mcginn P J, Morel F M M. Expression and regulation of carbonic anhydrases in the marine diatom Thalassiosira pseudonana and in natural phytoplankton assemblages from Great Bay, New Jersey. Physiologia Plantarum, 2008, 133(1): 78-91
    [41] Badger M. The roles of carbonic anhydrases in photosynthetic CO2 concentrating mechanisms, Photosynthesis research. 2003, 77(2): 83-94
    [42] Riebesell U. Carbon fix for a diatom. Science, 2000, 287: 617-619
    [43] Rahman M A, Oomori T, Uehara T. Carbonic anhydrase in calcified endoskeleton: Novel activity in biocalcification in alcyonarian. Marine Biotechnology, 2008, 10(1): 31-38
    [44] Favre N, Christ M L, Pierre A C. Biocatalytic capture of CO2 with carbonic anhydrase and its transformation to solid carbonate. Journal of Molecular Catalysis B: Enzymatic, 2009, 60(3-4): 163-170
    [45] Mirjafari P, Asghari K, Mahinpey N. Investigating the application of enzyme carbonic anhydrase for CO2 sequestration purposes. Industrial & Engineering Chemistry Research, 2007, 46(3): 921-926
    [46] Liu N, Bond G M, Abel A, et al. Biomimetic sequestration of CO2 in carbonate form: Role of produced waters and other brines. Fuel Processing Technology, 2005, 86(14-15): 1615-1625
    [47] Lee S W, Park S B, Choi C S. On self-organized shell formation by bovine carbonic anhydrase II, and soluble protein extracted from regenerated shell. Micron, 2008,39(8): 1228-1234
    [48]李强.水生藻类碳酸酐酶(CA)对碳酸钙沉积速率控制的试验研究[硕士学位论文].广西师范大学, 2004
    [49] Tohse H, Mugiya Y. Effects of enzyme and anion transport inhibitors on in vitro incorporation of inorganic carbon and calcium into endolymph and otoliths in salmon Oncorhynchus masou. Comparative Biochemistry and Physiology-Part A: Molecular & Integrative Physiology, 2001, 128(1): 177-184
    [50] Ramanan R, Kannan K, Sivanesan S D, et al. Bio-sequestration of carbon dioxide using carbonic anhydrase enzyme purified from Citrobacter freundii. World Journal of Microbiology and Biotechnology, 2009, 25(6): 981-987
    [51]周雪莹,杜叶,连宾.不同培养条件对胶质芽孢杆菌诱导碳酸钙晶体形成的影响.微生物学报, 2010, 50(7): 955-961
    [52] Achal V, Pan X. Characterization of Urease and Carbonic Anhydrase Producing Bacteria and Their Role in Calcite Precipitation. Current Microbiology, 2010: 1-9
    [53] Li W, Liu L, Chen W, et al. Calcium carbonate precipitation and crystal morphology induced by microbial carbonic anhydrase and other biological factors. Process Biochemistry, 2010, 45: 1017-1021
    [54] Li W, Liu L P, Zhou P P, Cao L, Yu L J, Jiang S Y. Calcite precipitation induced by bacteria and bacterially produced carbonic anhydrase. Current Science,2011, 100(4): 1-7
    [55]袁道先,刘再华.碳循环与岩溶地质环境.科学出版社, 2003
    [56] Dreybrodt W. Processes in karst systems. Springer-Verlag, Berlin, 1988
    [57] Dreybrodt W, Lauckner J, Zaihua L, et al. The kinetics of the reaction CO2 + H2O→H+ + HCO3- as one of the rate limiting steps for the dissolution of calcite in the system H2O-CO2-CaCO3. Geochimica et Cosmochimica Acta, 1996, 60(18): 3375-3381
    [58] Dreybolt W, Eisenlohr L, Madry B, et al. Precipitation kinetics of calcite in the system H2O-CO2-CaCO3: The conversion to CO2 by the slow process H+ + HCO3-→CO2 + H2O as a rate limiting step. Geochimica et Cosmochimica Acta, 1997, 61: 3897-3904
    [59] Dreybrodt W, Buhmann D. A mass transfer model for dissolution and precipitation of calcite from solutions in turbulent motion. Chemical Geology, 1991, 90(1-2): 107-122
    [60] Morse J W, Gledhill D K, Millero F J. CaCO3 precipitation kinetics in waters from the great Bahama bank: Implications for the relationship between bank hydrochemistry and whitings. Geochimica et Cosmochimica Acta, 2003, 67(15): 2819-2826
    [61] Lioliou M G, Paraskeva C A, Koutsoukos P G, et al. Heterogeneous nucleation and growth of calcium carbonate on calcite and quartz. Journal of colloid and interface science, 2007, 308(2): 421-428
    [62] Hammer, Dysthe D K, Lelu B, et al. Calcite precipitation instability under laminar, open-channel flow. Geochimica et Cosmochimica Acta, 2008, 72(20): 5009-5021
    [63] Yildirim M, Akarsu H. Kinetics of Calcium Carbonate (CaCO3) Precipitation from a Icel-Yavca Dolomite Leach Solution by a Gas (Carbon Dioxide)/Liquid Reaction. Helvetica Chimica Acta, 2009, 92(3): 502-513
    [64] López-Periago A M, Pacciani R, García-González C, et al. A breakthrough technique for the preparation of high-yield precipitated calcium carbonate. The Journal of Supercritical Fluids, 2010, 52: 298-305
    [65] Stocks-Fischer S, Galinat J K, Bang S S. Microbiological precipitation of CaCO3. Soil Biology and Biochemistry, 1999, 31(11): 1563-1571
    [66] Domingo C, Loste E, Gomez-Morales J, et al. Calcite precipitation by a high-pressure CO2 carbonation route. The Journal of Supercritical Fluids. 2006, 36(3): 202-215
    [67] Bachmeier K L, Williams A E, Warmington J R, et al. Urease activity in microbiologically-induced calcite precipitation. Journal of biotechnology, 2002, 93(2): 171-181
    [68] Ferris F G, Phoenix V, Fujita Y, et al. Kinetics of calcite precipitation induced by ureolytic bacteria at 10 to 20℃in artificial groundwater. Geochimica et Cosmochimica Acta, 2004, 68(8): 1701-1710
    [69] Jimenez-Lopez C, Rodriguez-Navarro A, Dominguez-Vera J M, et al. Influence oflysozyme on the precipitation of calcium carbonate: A kinetic and morphologic study. Geochimica et cosmochimica acta, 2003, 67(9): 1667-1676
    [70]杨效登,沈强,徐桂英.水溶性大分子调控碳酸钙结晶的研究进展.物理化学学报, 2010, 26(8): 2087-2095
    [71]秦勇利,吴秋芳,李福清,等.链状纳米碳酸钙合成.非金属矿, 2004, 27(005): 9-11
    [72]谢英惠,何予基.球状碳酸钙的合成研究.海湖盐与化工, 2000, 30(2): 12-14
    [73] Wang C. Control the polymorphism and morphology of calcium carbonate precipitation from a calcium acetate and urea solution. Materials letters, 2008, 62(16): 2377-2380
    [74] Keum D K, Kim K M, Naka K, et al. Preparation of hydrophobic CaCO3 composite particles by mineralization with sodium trisilanolate in a methanol solution. Journal of Materials Chemistry, 2002, 12(8): 2449-2452
    [75] Su Y, Yang H, Shi W, et al. Crystallization and morphological control of calcium carbonate by functionalized triblock copolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 355(1-3): 158-162
    [76] Euliss L E, Bartl M H, Stucky G D. Control of calcium carbonate crystallization utilizing amphiphilic block copolypeptides. Journal of Crystal Growth, 2006, 286(2): 424-430
    [77] Tang H, Yu J, Zhao X. Controlled synthesis of crystalline calcium carbonate aggregates with unusual morphologies involving the phase transformation from amorphous calcium carbonate. Materials Research Bulletin, 2009, 44(4): 831-835
    [78] Ercole C, Cacchio P, Botta A L, et al. Bacterially induced mineralization of calcium carbonate: the role of exopolysaccharides and capsular polysaccharides. Microscopy and Microanalysis, 2007, 13(01): 42-50
    [79] Tourney J, Ngwenya B T. Bacterial extracellular polymeric substances (EPS) mediate CaCO3 morphology and polymorphism, Chemical Geology, 2009, 262(3-4): 138-146
    [80] Xie Y D, Xu X R, Tang R K. Influence of viscosity on the phase transformation of amorphous calcium carbonate in fluids: An understanding of the medium effect inbiomimetic mineralization. Science China Chemistry, 2010, 53(10): 2208-2214
    [81] Loste E, Meldrum F C. Control of calcium carbonate morphology by transformation of an amorphous precursor in a constrained volume. Chemical Communications, 2001, 2001(10): 901-902
    [82] Amos F F, Sharbaugh D M, Talham D R, et al. Formation of single-crystalline aragonite tablets/films via an amorphous precursor. Langmuir, 2007, 23(4): 1988-1994
    [83] Wang X, Sun H, Xia Y, et al. Lysozyme mediated calcium carbonate mineralization. Journal of colloid and interface science, 2009, 332(1): 96-103
    [84] Antipov A, Shchukin D, Fedutik Y, et al. Urease‐Catalyzed Carbonate Precipitation inside the Restricted Volume of Polyelectrolyte Capsules. Macromolecular Rapid Communications, 2003, 24(3): 274-277
    [85] Sondi I, Salopek-Sondi B. Influence of the primary structure of enzymes on the formation of CaCO3 polymorphs: a comparison of plant (Canavalia ensiformis) and Bacterial (Bacillus pasteurii) and bacterial ureases. Langmuir, 2005, 21: 8876-8882
    [86] Goodman A L, Soong Y, Strazisar B, et al. Carbon dioxide sequestration with brines. Denver Annual Meeting. Colorado Convention Center: A205. 2002. 135-138
    [87] Li W, Yu L, He Q, et al. Effects of microbes and their carbonic anhydrase on Ca2+ and Mg2+ migration in column-built leached soil-limestone karst systems. Applied Soil Ecology, 2005, 29(3): 274-281
    [88] American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 17th ed. American Public Health Association, Washington D C, 1989
    [89] Jimenez-Lopez C, Caballero E, Huertas F J, et al. Chemical, mineralogical and isotope behavior, and phase transformation during the precipitation of calcium carbonate minerals from intermediate ionic solution at 25℃. Geochimica et Cosmochimica Acta, 2001, 65(19): 3219-3231
    [90] Becker A, Becker W, Marxen J C, et al. In-vitro Crystallization of Calcium Carbonate in the Presence of Biological Additives-Comparison of the Ammonium Carbonate Method with Double-Diffusion Techniques. Zeitschrift für anorganischeund allgemeine Chemie, 2003, 629(12-13): 2305-2311
    [91] Bhattacharya S, Schiavone M, Chakrabarti S, et al. CO2 hydration by immobilized carbonic anhydrase. Biotechnology and applied biochemistry, 2003, 38: 111-117
    [92] Sharma A, Bhattacharya A, Singh S. Purification and characterization of an extracellular carbonic anhydrase from Pseudomonas fragi. Process Biochemistry, 2009, 44(11): 1293-1297
    [93]欧阳健明.生物矿化的基质调控及其仿生应用.化学工业出版社, 2006
    [94] Chen L, Shen Y, Xie A, et al. Bacteria-mediated synthesis of metal carbonate minerals with unusual morphologies and structures. Crystal Growth Design, 2009, 9(2): 743-754
    [95] Konopacka- Yskawa D, Cisiak Z, Kawalec-Pietrenko B. Effect of liquid circulation in the draft-tube reactor on precipitation of calcium carbonate via carbonation. Powder Technology, 2009, 190(3): 319-323
    [96] Druckenmiller M L, Maroto-Valer M M. Carbon sequestration using brine of adjusted pH to form mineral carbonates. Fuel Processing Technology, 2005, 86(14-15): 1599-1614
    [97] Xiao J, Zhu Y, Liu Y, et al. Vaterite selection by chitosan gel: an example of polymorph selection by morphology of biomacromolecules. Crystal Growth and Design, 2008, 8(8): 2887-2891
    [98] Shen F H, Feng Q L, Wang C M. The modulation of collagen on crystal morphology of calcium carbonate. Journal of Crystal Growth, 2002, 242(1-2): 239-244
    [99] Pipich V, Balz M, Wolf S E, et al. Nucleation and Growth of CaCO3 Mediated by the Egg-White Protein Ovalbumin: A Time-Resolved in situ Study Using Small-Angle Neutron Scattering. Journal of the American Chemical Society, 2008, 130(21): 6879-6892
    [100] Sondi I, Matijevic E. Homogeneous Precipitation of Calcium Carbonates by Enzyme Catalyzed Reaction. Journal of Colloid and Interface Science, 2001, 238(1): 208-214
    [101] Yang L, She L, Zhou J, et al. Interaction of lysozyme during calcium carbonate precipitation at supramolecular level. Inorganic Chemistry Communications, 2006, 9(2): 164-166
    [102] Marie B, Luquet G, Bédouet L, et al. Nacre Calcification in the Freshwater Mussel Unio pictorum: Carbonic Anhydrase Activity and Purification of a 95 kDa Calcium‐Binding Glycoprotein. Chembiochem, 2008, 9(15): 2515-2523
    [103] Older?y Y M, Xie M, Strand B L, et al. Growth and Nucleation of Calcium Carbonate Vaterite Crystals in Presence of Alginate. Crystal Growth & Design, 2009, 9(12): 5176-5183
    [104] Feldstein J B, Silverman D N. Purification and characterization of carbonic anhydrase from the saliva of the rat. Journal of Biological Chemistry, 1984, 259(9): 5447
    [105] Yao Y J, Khoo K S, Chung M, et al. Determination of isoelectric points of acidic and basic proteins by capillary electrophoresis. Journal of Chromatography A, 1994, 680(2): 431-435
    [106] Ichikawa K, Shimomura N, Yamada M, et al. Control of calcium carbonate polymorphism and morphology through biomimetic mineralization by means of nanotechnology. Chemistry-A European Journal, 2003, 9(14): 3235-3241
    [107] Sondi I, Matijevi E. Homogeneous precipitation of calcium carbonates by enzyme catalyzed reaction. Journal of colloid and interface science, 2001, 238(1): 208-214
    [108]徐旭荣,蔡安华,刘睿,等.生物矿化中的无定形碳酸钙.化学进展, 2008, 20(001): 54-59
    [109] Hernández-Hernández A, Rodríguez-Navarro A B, Gómez-Morales J, et al. Influence of Model Globular Proteins with Different Isoelectric Points on the Precipitation of Calcium Carbonate. Crystal Growth and Design, 2008, 8(5): 1495-1502
    [110] Wang X, Wu C, Tao K, et al. Influence of Ovalbumin on CaCO3 Precipitation during in Vitro Biomineralization. The Journal of Physical Chemistry B, 2010, 114(16): 5301-5308
    [111] Bosak T, Newman D K. Microbial kinetic controls on calcite morphology in supersaturated solutions. Journal of Sedimentary Research, 2005, 75(2): 190-200
    [112] Villafuerte F C, Swietach P, Patiar S, et al. Comparison of pH-dependence of Carbonic Anhydrase Activity in vitro and in Living Cells. Biophysical Journal. 2009,96: 625
    [113] Rivadeneyra M A, Delgado G, Soriano M, et al. Precipitation of carbonates by Nesterenkonia halobia in liquid media. Chemosphere, 2000, 41(4): 617-624
    [114] Xu X, Han J T, Cho K. Formation of amorphous calcium carbonate thin films and their role in biomineralization. Chemistry Material, 2004, 16(9): 1740-1746
    [115] Loste E, Wilson R M, Seshadri R, et al. The role of magnesium in stabilising amorphous calcium carbonate and controlling calcite morphologies. Journal of Crystal Growth, 2003, 254(1-2): 206-218
    [116] Braissant O, Cailleau G, Dupraz C, et al. Bacterially induced mineralization of calcium carbonate in terrestrial environments: the role of exopolysaccharides and amino acids. Journal of Sedimentary Research, 2003, 73(3): 485
    [117]王瑞兴,钱春香,王剑云.微生物沉积碳酸钙研究.东南大学学报:自然科学版, 2005, 35(A01): 191-195

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700