用户名: 密码: 验证码:
碱法制浆过程中结垢离子的生成规律及数学模型的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蒸发器钙结垢是制浆造纸碱回收过程中普遍存在的严重问题,它制约着碱回收系统的正常运行。为此,研究者对控制和减少蒸发器钙结垢的产生进行了大量研究。然而,现有的相关研究主要集中在探讨如何除垢以及结垢的形成。关于在制浆过程中形成蒸发器钙结垢的草酸根、碳酸根和溶解钙产生规律的研究报道甚少。而对制浆过程中草酸根和碳酸根来源的研究更为鲜见。基于上述情况,本论文通过新建立的分析方法研究碱法制浆过程中草酸根、碳酸根和钙离子的生成规律及其来源,目的在于通过对制浆过程中碳酸根、草酸根和钙离子生成规律的研究有效地控制制浆废液中容易引起蒸发器钙结垢物质的产生。这对于深化蒸发器钙结垢问题的认识,控制和减少蒸发器的钙结垢程度,提高生产过程的能源利用效率,以及保证生产的正常运行,将具有重要的指导意义。
     围绕上述研究目的,本论文采用典型的碱法制浆工艺条件,以南方松和相思木为原料,结合本论文建立的顶空气相色谱法测定制浆废液中草酸根的新方法,揭示了碱法制浆过程中草酸根的生成规律。结果表明,相思木中草酸根的含量高于南方松,约为南方松的6~7倍。在碱法制浆过程中草酸根的形成是随着蒸煮过程的进行而逐渐增加的。在碱法蒸煮的早期阶段草酸根随时间增加的生成速率较快。初始有效碱的浓度越高,蒸煮初期形成的草酸根的量越多。相思木与南方松在相同的条件下进行碱法蒸煮,相思木所产生的草酸根的量高于南方松。研究了主要工艺参数(如时间、H因子、用碱量和硫化度等)对碱法制浆过程中草酸根生成的影响。从而建立描述碱法制浆过程黑液中草酸根生成的动力学数学模型。将该数学模型应用于南方松和相思木碱法制浆过程,其预测值与实验测定值的线性相关系数R2分别为0.981和0.963,这表明其预测具有较高的准确性。同时,还揭示了碱法制浆过程中草酸根的来源,明确了碱法蒸煮过程中除了原料本身会释放溶出一部分草酸根外,木素和碳水化合物的降解也可以产生草酸根。
     通过对碱法制浆过程中碳酸根的研究发现,在碱法制浆过程中碳酸根的形成随着蒸煮过程的进行而逐渐增加。相思木与南方松在相同的条件下进行碱法蒸煮,相思木所产生的碳酸根的量高于南方松。根据碳酸根的形成与H-因子和初始有效碱浓度的关系,建立了碱法蒸煮南方松和相思木过程中碳酸根产生的动力学数学模型。该模型的预测值与实验测得值之间有良好的线性关系,证明该数学模型的预测具有较高的准确性。进一步研究表明,在碱法蒸煮过程中木素和碳水化合物的降解都可以产生碳酸根。
     通过对不同蒸煮过程中溶解钙的研究揭示了其生成规律,阐述了蒸煮时间、溶解木素、草酸根和碳酸根等对溶解钙离子生成的影响。结果发现:溶解钙离子随着蒸煮时间的增加而增加的,在碱法蒸煮的早期阶段溶解钙随时间增加的速率较快。硫酸盐法蒸煮黑液中溶解性钙离子的浓度大于烧碱法。黑液中溶解钙的含量是与溶出木素的含量成正比与碳酸根和草酸根的含量成反比关系。溶解木素与钙离子的络合稳定常数为102。当黑液中的碳酸根和草酸根总浓度大于0.3mol/L时,可有效地控制黑液中溶解钙的含量。
     同时,揭示了氧脱木素过程中草酸根的生成规律,探讨了氧脱木素工艺条件对草酸根生成的影响。研究得出:在氧脱木素过程中草酸根的生成与时间呈线性关系,随着氧脱木素过程的进行草酸根的含量逐渐增加。氧脱木素的温度对草酸根形成有显著的影响,提高温度会增加氧脱木素过程中草酸根的形成。在其它条件相同的情况下,用碱量由2.5%增加至3.5%时,氧脱木素废液中草酸根的含量也有所增加。而氧压对草酸根的形成影响不大。研究了氧脱木素过程中草酸根的形成与溶解木素和卡伯值的关系。根据草酸根的形成与卡伯值的关系,建立氧脱木素过程中草酸根生成的动力学数学模型。该数学模型的预测具有较高的准确性,其预测值和测定值的线性相关系数R2为0.969,可以将其用于给定纸浆的氧脱木素废液中草酸根含量的预测。
     此外,还揭示了热水和碱预抽提过程中草酸根和碳酸根的生成规律,探讨了热水和碱预抽提对蒸煮过程中草酸根和碳酸根的形成、黑液性质和纸浆性能的影响。得出:热水和碱预抽提可以减少南方松和相思木碱法制浆黑液中碳酸根和草酸根的含量。通过预抽提可以提高蒸煮过程中有效碱的作用效率,增加木素的溶出,减少制浆过程中甲醇的产生。
     本研究不仅有助于改进制浆工艺,建立结合生物质精炼的制浆新模式和控制钙结垢物质的产生,还有利于深化对产生蒸发器钙结垢物质来源的认识,为控制蒸发器钙结垢、提高能源利用效率提供了新的途径。
Calcium scales of evaporator appear to be a serious problem in alkali recovery from black liquors, which restricts the normal operation of alkaline recovery system. Numbers of studies have been done on the control and reduction of calcium scales. However, most of them have focused on scale removal and reasons for scaling. There are few reports on the release or formation of oxalate, carbonate and dissolved calcium and even rarely known about the sources of oxalate and carbonate during the pulping processes. Therefore, the formation and sources of oxalate, carbonate and dissolved calcium were investigated in this work, in order to control these substances formation or release during the pulping processes. The result is significant to deepen the recognition of calcium scales of evaporator, control and reduce evaporator scaling, improve energy efficiency and ensure the normal operation of production.
     For these reasons, under typical alkaline pulping conditions, southern pine and acacia were taken as raw materials to reveal the oxalate formation rule, in combination with the novel headspace gas chromatographic method for determination of oxalate in pulping effluents. The results showed that acacia was found to have more oxalate than southern pine, and the oxalate content in acacia wood is 6~7 times as that of southern pine. Also the oxalate content in black liquor was increased during alkaline pulping processes. The trend rapidly increased during the early stages of the cooking. It was found that a higher hydroxide concentration led to a higher oxalate content in the black liquor. The pulping of acacia resulted in more oxalate being formed than that of southern pine under the same pulping conditions. The effect of pulping time, H-Factor, alkaline charge and sulfidity on the oxalate formation was also studied. Then a kinetic model of oxalate formation was developed based on the experimental results. The good regression coefficients (R2 = 0.981 and 0.963 for southern pine and acacia respectively) indicate that the models are justifiable for the oxalate prediction, and applicable to kraft and soda pulping black liquors. These models are reasonable expressions for the concentration of oxalate formed during alkaline pulping. Meanwhile, the oxalate source was revealed during alkaline pulping processes. Oxalate is formed in the pulping process from two main sources, i.e., oxalate and oxalic acid are existed in native wood, formed from lignin and carbohydrate degradation in the cooking.
     It was found that the carbonate content in black liquor was increased during alkaline pulping processes. At the same conditions, the pulping of acacia resulted in more carbonate being formed than that of southern pine. The relationships between the carbonate content and H-Factor, as well as the concentration of initial effective alkali were established. And then, a kinetic model of carbonate formation was developed based on the experimental results. The good regression coefficients indicate that the models are justifiable for the carbonate prediction, both for the kraft and soda pulping black liquors. Further investigation showed that carbonate was formed from lignin and carbonate degradation during pulping process
     A detailed investigation on the effects of the major compositions of black liquor on the soluble calcium formation was conducted. The studies showed that the content of the soluble calcium in black liquor is mainly affected by the amount of the dissolved lignin and, carbonate and oxalate. The results clearly indicate that dissolved calcium content is negatively correlated with the content of dissolved lignin. The formation constant of the dissolved calcium-lignin complex in this equation is 102. More soluble calcium was found in the kraft pulping spent liquors. The amount of the soluble calcium in cooking liquor can be effectively suppressed when a total concentration of oxalate and carbonate reaches a level of 0.3mol/L in the kraft pulping process.
     The rule of oxalate formation was revealed during oxygen delignification. The effects of process conditions of oxygen delignification on oxalate formation were also explored. Results showed that oxalate content in the effluent oxygen delignification increased with increasing time and the relationship between them was linear. The effect of temperature on oxalate formation was significance during oxygen delignification process. The oxalate content in the effluent of oxygen delignification increased with the temperature during oxygen delignification process. At the same conditions, the oxalate content increased when the alkali charge increased from 2.5% to 3.5%. Oxygen pressure had a little effect on oxalate formation. The relationship between the oxalate formation and dissolved lignin and Kappa number was investigated during oxygen delignification process. According to the relationship, a kinetic model of oxalate formation was developed based on the experimental results. There is a good agreement between the calculated and measured data, indicating that this model is reasonable expression for the concentration of oxalate during oxygen delignification. The regression coefficient between the predicted and the measured was 0.969. The empirical models can predict the oxalate content in the effluent of oxygen delignification.
     Furthermore, oxalate and carbonate formation rules were also revealed during hot-water and alkaline pre-extraction processes. The effects of hot-water and alkaline pre-extraction on the formation of oxalate and carbonate, characteristics of black liquor and pulp properties were analyzed. The investigation showed that the contents of oxalate and carbonate in black liquor of southern pine and acacia after hot-water and alkaline pre-extract were lower than those of corresponding control alkaline pulping. Hot-water and alkaline pre-extraction can improve action efficiency of effective alkali, increase the lignin solubility and reduce the methanol formation.
     This study will promote a new pulping approach of combining pulping with bio-refinery, control the formation of calcium scales and deepen the understanding of the evaporator scaling source, and provide a novel way to control evaporator scaling and increase energy efficiency.
引文
[1] Herbert Sixta. Hand Book of Pulp [M]. Weinheim, Germany: Wiley-VCH Verlag GmbH& Co. KGaA, 2006: 973-974
    [2]刘秉钺.制浆黑液的碱回收[M].北京:化学工业出版社, 2006:前言
    [3] Gullichsen J., Paulapuro H.. Papermaking Science and Technology, Book 6B: Chemical Pulping [M]. Helsinki: Fapet Oy, 2000: B7
    [4]林文耀.我国造纸工业碱回收概况[J].造纸信息, 2009, 2: 34-36
    [5]国家环境保护总局.主要污染物减排工作简报, 2007, (10): 2-3
    [6]新华社.中国政府明确2010年节能减排目标和要求[EB/OL]. http://www.gov.cn/zwhd/2007-06/03/content_634679.htm
    [7] Grace T. M.. Chemical Recovery in the Alkaline Pulping Processes [M]. 3ed Edition. Atlanta: TAPPI press, 1992: 3-4
    [8]上海海陆昆仑高科技工程有限公司.碱回收锅炉与造纸碱回收系统[EB]. http://www.polymer.cn/bbs/File/UserFiles/UpLoad/20081104051326fi.pdf
    [9]詹怀宇.制浆原理与工程[M].第三版.北京:中国轻工业出版社, 2009: 334-361
    [10] Gullichsen J., Paulapuro H.. Papermaking Science and Technology, Book 6B: Chemical Pulping [M]. Helsinki: Fapet Oy, 2000: B8-B11
    [11] Grace T. M.. Chemical Recovery in the Alkaline Pulping Processes [M]. 3ed Edition. Atlanta: TAPPI press, 1992: 2-3
    [12] Gullichsen J., Paulapuro H.. Papermaking Science and Technology, Book 6B: Chemical Pulping [M]. Helsinki: Fapet Oy, 2000: B12-B13
    [13] Grace T. M.. Chemical Recovery in the Alkaline Pulping Processes [M]. 3ed Edition. Atlanta: TAPPI press, 1992: 10-11
    [14]刘秉钺.制浆黑液的碱回收[M].北京:化学工业出版社, 2006: 10-11
    [15] Sixta H.. Hand Book of Pulp [M]. Weinheim, Germany: Wiley-VCH Verlag GmbH& Co. KGaA, 2006: 967-968
    [16] Grace T. M.. A Study of Evaporator Scaling in the Alkaline Pulp Industry, Project 3234, Progress Report 1 [R]. Atlanta, GA: The Institute of Paper Chemistry, 1975
    [17] Andrews B.D., Grace T.M..―Study of evaporator scaling‖soluble carbonate-sulfate scales. Project 3234, Report 2 [R]. Atlanta, GA: The Institute of Paper Chemistry, 1977
    [18] Frederick W. J., Grace T. M.. A Study of Evaporator Scaling Calcium Carbonate Scales, Project 3234, Report 3 [R]. Atlanta, GA: The Institute of Paper Chemistry, 1977
    [19] Schrnidl W., Frederick W. J.. Current trends in evaporator fouling [A]. 1998 TAPPI International Chemical Recovery Conference Proceeding, Vol. 1[C]. Atlanta: TAPPI PRESS, 1998: 367-377
    [20] Gullichsen J., Paulapuro H.. Papermaking Science and Technology, Book 6B: Chemical Pulping [M]. Helsinki: Fapet Oy, 2000: B88
    [21] Grace T. M.. Chemical Recovery in the Alkaline Pulping Processes [M]. 3ed Edition. Atlanta: TAPPI press, 1992: 23-24
    [22] Lauren R.B.. Black liquor scaling multiple effect evaporators [J]. Tappi Journal, 1966, 49(4): 68-71
    [23] Severtson S.J., Duggirala P.Y., and Carter P.W., et al. Mechanism and chemical control of CaCO3 scaling in the kraft process [J]. Tappi Journal, 1999, 82(6): 167-174
    [24] Hartler N., Libert J.. Structure and composition of scale in continuous kraft digesters [J]. Svensk Papperstidning, 1972, 75(2): 65-70
    [25] Siren K.. Calcium carbonate scaling in black liquor evaporation[A]. International Chemical Recovery Conference[C]. Quebec City, QC, Canada, 2007: 485-488
    [26] Guo J.H., Severtson S.J.. Influence of organic additives on calcium carbonate precipitation during kraft pulping [J]. Tappi Journal, 2002, 1(8): 21-27
    [27] Schmidl W., Frederick W. J.. Current trends in evaporator fouling [A]. International Chemical Recovery Conference[C]. Atlanta, GA: Georgia Institute of Technology, 1998: 367-377
    [28]刘秉钺.制浆黑液的碱回收[M].北京:化学工业出版社, 2006: 81-86
    [29]格林R.P.,霍夫G..碱法制浆化学药品的回收[M].第三版.潘锡五.北京:中国轻工业出版社, 1998: 51-52
    [30] Stacie J., Wilhelmsen L.. Maintaining multiple effect evaporation rate [J]. Tappi Journal, 1969, 52(7): 1278-1280
    [31] Uloth V.C., Wong A.. The effect of black liquor soap content on evaporator capacity. I: Na2CO3?Na2SO4 scaling [J]. Pulp & paper Canada, 1986, 87(7): 47-53
    [32]谢来苏,詹怀宇.制浆原理与工程[M].第二版.北京:中国轻工业出版社, 2001: 307-308
    [33] Lauren R.B.. Black liquor scaling multiple effect evaporators [J]. Tappi Journal, 1966, 49(4): 68-71
    [34] Bergstorm R.E.. Pulp and paper manufacture (J.N. Stephenson, ed.) Vol. 1 [M]. 1st ed.. New York: McGrawHill, 1950: 541-555
    [35] Macdonald R.G.. Pulp and paper manufacture Vol. 1[M]. 2nd Edition. New York: McGraw-Hill, 1969: 516
    [36] Gullichsen J., Paulapuro H.. Papermaking Science and Technology, Book 6B: Chemical Pulping [M]. Helsinki: Fapet Oy, 2000: B89-B91
    [37] Grace T. M.. Chemical Recovery in the Alkaline Pulping Processes [M]. 3ed Edition. Atlanta: TAPPI press, 1992: 25
    [38]格林R.P.,霍夫G..碱法制浆化学药品的回收[M].第三版.潘锡五.北京:中国轻工业出版社, 1998: 55
    [39] Keitaanniemi, O., Virkola, N.-E.. Amount and behaviour of certain chemical elements in kraft pulp manufacture: results of a mill scale study [J]. Paperi ja Puu, 1978, 60(9): 507-522
    [40] Erickson, L.D., Holman, K.L.. Non-Process Element Flows and Control in a Kraft Pulp Mill [A]. Ferhan K., Krieger-Brockett B.. Applications of Chemical Engineering Principles in the Forest Products and Related Industries Vol. 1 [C]. New York: AIChE Forest Products Division, 1986: 21-30
    [41] Magnusson H., M?rk K. and Warnqvist B.. Non-Process Elements in the Kraft Recovery System [A]. Proc. 1979 TAPPI Pulping Conference [C], Atlanta, GA: Technical Association of the Pulp and Paper Industry, 1979: 77-83
    [42] Lindberg, H., Engdahl, H., and Puunmalinen, R.. Strategies for metal removal control in closed cycle mills [A]. International Pulp Bleaching Conference Proceedings[C]. Vancouver: CPPA , 1994: 293
    [43] Rudie A.. Calcium in pulping and bleaching [J]. Tappi Journal, 2000, 83(12): 36-37
    [44] Frederick W. J., Grace T. M.. Preventing Calcium Carbonate Scaling in Black Liquor Evaporators [J]. South Pulp Paper Manuf., 1979, 42(9): 21-29
    [45] Chai X.S., Zhu J. Y., Luo Q.. Minor sources of carbonate in kraft pulping and oxygen delignification processes [J]. J Pulp Pap Sci., 2003, 29(2): 59-63
    [46] Grace T.M.. Solubility limits in black liquors [J]. AICHE Symp. Ser.157, 1976: 72-73
    [47] Grace T. M.. Chemical Recovery Process Chemistry. Chemical Recovery in the Alkaline Pulping Processes [M]. 3ed ed.. Atlanta, GA: TAPPI press, 1992: 57-78
    [48] Paulonis M.A., Krishnagopalan G.A.. Kraft white and green liquor composition analysis. 1. Discrete sample analyzer [J]. Journal of Pulp and Paper, 1994, 20 (9): J254-J258
    [49] Krasowski J.A., Marton J.. The formation of oxalic acid during bleaching of kraft pulp [J]. J. Wood Chem. Technol., 1983, 3(4):443-458
    [50] Yamamoto Y., Niki E., Shlokawa H., et al. Ozonation of organic compounds: 2. Ozonation of phenol in water [J]. J. Org. Chem, 1979, 44(13): 2137-2142.
    [51] Kratzl K., Vierhapper F. and Tengler E.. Synthese und Oxidation von 14C-Kernmarkierten Bikreosolen [J]. Spezifisch Kernmarkierte Phenolderivate, 4. Mitt. Mh. Chem., 1975, 106, 321-332
    [52] Elsander A., Ek M., Gellerstedt G.. Oxalic acid formation during ECF and TCF bleaching of kraft pulp [J]. Tappi Journal, 2000, 83 (2): 73-77
    [53] Johansson, M.H., Samuelson, O.. Epimerization and degradation of 2-O-(4-O- methyl-α-D-glucopyranosyluronic acid)-D-xylitol in alkaline medium [J]. Carbohydr. Res., 1977, 54 (2): 295-299
    [54] Buchert, J., Teleman, A., and Harjunpaa, V., et al. Effect of cooking and bleaching on the structure of xylan in conventional pine kraft pulp [J]. Tappi Journal, 1995, 78(11): 125-130
    [55] Nilvebrant N-O., Reimann A.. Xylan as a source for oxalic acid during ozone bleaching [A]. 4th European Workshop on Lignocellulosics and Pulp [C]. Streza, Italy, 1996: 485-491
    [56] Vuorinen T., Fagerstrom P., and Rasanen E., et al. Selective hydrolysis of hexenuronic acid groups opens new possibilities for development of bleaching processes [A]. 9th International Symposium of Wood and Pulping Chemistry [C] Montreal , Canada: Canadian Pulp and Paper Association 1997: M4, 1-4
    [57] MacAdam J., Parsons S.. Calcium carbonate scale formation and control [J]. Reviews in Environmental Science and Biotechnology, 2004, 3(2):159-169
    [58] Seidell A.. Solubilities of inorganic and metal organic compounds, VolⅠ[M]. 4th Edition. Washington, DC: American Chemical Society, 1965
    [59] Ulmgren P., R?destr?m R.. On the formation of oxalate in bleach plant filtrates on hot storage [J]. Nordic Pulp Pap. Res. J., 2000, 15 (2): 128-132
    [60] Fiskari J., Gullichsen J.. Laboratory experiments on oxalic acid formation in hardwood pulp TCF bleaching [A]. 10th International Symposium on Wood and Pulping Chemistry [C]. Yokohama, Japan: Japan TAPPI, 1999: 324-328
    [61] Ulmgren P., R?destr?m R.. Deposition of sodium oxalate in black liquor evaporation [A]. International Chemical Recovery Conference [C]. Whistler, British Columbia, Canada, 2001: 169-175
    [62] DeMartini N.A., Verrill C.L.. Evaporator fouling mitigation– Case studies [A]. Proceeding of TAPPI Engineering, Pulping and Environmental Conference [C]. Philadelphia, PA, USA, Aug 28-31, 2005
    [63] Lievo P.. Evaporator fouling in bleach plant effluent evaporation [D]. Espoo, Finland: Department of Chemical Technology, Helsinki University of Technology, 1998
    [64] Ulmgren P., R?destr?m R.. Deposition of sodium oxalate in black liquor evaporation [J]. Nordic Pulp Pap. Res. J., 2002, 17(3): 275-279
    [65] Ester D. R.. Reduction of bleach plant deposits yield better pulp, less downtime [J]. Pulp Paper, 1994, 68(9):135-137
    [66] Correia F. M., Henrique P. M., and Costa, M. M., et al. Chemical removal of calcium oxalate scale: the industrial experience from cenibra’s ECF bleaching plant. Intl. Pulp Bleaching Conf., PAPTAC, Poster Presentation, 2000: 213-225
    [67] Denise R.T.. A study of calcium carbonate crystal growth in the presence of a calcium complexing agent [D]. Appleton, Wisconsin: The Institute of Paper Chemistry, 1981
    [68] Eneberg H., Kaila J. and Kiiskila E.. Method of inhibiting scaling in black liquor evaporators [P]. U.S.: 6090240, 20000718
    [69] Giehl F.T., Ratnieks E. and Verrill C., et al. Modifying chemical make-up strategy to minimize concentrator scaling [J]. Papel, 2006, 67(3): 65-74
    [70]孙萍萍,秦梦华,傅英娟.制浆造纸系统中无机盐垢的控制[J].造纸化学品, 2008, 20(3): 20-23
    [71]张继玲.化学法控制草浆黑液蒸发器的结垢[J].中华纸业, 2008, (22):80-82
    [72]彭仔钦.预防蒸发器结垢及化学除垢[J].中国造纸, 1989, (2): 29-33
    [73]詹怀宇.制浆原理与工程[M].第三版.北京:中国轻工业出版社, 2009: 344-345
    [74]齐松.黑液蒸发器管垢的分析及清洗方法[J].清洗世界, 1993, 9(4): 14-17
    [75]陆海勤,杨日福,丘泰球等.超声波处理防除黑液蒸发器积垢的研究[J].中国造纸, 2004, 23(6): 18-21
    [76]姚成灿,丘泰球,胡松青等.超声波对碳酸钙积垢过程的影响[J].华南理工大学学报(自然科学版), 2000, 28(5): 91-95
    [77]侯庆喜,柴欣生,朱俊勇.顶空气相色谱在制浆造纸工业中的应用[J].中国造纸学报, 2005, 20(2): 198-202
    [78] U.S. EPA. Profile of Pulp and Paper Industry. 2nd Edition [EB/OL] http://www.epa.gov/comliance/resource/publications/assistance/sectors/notebooks/pulppasn.pdf.2002-11
    [79] U.S. EPA. Pulping and Bleaching System NESHAP for the Pulp and Paper Industry [EB/OL]. http://www.epa.gov/ttn/atw/pulp/guidance.df.2001-09
    [80] GuY.X., Edwards L., and Zhu J.Y., et al. Cluster rule compliance tools: Predicting kraft mill VOCs Part 1. Mill applications [J]. Tappi Journal, 2001, 84: 62
    [81] GuY.X., Edwards L., and Zhu, J.Y., et al. Cluster rule compliance tools: Predicting kraft mill VOCs Part 2. Methanol generation models [J]. Tappi Journal, 2001, 84: 62
    [82] Gunshefki M., Cloutier S.. Procedures for collection and analysis of black liquor samples, NCASI Technical Memo, National Council for Air and Stream Improvement, Inc. New York, NY, 1994
    [83] Chai X-S., Dhasmana B. and Zhu J.Y. Determination of Volatile Organic Compound Contents in Kraft-Mill Streams Using Headspace Gas Chromatography [J]. J. Pulp Paper Sci., 1998, 24(2): 50-54
    [84] Ioffe B.Y., Vitenbery A.G.. Headspace Analysis and Related Methods in Gas Chromatography [M]. New York: John Wiley & Sons, 1984
    [85] Chai X.S., Zhu J.Y.. Application of headspace gas chromatography in the pulp and paper industry, in recent research development in analytical chemistry [M]. Kerala, India: Transworld Research Network, 2001: 61-75
    [86] Chai X-S., Liu P.H. and Zhu J.Y. Analysis of Volatile Organic Sulphur Compounds in Kraft Liquors by Full Evaporation Headspace Gas Chromatography [J]. J. Pulp Paper Sci., 2000, 26(5): 167-172
    [87] Chai X-S., Hou Q.X. and Schork F.J.. Determination of Residual Monomer in Polymer Latex by Full Evaporation Headspace Gas Chromatography [J]. J. Chromatogr. A, 2004, 1040: 163-167
    [88] Lugli M., D., Becchi, L.and Resta L. et al. Full-Evaporation Head-Space Gas Chromatographic Technique for the Determination of Residual Monomers and Volatile Organic Compounds in Polymer Dispersions Intl. J. Polym. Anal. Charact., 2003, 8(5): 359-368
    [89] Schuberth, J. A full evaporation headspace technique with capillary GC and ITD: A means for quantitating volatile organic compounds in biological samples [J]. J. Chromatogr. Sci., 1996, 34(7): 314-319
    [90] Zhu, J.Y., Liu, P.H., Chai, X-S. Bullock, K.R. and Teja, A.S.―Henry’s Law Constant of Methanol in Pulping Spent Liquors [J]. Environ Sci. Technol. 2000, 34(9): 1742-1746
    [91] Teja, A.S., Gupta, A.K., Bullock, K.R., Chai, X-S. and J.Y. Zhu,―Henry's Constants of Methanol in Aqueous Systems Containing Salts [J]. Fluid Phase Equilib. 2001, 185(1-2): 265-274
    [92] Kolb B., Ettre L.S., Static Headspace- Gas Chromatography-Theory and Practice [M]. New York: Wiley-VCH, 1997
    [93] Gupta A.K., Teja A.S. and Chai X.-S., et al. Henry's Constants of n-alkanols (methanol through n-hexanol) in water at temperature between 40 oC and 90oC [J]. Fluid Phase Equilib., 2000,170(2): 183-192
    [94] Zhu J.Y., Chai X-S. and Dhasmana B.. Formation of volatile organic compounds (VOCs) during pulping [J]. J. Pulp Paper Sci. 1999, 25(7): 256-263
    [95] Zhu J.Y., Yoon S.-H. and Liu, P.H., et al. Methanol formation during alkaline wood pulping [J]. Tappi Journal, 2000, 83(7): 65
    [96] Niemel? K., Alén R..―Characterization of pulping liquors.‖Chp. 7 in Analytical Methods in Wood Chemistry, Pulping, and Papermaking [M]. (Sj?str?m E., Alén R. Eds.) Berlin: Springer, 1999
    [97] Franklin G.O.. Ion chromatography provides useful analysis of the chemistry of pulping and bleaching liquors [J]. Tappi Journal, 1982, 65(5): 107-111
    [98] Lowendahl L., Perterson G., and Samuelson O.. Formation of carboxylic acids by degradation of carbohydrates during kraft cooking of pine [J]. Tappi Journal, 1976, 59(9): 118-121
    [99] Vuorinen T., Buchert J.and Telemen A., et al. Selective hydrolysis of hexenuronic acid groups and its application in ECF and TCF bleaching of kraft pulps [A]. Proceedings of International Pulp Bleaching Conference, Book 1 [C]. Washington D. C., 1996: 43-51
    [100] Frederick W.J., Shi Jr. B. and Euhus D.D., et al. Crystallization and control of sodium salt scales in black liquor concentrators [J]. Tappi Journal, 2004, 3(6): 7-13
    [101] Niemel? K.. Identification of organic compounds in different scales from black liquor evaporation [A]. Proceedings of 10th International Symposium on Wood and Pulping Chemistry [C]. Yokohama, Japan. 7-10 June, , Vol.1, 1999: 418
    [102] Salomom D.R., Romano J.P.. Rapid ion monitoring of kraft process liquors by capillary electrophoresis [J]. Process Control and Quality, 1992, 3(1-4): 219-227
    [103] Krishnagopalan J., Hill M. and Fricke A.L.. Chromatographic analysis of kraft liquor anions [J]. Tappi Journal, 1985, 68 (9): 108
    [104] Easty D.B., Borchardt M.L.and Webb A.A.. Analysis of pulping liquors by ion chromatography: evaluation and validation [J]. Paperi ja Puu, 1985, 67(9): 501-506
    [105] Tappi Test Method, Analysis of Pulping Liquors by Suppressed Ion Chromatography, T 699 om-87: 8 p. Atlanta, GA: Tappi Press, 1987
    [106] Kakola J., Alen R.and Pakkanen H.. Quantitative determination of the main aliphatic carboxylic acids in wood kraft black liquors by high-performance liquid chromatography-mass spectrometry [J]. J. Chromatogr. A, 2007, 1139 (2): 263-270.
    [107] Chai X.-S., Samp J., and Song H.N., et al. Novel headspace gas chromatographic method for determination of oxalate in oxygen delignification liquor [J]. J. Chromatogr. A, 2006, 1122 (1-2): 209-214
    [108] Schimpf H.W.. Essentials of Volumetric Analysis [M]. New York: John Wiley & Sons, 1917
    [109] Chai X.-S., Samp J.C.. Corrosion problem in headspace gas chromatography with conversion technique [J]. J. Chromatogr. A, 2007, 1157 (1-2): 477-479
    [110]胡湛波,柴欣生,王景全,等.以制浆造纸产业为平台的生物炼制新模式[J].化学进展, 2008, 20(9):1439-1446
    [111]毛长斌,倪永浩.生物质提炼的研究进展及在造纸工业上的应用[J].中国造纸, 2008, 27(7): 63-69
    [112] Kotrba R.. Keeping pace with policy [J]. Ethanol Producer Magazine, 2005, (1): 58-62
    [113] US Department of Energy [EB/OL]. http://www.doe.gov/ news/ 4827. htm.
    [114] Dubois M., Gilles K. A. and Hamilton J. K., et al. Colorimetric method for determination of sugars and related substances [J]. Anal. Chem., 1956, 28(3): 350-356
    [115] Buysse J., Merckx R.. An improved colorimetric method to quantify sugar content of plant tissue [J]. J. Exp. Bot., 1993, 44(10):1627-1629
    [116] Chow P. S., Landhusser S. M.. A method for routine measurements of total sugar and starch content in woody plant tissues [J]. Tree Physiology, 2004, 24(10): 1129-1136
    [117] Ashwell G.. Colorimetric an alysis of sugars [J]. Methods Enzymol., 1957, 3: 73-105
    [118] Miller G. L.. Use of dinitrosalicylic acid reagent for determination of reducing sugar [J]. Anal. Chem., 1959, 31: 426-428
    [119] Scott T. A., Melvin E. H.. Determination of dextran with anthrone [J]. Anal. Chem., 1953, 25: 1656-1661
    [120] Blunden C. A., Wilson M. F.. A specific method for the determination of soluble sugars in plant extracts using enzymatic analysis and its application to the sugar content of developing pear fruit buds [J]. Analytical Biochemistry, 1985, 151(2): 403-408
    [121] Hendrix D. L.. Rapid extraction and analysis of nonstructural carbohydrates in plant tissues [J]. Crop Sci., 1993, 33: 1306-1311
    [122] Carlsson N. G., Karlsson H.and Sandberg A. S.. Determination of oligosaccharides in foods, diets, and intestinal contents by high temperature gas chromatography and gas chromatography/mass spectrometry [J]. J. Agric. Food Chem., 1992, 40(12): 2404-2412
    [123]李筱华,何兰芳,常凤眉,等.气相色谱法测定磨甘蔗木素及磨甘蔗酶解木素残留的碳水化合物组成[J].色谱, 1987, 5 (1): 4-8
    [124] Casterline J. L., Oles C. J.and Ku Y.. Measurement of sugars and starches in foods by a modification of the AOAC total dietary fiber method [J]. Journal of AOAC International, 1999, 82(3): 759–765
    [125] Cheetham N. W. H., Sirimanne P.and Day W. R.. High- performance liquid chromatographic separation of carbohydrate oligomers [J]. J. Chromatogr., 1981, 207(3): 439- 444
    [126]胡湛波,王景全,柴欣生,等.一种用紫外光谱测定混合糖含量的新方法[J].化工学报, 2008, 59(5):1233-1237
    [127]李合生,孙群,赵世杰,等.植物生理生化实验原理和技术[M].第一版,北京:高等教育出版社, 2000: 195-202
    [128] Raunkjer K., Thorkild H. J.and Nielsen P. H.. Measurement of pools of protein, carbohydrate and lipids in domestic wastewater [J]. Wat .Sci.Tech., 1994, 28(2): 251-262
    [129] Van Heiningen A.. Converting a kraft pulp mill into an integrated forest products biorefinery [J]. Pulp & Paper Canada, 2006, 107(6), 38-43
    [130] Thorp B., Raymond D.. Forest Biorefinery Could Open Door to Bright Future for P&P Industry [M]. PaperAge (October), 2004: 16-18
    [131] Palonen H.. Role of lignin in the enzymatic hydrolysis of lignocelluloses [M]. VTT Publications, 520, 2004:1-80
    [132] Gray K.A., Zhao L.S.and Emptage M.. Bioethanol [J]. Current Opinion in Chemical Biology, 2006, 10(2): 141-146
    [133] Lee J.. Biological conversion of lignocellulosic biomass to ethanol [J]. Journal of Biotechnology, 1997, 56(1), 1-24
    [134] Dien B.S., Cotta M.A. and Jeffries T. W.. Bacteria engineered for fuel ethanol production: current status [J]. Appl. Microbiol. Biotechnol., 2003, 63(3), 258-266
    [135] Ryabova O. B., Chmil O.M. and Sibirny A. A.. Xylose and cellobiose fermentation to ethanol by the thermotolerant methylotrophic yeast Hansenula polymorpha [J]. FEMS Yeast Research 2003, 4(2): 157-164
    [136] Lin Y., Tanaka S.. Ethanol fermentation from biomass resources: current state and prospects [J]. Appl Microbiol Biotechnol., 2006, 69(6): 627-642
    [137] Hamelinck Carlo N., Geertje van Hooijdonk and Andre P.C.. Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term [J]. Biomass and Bioenergy, 2005, 28(4): 384-410
    [138] Slininger P. J., Bothast R. J.and Ladisch M. R., et al. Optimum pH and temperature conditions for xylose fermentation by Pichia stipitis [J]. Biotechnology and Bioengineering, 1990, 35(7): 727-731
    [139] Gonchar M.V., Maidan M.M. and Pavlishko H.M., et al. A new oxidase-peroxidase kit for ethanol assays in alcoholic beverages [J]. Food Technology And Biotechnology, 2001, 39 (1): 37-42
    [140] Atwater J.E., Akse J.R. and DeHart J.. Wheeler, R.R., Jr.. Enzymatic determination of ethanol using 'reagentless' electrocatalyzed luminol chemiluminescence [J]. Analytical Letters, 1997, 30(8): 1445-1453
    [141] Hormitz W.. Official Methods of Analysis of the Association of Official Analytical Chemists [M].12th Edition. Washington: Association of Official Analytical Chemists, DC. 1980
    [142] Zanon J.P., Peres M.F.S. and Gattas E.A.L.. Colorimetric assay of ethanol using alcohol dehydrogenase from dry baker’s yeast [J]. Enzyme And Microbial Technology, 2007, 40(3): 466-470
    [143] Lau O.W., Luk S.F.. Spectrophotometric method for the determination of ethanol in beverages and beer samples using cerium (iv) as reagent [J]. International Journal of Food Science and Technology, 1994, 29 (4), 469-472
    [144] Tagliaro F., Dorizzi R.and Ghielmi S., et al. Direct injection high-performance liquid-chromatographic method with electrochemical detection for the determination of ethanol and methanol in plasma using an alcohol oxidase reactor [J]. Journal of Chromatography-biomedical Applications, 1991, 566 (2): 333-339
    [145] Lefebvre D., Gabriel V.and Vayssier Y., et al. Simultaneous HPLC Determination of Sugars, Organic Acids and Ethanol in Sourdough Process [J]. Lebensmittel-Wissensschaft und Technologie, 2002, 35(5): 407-414
    [146] Buckee G.K., Mundy A.P.. Determination of ethanol in beer by gas-chromatography (direct-injection) - collaborative trial [J]. Journal of the Institute of Brewing, 1993, 99 (5): 381-384
    [147] McLachlan D.G., Wheeler P.D. and Sims, G. G.. Automated gas chromatographic method for the determination of ethanol in canned salmon [J]. Journal of Agricultural and Food Chemistry, 1999, 47 (1): 217-220
    [148] Kojima M.. Studies on volatile fermentation products by gas-chromatography.2. simple gas-chromatographic determination of ethanol by head space technique with use of hydrogen flame ionization detector [J]. Journal of Fermentation Technology, 1976, 54 (2): 120-127
    [149] Markelov M., Guzowski J.P.Jr.. Matrix independent headspace gas chromatographic analysis-the full evaporation technology [J]. Analytica Chimica Acta, 1993, 276(2): 235-245
    [150] Li H.L., Zhan H.Y.and Fu, S.Y., et al. Rapid determination of methanol in black liquors by full evaporation headspace gas chromatography [J]. J. Chromatogr. A, 2007, 1175 (1): 133-136
    [151] Franceschi V.R., Loewus F.A.. Chp. 6 Oxalate biosynthesis and function in plants and fungi. Calcium oxalate in biological systems (Ed. Khan, S.R.) [M]. Boca Raton: CRC Press, 1995: 113-130
    [152] Horner H.T., Wagner B.L.. Chp. 4 Calcium oxalate formation in higher plants. Calcium oxalate in biological systems (Ed. Khan, S.R.) [M]. Boca Raton: CRC Press, 1995: 53-72
    [153] He Z., Ni Y. and Zhang E.. Comparison of oxalate formation from spruce TMP: Conventional peroxide bleaching process versus the P-M process [J]. J Pulp Pap Sci., 2003, 29 (12): 391-394
    [154] Li Y., Ni Y. H.. Oxalate formation during peroxide bleaching of mechanical pulps [J]. Appita Journal, 2005, 58 (2): 138-148
    [155] Zhang J.X., Yu L. and Ni Y., et al. Calcium oxalate related scaling in a BCTMP line [A]. Preprints of Papers, Annual Meeting [C]. Montreal, QC, Canada: Pulp and Paper Technical Association of Canada, 2003: 559-563
    [156] Houdlette G.R.. Controlling Inorganic Scale Deposits Increases Bleach Plant Productivity [J]. Pulp Paper, 1985, 59(6): 154-157
    [157] Gratzl J. S., Nakano J.. Chemistry of delignification with oxygen, ozone and peroxide [M]. Tokyo, Japan: Uni Publishers Co. Ltd., 1980: 199-205
    [158] Li H. L., Chai X.-S.and DeMartini N., et al. Determination of oxalate in black liquor by headspace gas chromatography [J]. J. Chromatogr. A, 2008, 1192(2): 208-211
    [159] Tu Q.L., Fu S.Y.and Zhan H.Y., et al. Kinetic Modeling of Formic Acid Pulping of Bagasse [J]. J. Agric. Food Chem., 2008, 56: 3097-3101
    [160] Macdonald R.G.. Pulp and Paper Manufacture, Vol 1: The Pulping of Wood [M]. 2nd Edition. New York: McGraw-Hill, 1969: 563
    [161] Fengel D., Wegener G.. Wood, Chemistry, Ultrastructure, Reactions, Walter de Gruyter [M]. Berlin and New York, 1989: 132
    [162] Buchert J., Teleman A.and Harjunp?? V., et al. Effect of Cooking and Bleaching on the Structure of Xylan in Conventional Pine Kraft Pulping [J]. Tappi Journal, 1995, 78 (11): 125
    [163] Gustafson R. R., Sleicher C. A. and Mckean W. T., et al. Theoretical Model of the Kraft Pulping Process [J]. Ind. Eng. Chem. Process Des. Dev., 1983, 22: 87-96
    [164] Santiago A.S., Pascoal C. and Vilela C.. Impact of effective alkali and sulfide profiling on Eucalyptus globulus kraft pulping. Selectivity of the impregnation phase and its effect on final pulping results [J]. Journal of Chemical Technology and Biotechnology, 2008, 83(3): 242-251
    [165] Pinto P., Evtuguin D. and Neto C., et al. Behaviour of Eucalyptus globulus lignin during kraft pulping. I. Analysis by chemical degradation methods [J]. J. Wood Chem Technol. 2002, 22:93-108
    [166] Freire C., Silvestre A. and Pascoal Neto C.. Identification of new hydroxy fatty acids and ferulic acid esters in the wood of Eucalyptus globules [J]. Holzforschung, 2002, 56:143-149
    [167]杨淑蕙.植物纤维化学.第三版.北京:中国轻工业出版社, 2001: 6-7
    [168]詹怀宇.纤维化学与物理.第一版.北京:科学出版社, 2005: 136-137
    [169] Hartler N., Libert J.. The behavior of certain inorganic ions in the wood/white liquor system [J]. Svensk Papperstid, 1973, 76(12): 454-457
    [170] Rosier M. A.. Model to Predict the Precipitation of Burkeite in the Multiple-Effect Evaporator and Techniques for Controlling Scaling [J]. Tappi Journal, 1997, 80(4): 203
    [171] Bialik M.A., Theliander H. and Sedin P., et al. Solubility and solid-phase composition in Na2CO3-Na2SO4 solutions at boiling temperature: A modeling approach [J]. Industrial & Engineering Chemistry Research, 2008, 47 (9): 3233-3238
    [172] Dyer T. J.. Elucidating the Formation and Chemistry of Chromophores during Kraft Pulping [D]. Institute of Paper Science and Technology, USA, 2004
    [173] Grace T.M.. Evaporator Scaling [J]. Southern Pulp and Paper Manufacture, 1977, 40(8): 16-23
    [174] Brouillette R., Kerridge R. and Millette G.. On-line EDTA de-scaling of a continuous digester [J]. Pulp & Paper Canada, 1990, 91: 39-43
    [175] Reyngoud W., Whyte I.J. and Stoove P.. Restoring the circulation in a continuous digester [J]. Appita Journal, 1994, 47 (2): 134-136
    [176] Shanmughavel P., Francis K.. Bioproductivity and nutrient cycling in bamboo and acacia plantation forests [J]. Bioresource Technology, 2001, 80 (1): 45-48
    [177] Ulmgren P.. Nonprocess Elements in a Bleached Kraft Mill with Increased System Closure [A]. Proceedings of the 1996 TAPPI Minimum Effluent Mills Symposium [C]. Atlanta, GA: TAPPI Press, 1996: 17-26
    [178] Larson T. E, Buswell A. M.. Calcium Carbonate Saturation Index and Alkalinity Interpretations [J]. Jour. AWWA, 1942, 34(11): 1667
    [179] Gullichsen J., Fogelholm C.J.. Chemical Pulping [M]. Atlanta, GA: TAPPI Press, 1999: Handbook 3-4
    [180]曹石林.竹子清洁制浆漂白及氧脱木素过程中含氧自由基的作用机理研究[D].广州:华南理工大学, 2006
    [181]安国兴.纸浆氧脱木素技术的现状和发展趋势[J].中国造纸, 1998, (4): 58-59
    [182] Ulmgen P.. Non-process element in a bleached kraft pulp mill with a high degree of system closure-state of the art [J]. Nordic Pulp Paper Res. J., 1997, 12(1): 32-41
    [183] TAPPI Test Methods, T236 om-06. Atlanta, GA: TAPPIP Press, 2002
    [184]詹怀宇,制浆原理与工程[M].第三版.北京:中国轻工业出版社, 2009: 274-275
    [185]石淑兰,何福望.制浆造纸分析与检测[M].第一版.北京:中国轻工业出版社, 2003: 105-106
    [186] Olm L., Teder A.. The kenetics of oxygen bleaching [J]. Tappi Journal, 1979, 62(12): 43-46
    [187] Iribarne J., Schroeder L.. High-pressure oxygen delignification of Kraft pulp Part I: kinetics [J]. Tappi Journal. 1997, 80(10): 241-250
    [188] Perng Y., Oloman C.W.. Kinetics of oxygen bleaching mediated by electrochemically generated ferricyanide [J]. Tappi Journal, 1994, 77(7): 115-124
    [189] Agarwal S. B., Genco J. M.and Cole B. J. W., et al. Kinetics of oxygen delignification [J]. Tappi Journal, 1995, 78(1): 97-100
    [190] Brewster J., Justason A.. Extended oxygen delignification at Irving Pulp and Paper, Ltd. [A]. 1999 Tappi Pulping Conference [C]. 1999: 161-168
    [191] Gratzl J. S.. The Chemical basis of pulp bleaching with oxygen, hydrogen peroxide and ozone-a short review [J]. Papier ja Puu, 1992, 10A(10): v1-v8
    [192] Delmas M, Benjelloun-Mlayah B. and Avignon G.. Pilot Plant Production of Pulp, Linear Lignin and Xylose [A]. 60th Appita Annual Conference and Exhibition[C]. Melbourne, Australia, Appita Inc, 2006: 283-287
    [193] Newman R. H., Hemmingson J. A.. Determination of the degree of cellulose crystallinity in wood by carbon-13 nuclear magnetic resonance spectroscopy [J]. Holzfoschung, 1990, 44 (5) :351-355
    [194]何北海,林鹿,孙润仓,等.木质纤维素化学水解产生可发酵糖研究[J].化学进展, 2007, 19(7-8): 1141- 1147
    [195] Van Heiningen A.. Converting a kraft pulp mill into an integrated forest biorefinery [J]. Pulp and Paper Canada, 2006, 107(6): 38-43
    [196] Wong A.. Tall oil-based cetane enhancer for diesel fuel [J]. Pulp and Paper Canada, 1995, 96(11): 37-40
    [197]张安龙,李红来,周军锋.生物质提炼为工业界提供重大转型的经营模式[J].国际造纸, 2006, 25(4): 1-8
    [198]林鹿,何北海,孙润仓,等.木质生物质转化高附加值化学品[J].化学进展, 2007, 19 (7-8): 1206-1216
    [199] Raymond D., Closset G.. Forest Products Biorefinery: Technology for a New Future [J]. Solutions, 2004, 87(9): 49-53
    [200] Van Heiningen A., Frederick J.. PulPaper 2007 Conference: Innovative and Sustainable Use of Forest Resources, Helsinki: 2007: 1
    [201] Yoon S.-H., Van Heiningen A.. Kraft pulping and papermaking properties of hot-water pre-extracted loblolly pine in an integrated forest products biorefinery [J]. Tappi Journal, 2008, 7(7): 22-27
    [202] Yoon S.-H., Macewan K. and Van Heiningen A.. Hot-water pre-extraction from loblolly pine (Pinus Taeda) in an integrated forest products biorefinery [J]. Tappi Journal, 2008, 7(6): 27-32
    [203]张翠,柴欣生,罗小林,等.紫外光谱法快速测定生物质提取液中的糠醛和羟甲基糠醛.已被化工学报接受.
    [204] TAPPI Test Methods, T230 om-04, T452 om-02, T494 om-06, T414 om-04, T403 om-02. Atlanta, GA: TAPPIP Press, 2002
    [205] Clayton D.W., The alkaline degradation of some hardwood 4-O-methyl-D-glucuronoxylans [J]. Svensk Papperstidning, 1963, 66: 115-24
    [206] Blackwell B.R., MacKay W.B. and Murray F.E., et al. Review of kraft foul condensates. Sources, quantities, chemical composition, and environmental effects [J]. Tappi Journal, 1979, 62(10): 33-37
    [207] Zhu J. Y., Chai X. S. and Dhasmana B.. Formation of volatile organic compounds (VOCs) during pulping [J]. Journal of Pulp and Paper Science, 1999, 25(7): 256-263
    [208] Zhu J. Y., Yoon S.-H. and Liu P.-H., et al. Methanol formation during alkaline wood pulping [J]. Tappi Journal, 2000, 83(7): 65
    [209]世界各国节能政策综述[EB/OL]. http://www.jieyue.net/html/jienengjianpai/page/homepage_show155403.htm
    [210] Al-Dajani W.W., Tschirner U.W.. Pre-extraction of hemicelluloses and subsequent kraft pulping Part I: alkaline extraction [J]. Tappi Journal, 2008, 7(6): 3-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700