用户名: 密码: 验证码:
微管蛋白抑制剂SUD包合物脂质体的制备及其初步药效学和药动学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:环糊精和脂质体(liposomes)作为药物的载体,可有效地提高药物的生物利用度和治疗指数。脂质体是一种具有类生物膜结构的双分子层微囊,是一种定向药物载体,属于靶向给药体系(targeting drug deliverysystem)的一种新型给药系统。其进入体内后主要被网状内皮系统吞噬而激活机体的自身免疫功能,并且通过改变被包封药物的体内分布,使药物主要在肝、脾、肺等组织器官中蓄积,并能优先聚集于肿瘤、炎症、感染等部位,从而提高药物治疗指数,减少治疗剂量并降低药物的毒性;但脂质体在包埋药物尤其是疏水性药物时往往受到药脂比等因素的限制,并且某些疏水性药物可能会干扰脂质双层的结构,影响脂质体的稳定性,使其在贮存过程发生药物泄漏。脂质体包封疏水性药物存在的这些问题在一定程度上限制了它的应用。环糊精(cyclodextrins,CYD)的特殊结构使其可与和疏水性药物形成包合物,增加难溶性药物的溶解度,提高其生物利用度。近年来的研究发现,利用环糊精与脂质体各自具备的优点,制备环糊精包合物脂质体,可以提高脂质体的稳定性,减少药物泄漏,提高载药量,改变药物的体内行为,同时使其具有缓释性和靶向性。本实验以全合成的新型小分子化合物N-[4-(4,6二甲基-2-嘧啶氧基)-3-甲基苯基]-N’-[2-(二甲氨基)]苯甲酰脲(SUD)为疏水性药物模型,研究材料组成、制备工艺对包合物-脂质体包封率的影响,考察其理化性质、体外释药情况、大鼠体内药物动力学行为及小鼠的体内分布,为这一新型给药系统的应用提供实验基础。并采用药理学试验方法进一步探讨其脂质体给药系统对人肺腺癌A549细胞体外增殖的影响,为其作为抗肿瘤药物应用于临床提供实验依据。
     方法:以羟丙基-β-环糊精(hydroxypropyl-β-cyclodextrin,HP-β-CD)为包合材料,分别用饱和水溶液法和研磨法制备了SUD-HP-β-CD包合物,通过对包合率及产率的评价,最后采用饱和水溶液法制备,通过四因素三水平正交实验设计对制备工艺进行优化,对包合率测定结果进行极差分析,最后确定SUD-HP-β-CD包合物的最佳处方工艺,并采用差示扫描量热法(differential scanning calorimetry, DSC)和X射线粉末衍射(X-raydiffraction, XRD)法对所得到的包合物进行鉴定。
     在文献和预实验的基础上初步确定SUD-HP-β-CD包合物脂质体的制备方法和处方,通过单因素考察初步确定脂质体制备的影响因素,并研究不同包封率测定方法对包封率测定结果的影响;采用薄膜分散法、注入法、逆向蒸发法、复乳法四种方法制备脂质体,利用葡聚糖凝胶柱对脂质体与未包封游离药物进行分离。测定包封率,最终确定薄膜分散法为SUD-HP-β-CD包合物脂质体的制备方法。以包封率为考察指标,通过单因素考察优化脂质体的制备工艺,并考察磷脂浓度、磷脂与胆固醇质量比、水化液类型、药物与磷脂质量比等因素对脂质体的影响。在此基础上,采用四因素三水平正交试验对各因素的水平进行筛选,对包封率测定结果进行极差分析,最后确定SUD-HP-β-CD包合物脂质体的最佳处方。
     考察按照优化处方制备的SUD-HP-β-CD包合物脂质体的形态外观,粒径分布及黏度等指标,考察其理化稳定性。分别绘制SUD-HP-β-CD包合物脂质体和SUD-HP-β-CD包合物的体外释药曲线并比较其体外释药过程,分别用零级、一级、Higuchi及Weibull动力学方程进行拟合,并考察相关系数。
     以高效液相法测定大鼠血浆及小鼠组织中SUD-HP-β-CD包合物脂质体浓度。液相条件:色谱柱:Diamonsil~(TM)ODS C_(18)(钻石)250×4.6mm,5μm;以甲醇:水(80:20)v/v为流动相;检测波长为232nm;柱温:30℃;流速:1mL·min~(-1);进样量为20μL。对结果进行处理,计算大鼠体内各种药动学参数,考察SUD-HP-β-CD包合物脂质体在小鼠体内分布,并进行靶向性评价。
     常规培养人肺腺癌A549细胞,采用MTT法测定SUD-HP-β-CD包合物脂质体对A549细胞增殖的抑制作用。流式细胞仪测定细胞周期分布。Western blot法测定细胞增殖核抗原(PCNA)及细胞周期蛋白(cyclin D1)蛋白表达。初步探讨SUD-HP-β-CD包合物脂质体对人肺腺癌A549细胞体外增殖的影响。
     结果:采用饱和水溶液法制备SUD-HP-β-CD包合物包合率较高,最佳制备工艺为SUD与HP-β-CD投料比为1:5,包合温度为50℃,包合时间为90min,搅拌速度100转/min,平均包合率为75.8%(n=3)DSC法对包合物进行鉴定,发现SUD-HP-β-CD包合物在105℃出现新的吸热峰。在XRD图中,SUD经包合后,SUD的部分特征衍射峰消失或位移,表明确实形成了包合物。
     通过单因素考察和正交实验,筛选出了SUD-HP-β-CD包合物脂质体的最优处方为磷脂50mg·mL~(-1),磷脂与胆固醇质量比5:1,药脂比为1:30。根据优化处方制备的SUD-HP-β-CD包合物脂质体外观为均匀的乳白色混悬液,包封率为76.32%,平均粒径约为238.4nm,多分散性系数为0.258。SUD-HP-β-CD包合物溶液的体外释药最符合Weibull方程,为ln[-ln(1-Q)]=0.9045lnt~(-1).4335, r~2=0.9861。SUD-HP-β-环糊精包合物脂质体混悬液体外释药符合一级动力学方程,为ln(1-Q)=-0.0824t+0.0517,r2=0.9893。稳定性结果显示:脂质体在加热条件下不稳定;25℃条件下存放一个月,包封率下降33.6%,脂质体沉淀分层明显;在4℃条件下存放一个月,包封率下降1.7%,稳定性较好,说明脂质体需在冷藏条件下保存。
     药动学实验表明:SUD溶液和SUD-HP-β-CD包合物脂质体静脉给药后,脂质体组消除速率常数k为0.22h~(-1),溶液组的k为0.41h~(-1),说明制成脂质体后SUD在大鼠体内的消除减慢。脂质体组AUC为517.54μg·h·mL~(-1),溶液组AUC为228.72μg·h·mL~(-1),表明脂质体增加了药物在机体中的生物利用度。小鼠体内分布实验表明:SUD-HP-β-CD包合物脂质体较溶液在心、脾和肺中的药物浓度有较大增高,脂质体组中心、脾、肺的re分别为3.01、3.14、2.71,说明脂质体经静脉注射后在心、脾、肺组织有一定浓集,起到了一定的靶向目的。
     MTT实验结果表明,SUD-HP-β-环糊精包合物脂质体对A549细胞瘤株的生长有明显的抑制作用,随着浓度增加和作用时间的延长,对细胞增殖的抑制作用逐渐增强。流式细胞仪检测细胞周期结果表明:不同浓度含药脂质体作用48h对A549细胞周期分布均有不同程度的影响,与空白对照组相比,1、5、10μg·mL~(-1)SUD-HP-β-环糊精包合物脂质体组G_0/G_1期细胞百分率均明显增加(P<0.05或P<0.01)。其中5、10μg·mL~(-1)SUD-HP-β-环糊精包合物脂质体组S期细胞百分率明显降低(P <0.01)。10μg/mL SUD-HP-β-环糊精包合物脂质体组G_2/M期细胞百分率也明显降低(P <0.01)。说明SUD-HP-β-环糊精包合物脂质体可使A549细胞停滞在G_0/G_1期,从而抑制细胞增殖。Western blot结果显示,与空白对照组相比,空白脂质体对PCNA、cyclin D1蛋白表达均没有明显影响。而5μg·mL~(-1)SUD原药以及1、5、10μg·mL~(-1)SUD-HP-β-环糊精包合物脂质体作用于A549细胞48h均不同程度地下调了PCNA和cyclin D1的蛋白表达(P<0.05或P<0.01)。
     结论:以HP-β-CD为包合材料,以饱和水溶液法制备SUD-HP-β-CD包合物;以磷脂、胆固醇为主要膜材,以薄膜分散法制备SUD-HP-β-CD包合物脂质体,制备工艺简单,质量可控,重现性好,可提高药物靶向性,从而降低毒副作用,有望开发成为有良好应用前景的新剂型。SUD-HP-β-CD包合物脂质体给药系统对人肺腺癌A549细胞体外增殖有明显的抑制作用,使细胞周期停滞于G_0/G_1期,还明显下调了PCNA和cyclin D1的蛋白表达,为其作为抗肿瘤药物应用于临床提供实验依据。
Objective: Cyclodextrins (CYD) and liposomes have been used in recentyears as drug delivery vehicles, improving the bioavailability and therapeuticindex of many poorly water soluble drugs. Liposome is a kind of ultra-fineform globular carrier preparation and encapsulates the drug in the thin filmformed by lipid bilayer. Liposome is analog to cellular structure, and has thecharacteristics and function of biological membrane. Liposomes have beenextensively used as drug carriers that can enhance the therapeutic index of anumber of drugs and reduce the toxicity. Liposomes can accumulate greateramounts of drug in some tissues such as liver, spleen and lung comparing freedrug administration.However,incorporation of lipophilic drugs into lipidbilayers of liposomes is often limited in terms of drug-to-lipid mass ration anddrug choice,whitch can interfere with bilayer formation and its stability. CYDcan accommodate water insoluble drugs in their cavities to form inclusioncomplexes. The formed inclusion complex has increased solubility, stabilityand pharmacological activity. Entrapping water-soluble drug/CYD inclusioncomplexes into the aqueous phase of liposomes combines the advantages ofcertain properties of cyclodextrins and liposomes into a single system tocircumvent problems associated with both systems. In our present study, SUDwas used as lipophilic drug model. SUD-HP-β-CD liposome was prepared toincrease the bioavailability and cut down toxicity to achieve the effect ofprolonged action. Meanwhile, some pharmacological experiments wereapplied to explore the effect of SUD-HP-β-CD liposome on A549cellproliferation and the related mechanisms, which would be expected to provideexperimental evidence in future clinical application of SUD-HP-β-CD liposome as an anti-tumor drug.
     Methods: Inclusion complexes of SUD with hydropropyl-β-cyclodextrin(HP-β-CD) were prepared by the saturation solution method and ultrasionmethod,respectively. However,the saturation solution method was the betterthan the ultrasion method on the basis of the load efficiency. L49(3) orthogonaldesign of the preparation technology of HP-β-CD was made to screen thedosage of adjuvant. The optimized prescription was decided according to theresult of encapsulated ratio determination by range analysis. Inclusioncomplexes were verified by differential scanning calorimetry (DSC) and X-raydiffraction (XRD).
     Preparation technique and prescription of liposomal of SUD-HP-β-CDwere initially determined on the basis of literature and preliminary test, andinfluential factors were determined by single factor investigation. The effect ofdifferent assay methods on encapsulated ratio was studied. Four methods suchas film dispersion method, injection method, reverse-phase method, doubleemulsion method were used to prepare liposomes, and sephadex column wasused to separate liposome with free drug. The encapsulated ratio of theliposomes was determined, which showed that the film dispersion method wasthe best preparation method. Encapsulated ratio as index, the preparationtechnology of liposomes of SUD-HP-β-CD was optimized by single factorinvestigation, Consequently, L9(34) orthogonal design was made to screen thedosage of adjuvant. The optimized prescription was decided by rangeanalysis to the encapsulated ratio determination result.
     The shape,appearance,viscosity,particle size distribution、and physical andchemical stability were observed. The accumulative release curve ofSUD-HP-β-CD liposomes and SUD-HP-β-CD solution was protractedrespectively and compared. Zero order, first order, Higuchi, and Weibullkinetic equations were used to fit the release process, and coefficientcorrelation were calculated.
     A simple HPLC method was developed for the determination of SUD inrat plasma and mice tissues. HPLC conditions: column: Diamonsil C18column (200×4.6mm,5μm); methanol: water (80:20) v/v as mobile phase; detectionwavelength was232nm; column temperature:30℃; flow rate1mL·min~(-1);injection volume was20μL. The pharmacokinetic parameters were calculatedand the drug distribution in tissues of mice was investigated to evaluatetargeting in tissues.
     A549cells were cultured. The proliferation of A549cells was evaluatedby MTT assay. Cell-cycle distribution was determined by flow cytometryassay. The expression of PCNA and Cyclin D1was evaluated by western blotanalysis.
     Results: SUD-HP-β-CD prepared by saturated aqueous solution has ahigher inclusion rate, the optimal feed ratio of SUD and HP-β-CD is1:5; theinclusion temperature is50℃,the inclusion time is90min, the stirring speedis100rev/min and the average inclusion rate is75.8%(n=3). The inclusioncompound was identified by DSC method and it has been found that newendothermic peak appeared in SUD-HP-β-CD inclusion compound at105℃.Whereas, in the XRD patterns, part of the characteristic diffraction peaks ofSUD disappeared or displaced after SUD was inclused, which indicated thatthe inclusion complex had been formated indeed.
     The optimized prescription of SUD-HP-β-CD inclusion compoundliposomes was: phospholipid50mg·mL~(-1), phospholipid to cholesterol massratio of5:1, drug to lipid ratio of1:30. Liposomes were made by filmdispersion method and the encapsulation was determined by sephadex column.The appearance of SUD-HP-β-CD inclusion compound liposomes wasuniform milky suspension, the encapsulated ratio was76.32%, the averageparticle size of about238.4nm, and the polydispersity coefficient was0.258.The release process in vitro of SUD-HP-β-CD correspond to the Weibullequation, ln[-ln(1-Q)]=0.9045lnt~(-1).433, R~2=0.9861. In vitro release ofliposome-encapsulated SUD-HP-β-CD inclusion compound correspond tofirst order kinetic equation, Ln (1-Q)=-0.0824t+0.0517, r~2=0.9893. Thestability results showed that the liposome was unstable under heatedconditions. When stored at25℃for one month, the encapsulation efficiency decreased by33.6%, liposome deposited obviously; stored for one month at4℃, the encapsulation efficiency decreased by1.7%, indicating that theliposomes need to be stored under refrigeration.
     Pharmacokinetic experiments showed that the liposome elimination rateconstant k of free SUD was0.22h~(-1)and the k value of SUD-HP-β-CDinclusion compound liposome was0.41h~(-1), indicating that the elimination ofSUD slowerd after liposome formation. AUC was517.54μg·h·mL~(-1)and228.72μg·h·mL~(-1)in liposome group and SUD group, indicating that theliposome increased the bioavailability of SUD in the body. Theconcentration of the drug in heart, spleen and lung of mice in SUD-HP-β-CDinclusion compound liposomes group was much higher than that in SUDgroup. The revalue was3.01,3.14and2.71, respectively, which indicated thatliposomes played a certain targeted purpose in heart, spleen and lung afterintravenous injection.
     The results of MTT assay suggested that SUD-HP-β-CD inclusioncompound liposomes significantly inhibited A549cell proliferation in aconcentration-and time-dependent manner. The results of flow cytometryassay suggested that liposome-encapsulated SUD-HP-β-CD inclusioncompound1,5and10μg·mL~(-1)increased percentage of cells in G0/G1phase(P<0.05or P<0.01), liposome-encapsulated SUD-HP-β-CD inclusioncompound5and10μg·mL~(-1)decreased the percentage of cells in S phase(P<0.01), and the percentage of cells in G_2/M phase was also decreased byliposome-encapsulated SUD-HP-β-CD inclusion compound10μg·mL~(-1)(P<0.01). Western blot analysis indicated that the expression of PCNA andCyclin D1was not effected by control liposomes. Whereas, in5μg·mL~(-1)SUDand1,5,10μg·mL~(-1)SUD-HP-β-CD inclusion compound liposomes groups,the level of PCNA and Cyclin D1was markedly decreased compared withcontrol group (P<0.05or P<0.01).
     Conclusion: HP-β-CD was used as the inclusion material, and theSUD-HP-β-CD inclusion compound was prepared by method of the saturatedaqueous solution; the SUD-HP-β-CD inclusion compound liposome, with the characteristics of simple preparation, controllable quality and goodreproducibility, was prepared by film dispersion method, and phospholipidsand cholesterol were used as the main membrane phospholipids. Theliposome-encapsulated SUD-HP-β-CD inclusion complex can improve drugtargeting and reduce toxicity, which would be expected to be developed into anew prospective dosage form. SUD-HP-β-CD inclusion compound liposomessignifacantly inhibited A549cell proliferation in vitro, and obviously arrestedthe cell-cycle progression in the G_0/G_1phase. Meanwhile, the proteinexpression of PCNA and Cyclin D1were markedly decreased bySUD-HP-β-CD inclusion compound liposomes, which would be expected toprovide experimental evidence in future clinical application of SUD as ananti-tumor drug.
引文
1李建农,蒋建东.微管的生物学特性与药物研究[J].药学学报,2003,38(4):311-315
    2冉懋雄;周厚琼.药剂辅料与新药开发[J].中国药房,1996,7(2):54-56
    3何仲贵.环糊精包合物技术[M].人民卫生出版社,2008:80-114
    4陆斌.药物新技术与新剂型[M].人民卫生出版社(第二版),2005:40
    5曹新志,金征宇.环糊精包合物的制备方法[J].食品工业科技,2003,24(10):158-160
    6宋洪涛,郭涛,赵明宏等.蟾蛛旦一环糊精包合物的理化性质考察[J].解放军药学学报,2002,18(4):197-199
    7何进,毕殿洲.均匀设计优选大蒜油β-环糊精的包合工艺条件[J].中成药,1997,19(3)
    8毛春芹.陆兔林木香挥发油β-环糊精包合物的制备研究[J],中药材,2002,25(8):580-585
    9王建华,李星,徐世荣.尼群地平-β-环糊精包合物的制备与分析.重庆大学学报[J].2007,30(7):124-129
    10贺国芳,祁晓红,林芳,闵敏.正交实验法优选克拉霉素β-环糊精包合工艺[J].医药导报,2005,10,Vol.24(10):927-928
    11王璐璐,郑稳生.莫诺苯腙与β-环糊精及羟丙基-β-环糊精包合作用的研究[J].中国药学杂志,2OO6;41(7):529-532
    12王浩,顾吉晋,邓英杰.氢氯噻嗪-β-环糊精包合物的制备[J].中国药房,2008,19(25):1963-1965
    1Miro A, Quag lia F, So rrentino U, et al. Improvement of gliquidonehypoglycaemic effect in rats by cyclodextrin formulations [J]. Eur J PharmSci,2004,23(1):57-64
    2Immordino M L, Brusa P, Rocco F, et al. Preparation,characterizat ion,cytotoxicity and pharmacokinetics of liposomes containing lipophilicgemcitabine prodrugs[J]. J Control Release,2004,100(3):331-346
    3Chakraborty K K, Nai k SR. Pharmacokinetic studies of insitu liposomalpreparation containing amphotericin B complexed with differentchemically modified-cyclodextrins[J]. J Liposome Res,2001,11(1):1-14
    4McCormack B, Gregoriadis G. Entrapment of cyclodextrin drugcomplexes into liposomes: potential adv antages in drug delivery [J]. JDrug Target,1994,2(5):449-454
    5陆彬.药物新剂型与新技术[M].人民卫生出版社,2010
    6朱盛山.药物新剂型[M].北京化学工业出版社,2007
    7李唐棣等.脂质体包封率的研究进展[J].国外医学药学分册,2006,33,3:223-227
    8莫穗林,陈玉玲,郭海燕,等.丹参酮脂质体的稳定性及包封率研究[J].中药材,2004,27(4):292-294
    9吴骏,朱家壁.阿昔洛韦脂质体包封率的测定[J].药学分析杂志,2003,23(3):213-216
    10于波涛等.提高脂质体包封率的方法及其研究进展[J].中国医药工业杂志,2002,33,11:564-568
    11高晓黎,季兴梅.葡案糖凝胶柱层析法测定脂质体包封率的方法探讨[J].中国药学杂志,2003,38(7):515-517
    12Subhash C.Basu et al. Liposome Methods and Protocols[M].HumanaPress,Totowa,New Jersey,2002
    13邵红霞,奉建芳,龙晓英.脂质体包封率的测定方法,中南药学,2009,7(3):212-215
    14汤佩莲,龙晓英,林丹,等.应用葡聚糖微型凝胶柱与一阶导数光谱法测定辣椒碱柔性脂质体的包封率[J].中药材,2005,25(8):719-720
    15石丽萍等.不同方法制备脂质体I-IL-8包封率的比较[J].标记免疫分析与临床杂志,8,3:158-160
    16邓英杰.脂质体技术[M].人民卫生出版社,2007
    17Gregory Gregoriadis. Liposome Technology Third Edition Volume I:Liposome Preparation and Related Techniques [M]. Informa Healthcare,New York London,2007
    18Gregory Gregoriadis. Liposome Technology Third Edition Volume II:Entrapment of Drugs and Other Materials into Liposomes[M]. InformaHealthcare, New York London,2007
    19梅兴国.生物技术药物制剂基础与应用[M].北京化学工业出版社,2004
    20张灵芝.脂质体制备及其在生物医学中的应用[M].北京医科大学中国协和医科大学联合出版社,1998
    21王健松,朱家壁.阿奇霉素脂质体的制备及其包封率测定.中国药科大学学报,2004,35(6):499-502
    22Martin Hassellov et al. Application of cross-flow ultrafiltration for thedetermination of colloidal abundances in suboxic ferrous-rich groundwaters [J]. Science of the Total Environment,2007,372:636-644
    23A.O. Nornoo, D.S.L. Chow, Cremophor free intravenous micro emulsionsfor paclitaxel. Stability in vitro release and pharmacokinetics [J]. Int.J.Pharm,2007(43):1-7
    24S.C.Kim, D.W.Kim, Y.H.Shim, et al. In vivo evaluation of polymericmicellar paclitaxel formulation toxicity and efficacy [J]. J.Control.Release,2001(2):191-202
    25B.K.Kang, S.K.Chon, S.H.Kim, et al. Controlled release of paclitaxel frommicroemulsion containing PLGA and evaluation of anti-tumor activity invitro and in vivo[J].Int.J.Pharm,2004(286):147-156
    26M.K.Lee, S.J.Lim, C.K.Kim, Preparation characterization and in vitroCytotoxicity of paclitaxel loaded sterically stabilized solid lipidnanoparticles [J]. Biomaterials,2007(28):2137-2146
    27T.Yang, F.D.Cui, M.K.Choi, et al. Enhanced solubility and stability of PEGylated liposomal paclitaxel: In vitro and in vivo evaluation [J].Int.J.Pharm,2007(338):317-326
    1朱盛山主编.药物新剂型[M].化学工业出版社,2003:434
    2黄黎,李成文.脂质体在医学中的应用进展[J].国际生物制品学杂志,2006,29(3):130-133
    3张强,武凤兰主编.药剂学[M].北京:北京大学医学出版社,2005
    4王海学,张宁,彭健.细胞毒类抗肿瘤药物脂质体制剂药理毒理研究与评价[J].中国新药杂志,2007,16(4):257-259
    5中华人民共和国药典委员会.中国药典(二部)2010年版.北京:化学工业出版社,2010,附录:202
    6黄义昆,张志荣,杜娟等.盐酸川芎嗪脂质体的研制及其质量评价[J].中国药房,2004,15(06):343-345
    7国家药典委员会编.中国药典.中国医药科技出版社,2010,(Vol.II):附录39
    8崔福德.药剂学(第五版)[M].北京:中国医药科技出版社,2002
    9平其能,等.现代药剂学[M].北京:中国医药科技出版社,1998
    10Y Liu, WL Lu, HC Wang, et al.Controlled delivery of recombinanthirudin based on thermo-sensitive Pluronic F127hydrogel forsubcutaneous administration:In vitro and in vivo characterization[J].Journal of Controlled Release,2007,117(3)387-395
    11Andreas F, Felicitas H, Andrea K, et al. Remote loading of doxorubicininto liposomes driven by a transmembrane phosphate gradient[J].Biochimica et Biophysica Acta (BBA)-Biomembranes,2006,1758(10):1633-1640
    12张青,朱家壁,邱丽梅.盐酸左氧氟沙星脂质体的包封率和体外释放研究[J].中国药科大学学报,2004,35(6):508-512
    13XM Mu, ZS Zhong. Preparation and properties of poly (vinylalcohol)-stabilized liposomes [J]. International Journal of Pharmaceutics,2006,318(1):55-61
    14吴骏,朱家壁.阿昔洛韦脂质体的制备和稳定性的初步考察[J].药学学报,2003,38(7):552-554
    15Amandeep S, Jehan A, Malathi A, et al. Copper-topotecan complexationmediates drug accumulation into liposomes[J]. Journal of ControlledRelease,2006,114(1):78-88
    16YQ Tang, Shui T. Chung, et al. Preservation of the active lactone form ofirinotecan using drug eluting beads for the treatment of colorectal cancermetastases[J]. Journal of Controlled Release,2007,12(012)
    17Awa Dicko, Paul Tardi, XW Xie, et al. Role of coppergluconate/triethanolamine in irinotecan encapsulation inside theliposomes [J]. International Journal of Pharmaceutics,2007,(337):219-228
    1李耀武综述周有骏,朱驹审校。作用于微管的抗肿瘤药物研究进展。Foreign Medical Sciences Section on Pharmacy2005Feb;32(1)
    2李晖,柴煊,范亚军,李灵芝.合成微管微丝抑制药的研究进展,武警医学2007,18(10)
    3李建农,宋丹青,蒋建东.3-溴代丙酰胺苯甲酰脲对人白血病和淋巴瘤的抗肿瘤作用机理
    4周晓春,陈龙,刘绍晨。200只大鼠内眦取血的操作体会。承德医学院学报
    5张强,魏树礼主编.北京:生物药剂学与药物动力学(第二版)
    6李好枝主编.体内药物分析.北京:中国医药科技出版社,1998
    7施新猷主编.医用实验动物学[M].西安:陕西科学技术出版社,1989
    8魏玮,胡淑雅,孟广森等.高效液相-荧光检测法测定兔血浆羟基喜树碱方法的研究.临床肿瘤学杂志,2004,9(5):506-508
    9刘扬,吕万良,张强.脂质体及纳米药物递送系统的研究进展[J].中国医学科学院学报,2006,28(4):583-589
    10张志荣主编.靶向治疗分子基础与靶向药物设计[M]北京科学出版社,2006,3-20
    11L.Immordino, P.Brusa, S.Arpicco, B.Stella, F.Dosio, Cattel, Preparation,characterization, cytotoxicity and pharmacokinetics of liposomecontaining docetaxel [J].J.Control.Release,2003(91):417-429
    12顾觉奋,王鲁燕,张俊琪.阿米卡星脂质体在小鼠体内的组织分布.中国抗生素杂志,1998,23(4):294-297
    13吴燕红,苏子仁,陈建南.从小鼠体内血药浓度时间曲线与组织分布特征评价葛根素的给药途径.中药新药与临床药理,2005,16(2):112-115
    14陆彬主编.药物新剂型与新技术[M].北京:人民卫生出版社,1998
    15Euan R, Jehan A, Malathi A, et al.A novel liposomal irinotecan formulationwith significant anti-tumour activity: Use of the divalent cation ionophoreA23187and copper-containing liposomes to improve drug retention[J],European Journal of Pharmaceutics and Biopharmaceutics,2007,68(3),607-617
    16魏树礼,张强主编.生物药剂学与药物动力学[M].北京:北京大学医学出版社,2005
    17张强,武凤兰主编.药剂学[M].北京:北京大学医学出版社,2005
    1Edward DR, Berg WB, Spriggs DR etal. MDL-27048,an novel syntheticmicrotubule inhibitor, exerts curative antitumoral activity invitro, showefficacy toward multidrug-resistant tumor cells, andlacks neurotoxicity.Clin Cancer Res,2004, S6,563
    2Li JN,Jiang JD. Biological characteristics of microtubule and related drugresearch[J].Acta Pharm Sin(药学学报),2003,38(4):311-315
    3Li JN,Song DQ,Lin YH,et al. Inhibition of microtubule polymerizationby3-bromopropionylamino benzoylurea (JIMB01),a new cancericidaltubulin ligand [J]. Biochem Pharmacol,2003,65(10):1691-1699
    4司徒镇强等.细胞培养,修订版;世界图书出版公司.2004,189-196
    5韩锐等.抗癌药物研究于实验技术,第一版,北京医科大学中国协和医科大学联合出版社.1997,284-289,297-298,391-404
    6董波,陈肖华,张浩,等。一种改进的用于测定细胞周期的细胞制备方法[J].事医学科学院院刊,2002,26(2):124-129
    7Wilson L, JordanMA. Microtubules dynamics: taking aim at a movingtarget [J]. Chem Biol,1995,2(9):569-573
    8Fabre C, Czaplicki J, Wright M, et al. Differential binding to the tubulindimmer of vinorelbine and vinflunine revealed by nuclear magneticresonance analyses [J]. Biochem Pharmacol,2002,64(4):733-742.
    9Kastan MB, Bartek J. Cell-cycle checkpoints and cancer. Nature,2004,432(7015):316-323
    10曾甫清,童强松,朱朝晖,等。PCNA反义cDNA基因转导抑制人膀胱癌细胞增殖的研究[J]。中华泌尿外科杂志,2001,22(6):329-331
    11Ando T, Kaw ab e T, Ohara H, et al. Involvement of the interaction betweenp21and proliferating cell nuclear antigen for the maintenance of G2/Marrest after DNA damage[J]. J Biol Chem,2001,276(46):42971-42977
    12Ferrer JL, Dupuy J, Borel F, et al. Structural basis for the modulation ofCDK-d ependent/independent activity of cyclin D1[J]. Cell Cycle,2006,5(23):2760-2768
    13Thoms HC, Dunlop MG, Stark LA. p38-mediated inactivation of cyclinD1/cyclin-dependent kinase4stimulates nucleolar translocation of RelAand apoptos is in colorectal cancer cells[J]. Cancer Res,2007,67(4):1660-1669
    14Kunisawa J, Mayumi T. Application of novel drug delivery system,fusogenic liposome, for cancer therapy. Gan To Kagaku Ryoho.2001,28(5):577-583
    15陆彬主编.药物新剂型与新技术[M].北京:人民卫生出版社.2002,158-163
    1杨春娥,李宏力,高苏莉.抗肿瘤药物临床应用的现状与研究进展[J].国外医学抗生素分册,2004,1(7):30-33
    2林汝仙.抗肿瘤药物靶标的研究进展[J].国外医学肿瘤学分册,2005,3(32):185-189
    3Altmann K H, Gertsch J. Anticancer drugs from nature—natural productsas a unique source of new microtubule-stabilizing agents [J]. Nat Prod Rep,2007,24:327-357
    4Ganesan A. The impact of natural products upon modern drug discovery[J]. Curr Opin Chem Biol,2008,12:306-317
    5王存英,潘显道,魏贤勇.抗肿瘤药长春碱衍生物构效关系的研究进展[J].医学研究通讯,2004,33(4):38-40
    6Kawai Y,Taniuchi S, Okahara S, et al. Relationship between cisplatin ornedaplatin-induced nephrotoxicity and renalaccumulation[J]. Biolog&Pharmaceuti Bull,2005,28(8):1384-1388
    7Nahta R, Esteva F J. Herceptin: mechanisms of action and resistance [J].Canclett,2006,232(2):122-138
    8Buske C, Weigert O, DreylingM. Currentstatus and perspective ofantibody therapy in follicular lymphoma [J]. Haematologica,2006,91(1):105-112
    9Guilhot F. Indications for imatinib mesylate therapy and clinicalmanagement [J]. Oncologist,2004,9(3):271-281
    10Cohen MH, Williams GA, Sridhara R, et al. United States Food and DrugAdm-inistration Drug Approval summary: Gefitinib(ZD1839; Iressa)tablets [J]. Clin Canc Res,2004,10(4):1212-1218
    11杨锐,姜洋.吡柔比星联合化疗应用新进展[J].中国肿瘤临床与康复,2003,10(6):564-566
    12曾辉,赵相印,马雅銮.9-顺式维甲酸诱导HL-60细胞凋亡[J].中华血液学杂志,1997,18(7):358-360
    13LASIC DD. Doxorubicin in sterically stabilized liposomes[J]. Nature,1996,380(6574):561-562
    14WU NZ, DA D, RUDULL TL,etal. In creased microvascular permeabilitycon tributes to preferential accumulation of stealth liposomes in tumor tissue [J]. Cancer Res,1993,53(16):3765-3770
    15VAAGEJ,MAYHEWE,LASICD,etal. Therapy of primary and metastaticmouse m ammary carcinom as with doxorubicin encapsulated in longcirculating liposomes[J]. Int J Cancer,1992;51(6):942-948
    16MAYHEW E, LASICD,BABBARS, etal. Pharmacokinetics and antitum oractivity of epixubicin encapsulates in lung-ciculating liposomesincorporating in polyethylone glyco-ldervatized phospholipio[J]. Int JCancer,1992,51(2):302-309
    17阎家麒,王悦,王九一.紫杉醇隐形脂质体的制备及在小鼠体内的组织分布[J].药学学报,2000,35(9):705-709
    18邓树海,孙萍,于维萍. PEG修饰大蒜素长循环脂质体的制备及药物动力学研究[J].实用心脑肺血管病杂志,2006,14(6):453-456
    19Orditura M,Quaglia F,Morgillo F, etal. Pegylated liposomal doxorubicinpharmacologic and clinical evidence of potent antitum or activit y withreduced anthracycline induced cardiotoxicity (review)[J]. OncolRep,2004,12(3):549-556
    20Gnad Vogt S U, Hofheinz R D, Saussele S, etal. Pegylated liposomaldoxorubicin and mitomycin C in combination with infusional5-fluorouracil and sodium f olinic acid in the treatment of advanced gastriccancer: results of a phase II trial [J]. Anticancer Drugs,2005,16(4):433-440
    21Lorusso D,Naldini A, Testa A, etal. Phase II study of pegylated liposomaldoxorubicin in heavily pretreated epithelial ovarian cancer patients. May anew treatments chedule improve toxicity profile [J]. Oncology,2004,67(34):241-249
    22Orlow ski R Z,Voorhees P M,Garcia R A, etal. Phase1trial of theproteasome in hibitor bortezomib and pegylated liposomal doxorubicin inpatients with advanced h ematologic malignancies [J]. Blood,2005,105(8):3058-3065
    23Bafaloukos D, Papadimitriou C, Linardou H, etal. Comb ination ofpegylated liposomal doxorubicin (PLD) and paclitaxelin patients withadvanced soft tissue sarcoma:a phase II study of the Hellenic CooperativeOncology Group [J]. BrJ Cancer,2004,91(9):1638-1644
    24Keller A M, Mennel R G,Georgoulias V A,et al. Randomized phase III trialof pegylated liposomal doxorubicin versus vinorelbine or mitomycin Cplus vinblastine in women with taxane refractory advanced breast cancer[J]. J Clin Oncol,2004,22(19):3895-3901
    25Briasoulis E,Pentherou dakis G,Karavasilis V,et al. Weekly paclitaxelcombined with pegylated liposomal doxorubicin(CaelyxTM) given every
    4weeks: dose finding and pharmacokinetic study in patients withadvanced solid tumors[J]. Ann Oncol,2004,15(10):1568-1573
    26CHEN Q,TONG S,DEWH IRST MW,et al. Targeting tumor microvesselsusing doxorubicin encapsulated in a novel thermosensitive liposome[J].MolCancer Ther,2004,3(10):1311-1317
    27黎维勇,宋波,陈华庭.新型阿霉素热敏脂质体的研制[J].中国医院药学杂志,2005,25(5):439-441
    28陆彬.药物新剂型与新技术[M].北京:人民卫生出版社,1998:179
    29ZHU H F, LI JB. Recognition of Biotinfunction alized Liposomes [J]. ChinChem Lett,2003,14(8):831-835
    30QIXR,YAN WW,SHI J. Hepatocytes targeting of cationic liposomesmodified with soybean sterylglucoside and polyethylene glycol[J]. World JGastroenterol,2005,11(32):4946-4952
    31JIN Y,LI J,RONG LF, et al. Pharmacokinetics and tissue distribution of5-fluorouracil encapsulated by galactosylceram ide liposomes in mice[J].Acta Pharm Sin,2005,26(2):251-256
    32JIN Y,LI J,RONG LF, et al. Anti-hepatocarcinom a effects of5-fluorouracil encapsulated by galactosylceram ide liposomes in vivo andin vitro [J]. World J Ga-stroenterol,2005,11(17):2645-2646
    33ISH IDAO,MARUYAMA K,TANAHASH IH, et al. Liposomes bearingpolyethylenegly col-coupled transferrin with intracellular targetingproperty to the solid tumors in vivo [J]. Pharm Res,2001,18(7):1041-1048
    34FONSECA M J,JOYCELYN C,JAGTENBERG, et al. Liposom emediatedtargeting of enzymes to cancer cells for site-specific activation of prodrugs:comparison with the corresponding anti body enzyme conjugate[J]. PharmRes,2003,20(3):423-428
    35NGUYEN LT,ATOBE K,BAR ICHELLO JM, et al. Complex Formationwith Plasmid DNA Increases the Cytotoxicity of Cationic Liposomes[J].Biol Pharm Bull,2007,30(4):752-757
    36杨焕,刘世喜,梁传余,等.阳离子脂质体介导IL基因治疗SCC Ⅶ移植瘤的初步研究[J].四川大学学报(医学版),2003,34(1):9-12
    37Sudimack JJ,Guo W,Tjarks W,et al. A novel pH-sensitive liposome formulation containing oleyl alcohol[J]. Biochim Biophys Acta,2002,1564(1):31-37
    38JUNIOR AD,VIEIRA FP, MELO VJ, et al. Preparation and cytotoxicity ofcisplatin-containing liposomes[J]. Braz J Med Biol Res,2007,40(8):1147-1156
    39JUN IOR AD,MOTA LG,NUNAN EA, et al. Tissue distribution evaluationof stealth pH-sensitive liposomal cisplatin versus free cisplatin in Ehrlichtumor-bearing mice[J]. Life Sci,2007,80(7):658-665
    40Liu X, Lynn BC, Zhang J, et al. A versatile prodrug approach for liposomalcore-loading of water-insoluble cam ptothecin anticancer drugs[J]. JAmChem Soc,2002,124(26):7650-7651
    41肖衍宇,宋贇梅,陈志鹏等.水飞蓟素前体脂质体的制备和大鼠药代动力学的研究[J].药学学报,2005,40(8):758-763
    42ABRA RM, BANKERT RB, CHEN F, et al. The next generation ofliposome delivery systems: recent experience with tumor targeted,sterically stabilized immuno liposomes and active loading gradients [J]. JLiposome Res,2002,12(1-2):1-4
    43NARAYANAN NK, NARGI D, RANDOLPH C, et al. Liposomeencapsulation of curcumin and resveratrol in combination reduces prostatecancer incidence in PTEN knockout mice [J]. Int J Cancer,2009,125(1):1-8
    44TEMPLETON NS. Nonviral delivery for genomic therapy of cancer[J].World J Surg,2009,33(4):686-697
    45JORAKU A, HOMHUAN A, KAWAI K, et al. Immuno protection againstmurine bladder carcinoma by octaarginine modified liposomesincorporating cell wall of Mycobacterium bovis bacillus Calmette-Guérin[J].BJU Int,2009,103(5):685-694

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700