用户名: 密码: 验证码:
基于多胺配合物的酶中心模拟物荧光标记及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荧光成像技术是分子影像技术的一种,它具有灵敏度高、分辨率好、实时快速以及原位无损检测等优点,在临床医学和基础生命科学研究中具有重大的应用价值。采用对酶活性中心模拟物进行荧光标记的方法,可以实现对生物体中活性小分子和金属离子的高选择性识别与荧光成像,为反映金属离子和生物活性小分子在生命体中的真实存在状态及浓度分布提供了便利,同时也为研究生物体中的生理反应过程和致病机理提供了有效手段,成为近年来的热点研究内容之一。本论文采用与金属络合能力较强的多胺化合物为配体,传统的荧光染料为荧光标记物,构建了系列带有荧光标记的酶活性中心模拟物,并研究了其在生物活性小分子和金属离子识别与荧光成像中的应用。
     1.构建了系列以传统荧光染料为荧光标记的铜酶活性中心模拟物,并研究了其在一氧化氮(NO)识别与荧光成像中的应用。CuFL2(以三(2-氨基乙基)胺(Tren)为配体)和CuFL3(以1,4,7,10-四氮杂环十二烷(cyclen)为配体)均采用罗丹明B为荧光标记基团,结合NO与Cu(Ⅱ)的氧化还原反应和罗丹明B的开环反应来识别NO。CuFL2和CuFL3均实现了对NO快速(30s内即产生荧光增强型响应)且高选择性的识别。其中CuFL2的荧光增强可达到700倍(荧光量子产率0.13),检测限达1nM(目前最低);CuFL3的荧光量子产率达到0.16。两者均可应用于NO的细胞成像。CuFL5(以乙二胺为配体)引入1,8-萘酰亚胺作为荧光标记基团,利用反应后1,8-萘酰亚胺荧光的恢复和增强来识别NO。CuFL5同样实现了对NO迅速、高选择性且高灵敏度(检测限达1nM)的识别,并同样可应用于NO的细胞成像。较单纯的荧光增强型响应而言,比率型响应具有更广泛的应用价值。通过同时引入罗丹明和香豆素两种荧光基团,得到了一类带有两种荧光标记的铜酶活性中心模拟物CuFL6(以Tren为配体)。CuFL6可对NO产生比率型荧光响应,且具有良好的选择性。细胞成像显示,CuFL6可用于生物体内NO的比率成像。
     2.基于FRET机理构建了带有双荧光标记的葡萄糖耐量因子(GTF)和CuZnSOD活性中心模拟物。将香豆素标记于谷胱甘肽分子作为GTF活性中心模拟物(FL7),罗丹明6G标记于葡萄糖分子作为底物(FL8),得到了用于Cr3+识别的探针体系FL7:FL8(1:2)。模拟GTF与底物的作用过程,该探针体系的两部分(FL7和FL8)可通过Cr3+连为一体,从而产生比率型荧光响应。利用这一方法探针体系实现了对Cr3+的高选择性识别,检测限达0.1ppm,并可应用于Cr3+的细胞成像。本文还构建了带有两种不同荧光标记的铜铜同核CuZnSOD活性中心模拟物CuFL1-im-CuFL9和CuFL2-im-CuFL9,以及铜锌异核CuZnSOD活性中心模拟物CuFL1-im-ZnFL9,为超氧负离子的识别与成像研究提供了一个新平台。
Fluorescence imaging, a kind of molecular imaging technology, with high sensitivity and good resolution, could detect substrate fast in real-time and in-situ with nondestructive, exhibiting high value in applications of clinical medicine and the research of basic life science. The high selective recognition and fluorescence imaging of biomolecules by labeling the models of enzyme acitivity centers could reflect the real existence and concentration distribution of the biomolecular and metal ion in organism, and were benefited to the research of the physiological reactions and pathogenesis, becoming one of the hot issues recently. In this paper, a series of labeled models of enzyme activity center, with polyamine (strong chelator of metal ions) as ligand and traditional fluorescence dyes as indicators, were designed and synthesized. Its applications in detection and fluorescence imaging of the biomolecular and metal ion were then investigated.
     1. A series of models of copper enzyme activity center, labeling with the traditional fluorescence dyes were assembled, and its applications in detection and fluorescence imaging of nitric oxide (NO) were studied. By incorporating a Rhodamine B moiety as the fluorescent indicator, CuFL2(with tis(2-aminoethyl)amine (Tren) as the chelator) and CuFL3(with1,4,7,10-Tetraazacyclododecane (cyclen) as the chelator) was obtained as models of the copper enzyme activity center. They both gave a rapid (the fluorescence enhanced within30s) and high selective response toward NO through the ring-open of the rhodamine B moiety, causing by the reaction of NO and Cu(Ⅱ). Especially, CuFL2showed a700-fold fluorescence enhancement to NO (quantum yield0.13) with the detection limit of1nM, which is the best of the NO fluorescence sensors reported. And the quantum yield of CuFL3was0.16(detection limit1μM). Furthermore, they both could be applied to the NO imaging in vitro. By introducing1,8-naphthaleneimide as the luminescence unit, CuFL5with ethanediamine was synthesized as another model of copper enzyme activity center. The fluorescence was restoring by the reduction of Cu(Ⅱ) to Cu(Ⅰ), and enhanced by the generation of FL5-NO. CuFL5also exhibited a rapid (the fluorescence enhanced within30s), high selective and high sensitive (detection limit1nM) response to NO, and could also be applied to the NO imaging in vitro. Compared to the enhanced response, the ratio of two signals had more extensive value of application. Therefore, CuFL6(with Tren as the chelator) with both rhodamine and coumarin as the fluorescence unit was obtained as another model of copper enzyme activity center. It gave a fluorescence ratio response toward NO, which was specific. The cell imaging experiment proved that CuFL6could image NO through the fluorescence ratio changes.
     2. The models of the activity center of glucose tolerance factor (GTF) and CuZnSOD, with two different fluorescent indicators, were constructed based on the FRET mechanism. The detection system FL7:FL8(1:2) of Cr3+was comprised by two parts:a coumarin-labeled glutathione as the model of GTF activity center (FL7), and a rhodamine-labeled glucose as the substrate (FL8). According to the reaction of GTF and glucose in organism, FL7and FL8could be connected together through Cr3+, leading to a ratio response toward Cr3+. It improved the selectivity toward Cr3+with the detection limit of0.1ppm, and be used in cell imaging of Cr3+. In this paper, two different Cu-Cu homonuclear complexes, CuFL1-im-CuFL9and CuFL2-im-CuFL9, and a Cu-Zn heteronuclear complex, CuFL1-im-ZnFL9, as the models of the CuZnSOD activity center with different labels was constructed.It provides a new platform for the research of super oxygen anion detection and imaging.
引文
[1]中宝忠.分子影像学(第2版)[M].北京:人民卫生出版社,2010.
    [2]程英升.分子影像学的现状和发展趋势[J].上海医学,2010,33(3):276-280.
    [3]de Silva A P, Gunaratne H Q N, Gunnlaugsson T, et al. Signaling Recognition Events with Fluorescent Sensors and Switches [J]. Chem. Rev.,1997,97:1515-1566.
    [4]张宁,陈蓁蓁,唐波.荧光成像在生物分析中的应用[J].分析化学评述与进展,2006,34(7):1030-1034.
    [5]朱新建,宋小磊,汪待发,等.荧光分子成像技术概述及研究进展[J].中国医疗器械杂志,2008,32(1):1-5.
    [6]李树本.酶化学[M].北京:化学工业出版社,2008.
    [7]Goddard J P, Reymond J L. Recent Advances in Enzyme Assays [J]. Trends Biotech.,2004,22(7): 363-370.
    [8]邢艳珑,毛相朝,王舒,等.应用荧光分析法检测酶的研究进展[J].生物工程学报,2009,25(12):1765-1769.
    [9]邢锦娟,刘琳.人工模拟酶技术的研究与应用[J].辽宁工业大学学报,2009,29(2):125-128.
    [10]Gloaguen F, Rauchfuss T B. Small Molecule Mimics of Hydrogenases:Hydrides and Redox [J]. Chem. Soc. Rev.,2009,38:100-108.
    [11]Signorella S, Hureau C. Bioinspired Functional Mimics of the Manganese Catalases [J]. Coord. Chem. Rev.,2012,256:1229-1245.
    [12]Breslow R. Biomimetic Chemistry and Artificial Enzymes:Catalysis by Design [J]. Acc. Chem. Res., 1995,28(3):146-153.
    [13]王兰芝,余远斌,徐未来,等.金属卟啉类模拟酶催化剂研究[J].化学进展,2005,17(4):678-685.
    [14]Holm-Jorgensen J R, Jensen M, Bjerrum M J. Light-induced Copper(Ⅱ) Coordination by a Bicyclic Tetraaza Chelator through a Ligand-to-metal Charge-transfer Reaction [J]. Inorg. Chem.,2011,50 (24): 12705-12713.
    [15]Riley D P, Weiss R H. Manganese Macrocyclic Ligand Complexes as Mimics of Superoxide Dismutase [J]. J. Am. Chem. Soc.,1994,116:387-388.
    [16]黄峙,郭宝江,李学梅.大环化合物(macrocycles)酶模型[J].广州化学,1999,3:61-64.
    [17]Thomas C M, Ward T R. Artificial Metalloenzymes:Proteins as hosts for enantioselective catalysis [J]. Chem. Soc. Rev.,2005,34(4):337-346.
    [18]周映华,毛宗万.环糊精在金属酶模拟中的应用[J].中国科学B辑:化学,2009,39(4):289-300.
    [19]Fu H, Zhou Y H, Chen W L, et al. Complexation, Structure, and Superoxide Dismutase Activity of the Imidazolate-Bridged Dinuclear Copper Moiety with β-Cyclodextrin and Its Guanidinium-Containing Derivative [J]. J. Am. Chem. Soc.,2006,128:4924-4925.
    [20]Zhou Y H, Fu H, Mao Z W, et al. Synthesis, Structure, and Activity of Supramolecular Mimics for theActive Site and Arg141 Residue of Copper, Zinc-Superoxide Dismutase [J]. Inorg. Chem.,2007,46: 734-739.
    [21]Lehn J M. Supramolecular Chemistry-Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture) [J]. Angew. Chem. Int. Ed. Engl.,1988,27:89-112.
    f22]Villalonga R, Cao R, Fragoso A. Supramolecular Chemistry of Cyclodextrins in Enzyme Technology [J]. Chem. Rev.,2007,107:3088-3116.
    [23]李英,令狐文生.杯芳烃应用研究进展[J].化学工业与工程技术,2010,31(1):39-43.
    [24]Marchetti L, Levine M. Biomimetic Catalysis [J]. ACS Catal,2011,1:1090-1118.
    [25]Davis A P, Wareham R S. A Tricyclic Polyamide Receptor for Carbohydrates in Organic Media [J]. Angew. Chem. Int. Ed.,1998,37:2270-2273.
    [26]Zhou Y H, Fu H, Zhao W X, et al. An Effective Metallohydrolase Model with a Supramolecular Environment:Structures, Properties, and Activities [J]. Chem. Eur. J.,2007,13(8):2402-2409.
    [27]Holm R H, kennepohl P, Solomon E I. Structural and Functional Aspects of Metal Sites in Biology [J]. Chem. Rev.,1996,96:2239-2314.
    [28]Wiester M J, Ulmann P A, Mirkin C A. Enzyme Mimcs Based upon Supramolecular Coordination Chemistry [J]. Angew. Chem. Int. Ed.,2011,50:114-137.
    [29]Tapiero H, Townsend D M, Tew K D. Trace Elements in Human Physiology and Pathology. Copper [J]. Biomed. Pharmacother.,2003,57:386-398.
    [30]Miller S F, Babcock G T. Heme/Copper Terminal Oxidases [J]. Chem. Rev.,1996,96(7):2889-2908.
    [31]Kaila V R, Verkhovsky M I, Wikstrom M. Proton-coupled Electron Transfer in Cytochrome Oxidase[J]. Chem. Rev.,2010,110:7062-7081.
    [32]Tsukihara T, Aoyama H, Yamashita T, et al. The Whole Structure of the 13-Subunit Oxidized Cytochrome c Oxidase at 2.8A[J]. Science,1996,272:1136-1144.
    [33]Babcock G T. How Oxygen is Activated and Reduced in Respiration[J]. Proc. Natl. Acad. Sci. U. S. A., 1999,96:12971-12973.
    [34]Brunori M, Giuffre A, Sarti P. Cytochrome c Oxidase, Ligands and Electrons[J]. J. Inorg. Biochem., 2005,99:324-336.
    [35]Brown G C. Regulation of Mitochondrial Respiration by Nitric Oxide Inhibition of Cytochrome c Oxidase[J]. Biochim. Biophys. Acta,2001,1504:46-57.
    [36]Sarti P, Giuffre A, Forte E, et al. Nitric Oxide and Cytochrome c Oxidase:Mechanisms of Inhibition and NO Degradation[J]. Biochem. Biophys. Res. Commun.,2000,274:183-187.
    [37]Giuffre A, Barone M C, Mastronicola D, Sarti P, et al. Reaction of Nitric Oxide with the Turnover Intermediates of Cytochrome c Oxidase:Reaction Pathway and Functional Effects[J]. Biochemistry,2000, 39:15446-15453.
    [38]Sarti P, Forte E, Mastronicola D, et al. Cytochrome c Oxidase and Nitric Oxide in Action:Molecular Mechanisms and Pathophysiological Implications[J]. Biochim. Biophys. Acta,2012,1817:610-619.
    [39]Fukuzumi S, Kotani H, Lucas H R, et al. Mononuclear Copper Complex-Catalyzed Four-Electron Reduction of Oxygen [J]. J. Am. Chem. Soc.,2010.132(20):6874-6875.
    [40]Fukuzumi S, Tahsini L, Nam W, et al. Factors That Control Catalytic Two-versus Four-Electron Reductionof Dioxygen by Copper Complexes [J]. J. Am. Chem. Soc.,2012,134:7025-7035.
    [41]Sarma M, Kalita A, Kumar P, et al. Reduction of Copper(Ⅱ) Complex of Tripodal Ligands by Nitric Oxide and Trinitrosation of the Ligands [J]. J. Am. Chem. Soc.,2010,132(23):7846-7847.
    [42]Collman J P, Ghosh S. Recent Applications of a Synthetic Model of Cytochrome c Oxidase:Beyond Functional Modeling[J]. Inorg. Chem.2010,49:5798-5810.
    [43]Grace S C. Phylogenetic Distribution of Superoxide Dismutase Supports an Endosymbiotic Origin for Chloroplasts and Mitochondria [J]. Life Sciences,1990,47:1875-1886.
    [44]Miller A F. Superoxide Dismutases:Active Sites that Save, but a Protein that Kills [J]. Curr. Opin. Chem. Biol.,2004,8:162-168.
    [45]Timari S, Cerea R, Varnagy K. Characterization of CuZnSOD Model complexes from a redox point of view. Redox Properties of Copper(Ⅱ) Complexes of Imidazole Containing Ligands [J]. J. Inorg. Biochem., 2011,105:1009-1017.
    [46]罗勤慧.铜锌超氧化物歧化酶的模拟化学研究[J].1997,18(7):1012-1018.
    [47]李晨,杨征,厍梦尧,等.超氧化物歧化酶化学模拟的新进展[J].高等学校化学学报.2011,32(9):2046-2061.
    [48]覃事栋.多苯并咪畔配合物的合成及其超氧化物歧化酶模拟活性研究[D].山西:山西大学无机化学,2005.
    [49]Coughlin P K, Lippard S J. Magnetic, ESR, Electrochemical, and Potentiometric Titration Studies of the Imidazolate-Bridged Dicopper(Ⅱ)Ion in a Binucleating Macrocycle [J]. Inorg. Chem.,1984,23(10): 1446-1451.
    [50]Pierre J L, Chautemps P, Refaif S, et al. Imidazolate-Bridged Dicopper(Ⅱ) and Copper-Zinc Complexes of a Macrobicyclic Ligand (Cryptand). A Possible Model for the Chemistry of Cu-Zn Superoxide Dismutase [J]. J. Am. Chem. Soc.,1995,117:1965-1973.
    [51]Verdejo B, Blasco S, Garcia-Espana E, et al. Imidazolate Bridged Cu(Ⅱ)-Cu(Ⅱ) and Cu(Ⅱ)-Zn(Ⅱ) Complexes of a Terpyridinophane Azamacrocycle:a Solution and Solid State Study [J]. Dalton Trans., 2007,4726-4737.
    [52]罗勤慧,郑丽敏,陆勤,等.超氧化物歧化酶模型化合物[(tren)CuimZn(tren)](ClO4)3 · CH3OH的合成、结构和性质研究[J].中国科学B辑,1992,9:897-903.
    [53]Ohtsu H, Shimazaki Y, Yamauchi O, et al. A Novel Imidazolate-bridged Copper-zinc Heterodinuclear Complex as a Cu, Zn-SOD Active Site Model [J]. Chem. Comm.,1999,2393-2394.
    [54]Ohtsu H, Fukuzumi S. The Essential Role of a ZnⅡ Ion in the Disproportionation of Semiquinone Radical Anion by an Imidazolate-Bridged CuⅡ-ZnⅡ Model of Superoxide Dismutase [J]. Angew. Chem. Int. Ed.,2000,39(24):4537-4539.
    [55]Ohtsu H, Itoh S, Fukuzumi S, et al. Characterization of Imidazolate-Bridged Dinuclear and Mononuclear Hydroperoxo Complexes [J]. Inorg. Chem.,2001,40:3200-3207.
    [56]Ohtsu H, Fukuzumi S. Coordination of Semiquinone and Superoxide Radical Anions to the Zinc Ion in SOD Model Complexes that Act as the Key Step in Disproportionation of the Radical Anions [J]. Chem. Eur. J.,2001,7(22):4947-4953.
    [57]Li S A, Li D F, Yang D X, et al. A Novel Imidazolate-Bridged Heterodinuclear Cu(Ⅱ) Zn(Ⅱ) Complex Derived from a Unique Macrocyclic Ligand with Two Hydroxyethyl Pendants [J]. Chem. Comm.,2003, 880-881.
    [58]Li D F, Li S, Yang D, et al. Syntheses, Structures, and Properties of Imidazolate-BridgedCu(Ⅱ)-Cu(Ⅱ) and Cu(Ⅱ)-Zn(Ⅱ) Dinuclear Complexes of a SingleMacrocyclic Ligand with Two Hydroxyethyl Pendants [J]. Inorg. Chem.,2003,42,6071-6080.
    [59]Getzoff E D, Cabelli D E, Fisher C L, et al. Faster Superoxide Dismutase Mutants Designed by Enhancing Electrostatic Guidance [J]. Nature,358:347-351.
    [60]Lewis E A, Tolman W B. Reactivity of Dioxygen-Copper Systems [J]. Chem. Rev.,2004, 104:1047-1076.
    [61]Prigge S T, Mains R E, Amzel L M. Amidation of Bioactive Peptides:the Structure of Peptidylglycine Alpha-hydroxylating Monooxygenase [J]. Science,1997,278:1300-1305.
    [62]Zhou L, Powell D, Nicholas K M. Tripodal Bis(imidazole) Thioether Copper(Ⅰ) Complexes:Mimics of the CuM Site of Copper Hydroxylase Enzymes [J]. Inorg. Chem.,2007,46,7789-7799.
    [63]Mertz W. Impaired Intravenous Glucose Tolerance as an Early Sign of Dietary Necrotic [J]. Biochem. Biophys.,1955,58:504.
    [64]Schwarz K, Mertz W. Chromium(Ⅲ) and the Glucose Tolerance Factor [J]. Arch. Biochem. Biophys., 1959,85:292.
    [65]Cooper J A. Chromium(Ⅲ) Complexes and Their Relationship to the GTF [J]. Inorg. Chim. Acta., 1984,92:23.
    [66]Yamamoto A, Wada O, Suzuki H. Purification and Properties of Biologically-active Chromium Complex from Bovine Colostrum[J]. J. Nutr.,1988,118(1):39-45.
    [67]周保学,姜述芹,周定.葡萄糖耐量因子研究中的几个重要问题[J].国外医学医学地理分册,1999,20(3):97-99.
    [68]Galuszka G, Cieslak-Golonka M, Szelag A, et al. Synthetic Models for the Glucose Tolerance Factor: the Spectroscopic Characterization and Toxicity Studies of Monomeric and Dimeric Cr(Ⅲ) Species [J]. Polyhedron,1998,17(21):3785-3794.
    [69]洪敏,李新生,颜雪明,等.含铬有机化合物的生物活性及研究进展[J].化工时刊,2004,18(1):9-12.
    [70]刘亚明,牛欣,冯前进.葡萄糖耐量因子(GTF)研究概述[J].中国中西医结合肾病杂志,2003,4(6):367-369.
    [71]Wysocki L M, Lavis L D. Advances in the chemistry of small molecule fluorescent probes [J]. Current Opinion in Chemical Biology,2011,15:752-759.
    [72]Sun C D, Shi W, Ma H M, et al. An unprecedented strategy for selective and sensitive fluorescence detection of nitric oxide based on its reaction with a selenide [J]. Chem. Comm..2011,47 (30) 8638-8640.
    [73]Jung H S, Han J H, Habta Y, et al. An iminocoumarin-Cu(Ⅱ) ensemble-based chemodosimeter toward thiols [J]. Chem. Comm.,2011,47(18):5142-5144.
    [74]Butler A R, Williams D L H. The Physiological Role of Nitric Oxide [J]. Chem. Soc. Rev.,1993,22: 233-241.
    [75]Ignarro L J. Nitric Oxide:A Unique Endogenous Signaling Molecule in Vascular Biology (Nobel Lectrue) [J]. Angew. Chem. Int. Ed.,1999,38:1882-1892.
    [76]Nagano T, Yoshimura T. Bioimaging of Nitric Oxide [J]. Chem. Rev,2002,102:1235-1269.
    [77]Imrich A, Kobzik L. Fluorescence-based Measurement of Nitric Oxide Synthase Activity in Activated Rat Macrophages Using Dichlorofluorescin [J]. Nitric Oxide:Biol. Chem.,1997,1:359-369.
    [78]Wiersma J H.2,3-Diaminonaphthalene as a Spectrophotometric and Fluorometric Reagent for the Determination of Nitrite Ion [J]. Anal. Lett.,1970,3:123-132.
    [79]Kojima H, Nakatsubo N, Kikuchi K, et al. Detection and Imaging of Nitric Oxide with Novel Fluorescent Indicators:Diaminofluoresceins [J]. Anal. Chem.,1998,70:2446-2453.
    [80]Kojima H, Urano Y, Kikuchi K, et al. Fluorescent Indicators for Imaging Nitric Oxide Production [J]. Angew. Chem., Int. Ed.,1999,38:3209-3212.
    [81]Kojima H, Hirotani M, Nakatsubo N, et al. Bioimaging of Nitric Oxide with Flurescent Indicators Based on the Rhodamine Chromophore [J]. Anal. Chem.,2001,73:1967-1973.
    [82]Izumi S, Urano Y, Hanaoka K, et al. A Simple and Effective Strategy to Increase the Sensitivity of Fluorescence Probes in Living Cells [J]. J. Am. Chem. Soc,2009,131:10189-10200.
    [83]Sasaki E, Kojima H, Nagano T, et al. Highly Sensitive Near-Infrared Fluorescent Probes for Nitric Oxide and Their Application to Isolated Organs [J]. J. Am. Chem. Soc.,2005,127:3684-3685.
    [84]Gabe Y, Urano Y, Nagano T, et al. Highly Sensitive Fluorescence Probes for Nitric Oxide Based on Boron Dipyrromethene Chromophore-Rational Design of Potentially Useful Bioimaging Fluorescence Probe [J]. J. Am. Chem. Soc.,2004,126:3357-3367.
    [85]Plater M J, Greig I, Helfrich M H, et al. The Synthesis and Evaluation of o-Phenylenediamine Derivatives as Fluorescent Probes for Nitric Oxide Detection [J]. J. Chem. Soc., Perkin Trans.1,2001, 2553-2559.
    [86]Hu J, Yin L, Tang B, et al. Vicinal Diaminobenzoacridine Used as the Fluorescent Probe for Trace Nitric Oxide Determination by Flow Injection Spectrofluorimetry and Macrophage Cells Imaging [J]. Anal. Chim. Acta,2008,606:57-62.
    [87]Zheng H, Shang G Q, Xu J G, et al. Fluorogenic and Chromogenic Rhodamine Spirolactam Based Probe for Nitric Oxide by Spiro Ring Opening Reaction [J]. Org. Lett.,2008,10:2357-2360.
    [88]Kim H N, Kim J S, Yoon J Y, et al. A New Trend in Rhodamine-Based Chemosensors:Application of Spirolactam Ring-Opening to Sensing Ions [J]. Chem. Soc. Rev.,2008,37:14651472.
    [89]Yuan L, Lin W Y, Xie Y A, et al. Single Fluorescent Probe Responds to H2O2, NO, and H2O2/NO with Three Different Sets of Fluorescence Signals [J]. J. Am. Chem. Soc.,2012,134:1305-1315.
    [90]Yang Y, Anslyn E V, Shear J B, et al. A Highly Selective Low-Background Fluorescent Imaging Agent for Nitric Oxide [J].J. Am. Chem. Soc.,2010,132:13114-13116.
    [91]Franz K J, Singh N, Lippard S J. Metal-Based NO Sensing by Selective Ligand Dissociation [J]. Angew. Chem., Int. Ed.,2000,39:2120-2122.
    [92]Hilderbrand S A, Lippard S J. Cobalt Chemistry with Mixed Aminotroponiminate Salicylaldiminate Ligands:Synthesis, Characterization, and Nitric Oxide Reactivity [J]. Inorg. Chem.,2004.43:4674-4682.
    [93]Hilderbrand S A, Lim M H, Lippard S J. Dirhodium Tetracarboxylate Scaffolds as Reversible Fluorescence-Based Nitric Oxide Sensors [J]. J. Am. Chem. Soc.,2004,126:4972-4978.
    [94]Lim M H, Lippard S J. Fluorescence-Based Nitric Oxide Detection by Ruthenium Porphyrin Fluorophore Complexes [J]. Inorg. Chem.,2004,43:6366-6370.
    [95]Lim M H, Lippard S J. Copper Complexes for Fluorescence-Based NO Detection in Aqueous Solution [J]. J. Am. Chem. Soc.,2005,127:12170-12171.
    [96]Tsuge K, DeRosa F, Ford P C. Intramolecular Reductive Nitrosylation:Reaction of Nitric Oxide and a Copper(Ⅱ) Complex of a Cyclam Derivative with Pendant Luminescent Chromophores[J]. J. Am. Chem. Soc.,2004,126:6564-6565.
    [97]Lim M H, Wong B A, Lippard S J, et al. Direct Nitric Oxide Detection in Aqueous Solution by Copper(Ⅱ) Fluorescein Complexes[J]. J. Am. Chem. Soc.,2006,128:14364-14373.
    [98]Lim M H, Xu D, Lippard S J. Visualization of Nitric Oxide in Living Cells by a Copper-Based Fluorescent Probe[J]. Nat. Chem. Biol.,2006,2:375-380.
    [99]Pluth M D, McQuade L E, Lippard S J. Cell-Trappable Fluorescent Probes for Nitric Oxide Visualization in Living Cells[J]. Org. Lett.,2010,12(10):2318-2321.
    [100]Cervantes C, Campos-Garcia J, Devars S, et al. Interactions of Chromium with Microorganisms and Plants [J]. FEMS Microbiol. Rev.,2001,25:335-347.
    [101]Singh A K, Gupta V K, Gupta B. Chromium(Ⅲ) Selective Membrane Sensors Based on Schiff Bases as Chelating Ionophores [J]. Anal. Chim. Acta.,2007,585:171-178.
    [102]Liu W J, Pu S Z, Jiang D H, et al. Fluorescent Probes for Al(Ⅲ) and Cr(Ⅲ) Based on a Photochromic Diarylethene Bearing a Fluorescent Rhodamine Unit [J]. Microchim. Acta.,2011,174:329-336.
    [103]Zheng X Y, Zhang W J, Mu L, et al. A Novel Rhodamine-Based Thiacalix[4]arene Fluorescent Sensor for Fe3+ and Cr3+[J]. J. Incl. Phenom. Macrocycl. Chem.,2010,68:139-146.
    [104]Saha S, Chhatbar M U, Mahato P, et al. Rhodamine-Alginate Conjugate as Self Indicating Gel Bead for Efficient Detection and Scavenging of Hg2+ and Cr3+ in Aqueous Media [J]. Chem. Comm.,2012, 48(11):1659-1661.
    [105]Sarkar M, Banthia S, SatnantaA. A highly Selective'off-on'Fluorescence Chemosensor for Cr(Ⅲ) [J].Tetrahedron Lett.,2006,47:7575-7578.
    [106]Mao J, Wang L N, Liu W S, et al. Tuning the Selectivity of Two Chemosensors to Fe(Ⅲ) and Cr(Ⅲ) [J]. Org. Lett.,2007,9:4567-4570.
    [107]Huang K W, Li F Y, Huang C H, et al. Multisignal Chemosensor for Cr3+ and Its Application in Bioimaging [J]. Org. Lett.,2008,10:2557-2560.
    [108]Zhou Z G, Li F Y, Huang C H, et al. FRET-Based Sensor for Imaging Chromium(Ⅲ) in Living Cells [J]. Chem. Commun.,2008,3387-3389.
    [109]Finkel T, Holbrook N J.Oxidants, Oxidative Stress and the Biology of Ageing[J]. Nature,2000,408: 239-247.
    [110]Cotgreave 1 A, Orrenius S. Free Radicals in the 20th Century[J]. Science,1999,284:1935-1936.
    [111]Nilsson U A, Haraldsson G, Bratell S, et al. ESR-Measurement of Oxygen Radical in Vivo After Renal Ischemia in the Rabbit:Effects of Pretreatment with Superoxide Dismutase and Heparin[J]. Acta. Physiol. Scand.,1993,147:263-270.
    [112]Armstead W M, Mirro R, Busija D W, et al. Postischemic Generation of Superoxide Anion by Newborn Pig Brain[J]. Am. J. Physiol.,1988,255:H401-H403.
    [113]Peters O, Back T, Lindauer U, et al. Increased Formation of Reactive Oxygen Species After Permanent and Reversible Middle Cerebral Artery Occlusion in the Rat[J].J. Cereb. Blood Flow Metab., 1998,18:196-205.
    [114]Zhao H, Kalivendi S, Zhang H, et al. Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium:potential implications in intracellular fluorescence detection of superoxide[J]. Free Radical Biol. Med.,2003,34:1359-1368.
    [115]Tarpey M M, Fridovich I. Methods of Detection of Vascular Reactive Species Nitric Oxide, Superoxide, Hydrogen Peroxide, and Peroxynitrite[J]. Cric. Res.,2001,89(3):224-236.
    [116]Robinson K M, Janes M S, Beckman J S, et al. Selective Fluorescent Imaging of Superoxide in vivo Using Ethidium-Based Probes[J]. Proc. Natl. Acad. Sci. U. S. A.,2006,103:15038-15043.
    [117]Georgiou C D, Papapostolou I, Patsoukis N, et al. An Ultrasensitive Fluorescent Assay for the in Vivo Quantification of Superoxide Radical in Organisms[J]. Anal. Biochem.,2005,347:144-151.
    [118]Maeda H, Yamamoto K, Nomura Y, et al. A Design of Fluorescent Probes for Superoxide Based on a Nonredox Mechanism[J]. J. Am. Chem. Soc.,2005,127:68-69.
    [119]Xu K, Liu X, Tang B, et al. Design of a Phosphinate-Based Fluorescent Probe for Superoxide Detection in Mouse Peritoneal Macrophages [J]. Chem.-Eur. J.,2007,13:1411-1416.
    [120]Xu K, Liu X, Tang B. A Phosphinate-Based Red Fluorescent Probe for Imaging the Superoxide Radical Anion Generated by RAW264.7 Macrophages [J]. Chem. Bio. Chem.,2007,8:453-458.
    [121]Kundu K, Knight S F, Murthy N, et al. Hydrocyanines:A Class of Fluorescent Sensors That Can Image Reactive Oxygen Species in Cell Culture, Tissue, and in Vivo [J]. Angew. Chem. Int. Ed.,2009,48: 299-303.
    [122]Zhang R, Ye Z Q, Yuan J L, et al. Development of a Ruthenium(Ⅱ) Complex Based Luminescent Probe for Imaging Nitric Oxide Production in Living Cells [J]. Chem. Eur. J.,2010,16,6884-6891.
    [123]Shiraishi Y, Sumiya S, Kohno Y, et al. A Rhodamine-Cyclen Conjugate as a Highly Sensitive and Selective Fluorescent Chemosensor for Hg(Ⅱ) [J]. J. Org. Chem.,2008,73:8571-8574.
    [124]Fischer M, Georges J. Fluorescence Quantum Yield of Rhodamine 6G in Ethanol as a Function of Concentration Using Thermal Lens Spectrometry [J]. Chem. Phys. Lett.,1996,260:115-118.
    [125]Lee M H. Kim H J.Kim J S, et al. Metal Ion Induced FRET OFF-ON in Tren/Dansyl-Appended Rhodamine [J]. Org. Lett.,2008,10:213-216.
    [126]Albers A E, Okreglak V S, Chang C J. A FRET-Based Approach to Ratiometric Fluorescence Detection fo Hydrogen Peroxide [J]. J. Am. Chem. Soc.,2006,128:9640-9641.
    [127]Liu B, Tian H. A Selective Fluorescent Ratiometric Chemodosimeter for Mercury Ion [J]. Chem. Commun.,2005,3156-3158.
    [128]Lindoy L F, Meehan G V, Svenstrup N. Mono-and Diformylation of 4-Substituted Phenols:A New Application of the Duff Reaction [J]. Synthesis,1998,7:1029-1032.
    [129]Lim M H, Lippard S J. Fluorescent Nitric Oxide Detection by Copper Complexes Bearing Anthracenyl and Dan syl Fluorophore Ligands [J]. Inorg. Chem.,2006,45(22):8980-8989.
    [130]McQuade L E, Pluth M D, Lippard S J. Mechanism of Nitric Oxide Reactivity and Fluorescence Enhancement of the NO-Specific Probe CuFL1 [J]. Inorg. Chem.,2010,49:8025-8033.
    [131]Lee J, Chen L, West A H, et al. Interactions of Organic Nitroso Compounds with Metals [J]. Chem. Rev.,2002,102:1019-1065.
    [132]Duke R M, Veale E B, Gunnlaugsson T, et al. Colorimetric and Fluorescent Anion Sensors:an Overview of Recentdevelopments in the Use of 1,8-Naphthalimide-Based Chemosensors [J]. Chem. Soc. Rev.,2010,39:3936-3953.
    [133]Sapsford, K. E.; Berti, L.; Medintz, I. L. Materials for Fluorescence Resonance Energy Transfer Analysis:Beyond Traditional Donor-Acceptor Combinations [J]. Angew. Chem. Int. Ed.,2006,45: 4562-4588.
    [134]Lin W Y, Yuan L, Cao X W, et al. A Coumarin-Based Chromogenic Sensor for Transition-Metal Ions ShowingIon-Dependent Bathochromic Shift [J]. Eur. J. Org. Chem.,2008,4981-4987.
    [135]Takakusa H, Kikuchi K, Nagano T, et al. Design and Synthesis of an Enzyme-Cleavable SensorMolecule for Phosphodiesterase Activity Based onFluorescence Resonance Energy Transfer [J]. J. Am. Chem. Soc.,2002,124(8):1653-1657.
    [136]Brousmiche D W, Serin J M, Frechet J M J, et al. Fluorescence Resonance Energy Transfer in a Novel Two-Photon Absorbing System [J]. J. Am. Chem. Soc.2003,125:1448-1449.
    [137]Komatsu T, Kikuchi K, Nagano T, et al. Design and Synthesis of an Enzyme Activity-Based Labeling Molecule with Fluorescence Spectral Change [J]. J. Am. Chem. Soc.,2006,128:15946-15947.
    [138]Newman R H, Zhang J. Visualization of phosphatase activity in living cells with a FRET-basedcalcineurin activity sensor [J]. Mol. BioSyst.,2008,4:496-501.
    [139]Wang Y X, Wang N. FRET and Mechanobiology [J]. Integr. Biol.,2009,1:565-573.
    [140]Barnhart J. Occurrences, Uses, and Properties of Chromium [J]. Regul. Toxicol. Pharm.,1997,26: S3-S7.
    [141]Lim N C, Schuster J V, Porto M C. Coumarin-Based Chemosensors for Zinc(Ⅱ):Toward the Determination of the Design Algorithm for CHEF-Type and Ratiometric Probes[J], Inorg.Chem.,2005,44: 2018-2030.
    [142]Huang W. Zhou P, Duan C Y. et al. A bright water-compatible sugar-rhodamine fluorescence sensor for selective detection of Hg2+ in natural waterand living cells [J]. J. Environ. Monit.,2009,11:330-335.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700