用户名: 密码: 验证码:
粘性离散裂缝模型及其对混凝土尺寸效应的模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
比例边界有限元法是一种新颖的半解析方法,它集成了边界元法和有限元法各自的优点:和边界元法一样,这种方法仅需离散计算域的边界;但它不需要基本解,因此比边界元有更宽广的应用范围。此外这种方法还具有自身独特的优势,如它的位移场和应力场在径向是解析的,这使得裂缝尖端的应力强度因子可以从其定义直接推导出来,不需要使用传统有限元法和边界元法必须的网格加密或特殊奇异单元。
     本文运用比例边界有限元法对混凝土材料中粘性裂缝的扩展进行全自动模拟。首先将计算域划分成若干子域,子域的个数,尺寸和几何形状可以根据需要灵活确定。由于不需要进行网格加密和使用奇异单元,网格重分程序变得和边界元法中一样简单,仅需要一些很少的网格改变。本文在前人发展的以线弹性断裂力学为基础的网格重分程序上自动增加非线性界面单元。采用粘性裂缝模型来模拟断裂过程区。非线性方程通过局部弧长法进行求解。模型假定当张开应力强度因子K_I≥0的时候,裂缝扩展,扩展的方向由线弹性断裂力学准则决定。对裂缝开展过程中裂缝过程区的演化进行了精细模拟。作为算例,对混凝土梁的尺寸效应进行了详细模拟和分析。
     算例结果表明,比例边界有限元法仅使用很少的自由度,就能够对混凝土粘性裂缝扩展进行较为准确的模拟,所得混凝土梁弯曲抗拉强度的尺寸效应的结果和实验及理论结果吻合较好。由于其半解析的性质,这种方法可以采用同一个初始网格对尺寸变化很大的相似混凝土梁进行模拟,这大大减少了前处理的工作强度,因此特别适合对混凝土强度的尺寸效应进行模拟。
The scaled boundary finite element method (SBFEM) is a novel semi-analytical technique, combining the advantages of the finite element method and the boundary element method with unique properties of its own. Like the boundary element method, it discretises domain boundaries only so reduces the modelled dimentions by one; but it does not need fundamental solutions and thus has wider applicabilities. One of the most important advangtages of the SBFEM is that its displacement and stress solutions are analytical in the radial direction. This allows accurate stress intensity factors (SIFs) to be determined directly from the definition, and hence no special crack-tip treatments, such as refining the crack-tip mesh or using singular elements(needed in the traditional finite element method and boundary element method), is necessary.
    This study applies the SBFEM to fully-automatically model cohesive crack growth in quasi-brittle materials such as concrete. A domain is first divided into a few subdomains. Because the dimensions and shapes of subdomains can be flexibly varied and only the domain boundaries or common edges between subdomains are discretised, a remeshing procedure as simple as in the boundary element method was developed with minimum mesh changes whereas the generality and flexibility of the finite element method is well maintained. The simple linear elastic fracture mechanics (LEFM)-based remeshing procedure developed previously is augmented by inserting nonlinear interface finite elements automatically. Cohesive/fictitious crack model is used to simulate the fracture process zone. The resultant nonlinear equation system is solved by a local arc-length controlled solver. The crack is assumed to grow when the mode-I stress intensity factor K_1≥0 in the direction determined by LEFM criteria. The evolution of the FPZ is predicted by the present method.
    Comparison of the numerical results with those obtained from experiments and analytical studies shows that the SBFEM is able to accurately model the cohesive crack propagation and size effect in concrete beams using a small number of degrees
    of freedom. In particular, it can model similar concrete beams with a wide range of dimensions using the same initial mesh. This means tremendous reduction in pre-process and data preparation, which makes the SBFEM very suitable for modeling size effect in concrete beams.
引文
[1] 江见鲸等.混凝土结构有限元分析[M].北京:清华大学出版社
    [2] 尹双增.断裂损伤理论及应用[M].北京:清华大学出版社
    [3] B.Cotterel. The past, present, and future of fracture mechanics [J] .Engineering Facture Mechanics 69 (2002):533-553.
    [4] 方韬,龚顺风,金伟良.混凝土结构破坏过程的离散单元法模拟[J].浙江大学学报(工学版)2004,38(7):921-925.
    [5] 周维垣,黄岩松,林鹏.三维无单元伽辽金法及其在拱坝分析中的应用[J].水利学报2005,36(6):644-649.
    [6] Lou Luliang, Zeng Pan.MESHLESS METHOD FOR 2D MIXED. MODE CRACK PROPAGATION BASED ON VORONOI CELL[J]. ACTA MECHANICA SoLIDA SINICA 16(2003),231-239
    [7] Ingrafea A R, Blandford G, andLigget J A. Automatic modeling of mixed-mode fatigue and quasi—static crack propagation using the boundary element method[A]. 14th Natl Symp on Fracture[C], 1987,ASTM STP 791:1407-1426
    [8] Portela A, Aliabadi M H and Rooke D P. Dual boundary element in—crernental analysis of crack propagation[J]. Int J Cornput Struct, 1993.46:237~247
    [9] 邓建刚,蒋和洋,黎在良,闫维明,三维裂纹扩展轨迹的边界元数值模拟[J].应用力学学报2003,20(2):49-53
    [10] 王水林,葛修润,流形元方法在模拟裂纹扩展中的应用[J].岩土力学与工程学报1997,16(5):405-410
    [11] 王水林,葛修润,四个物理覆盖构成一个单元的流形方法及应用[J].岩土力学与工程学报1999,18(3):312-316
    [12] 王水林,冯夏庭,葛修润,高阶流形方法模拟裂纹扩展研究[J].岩土力学2003,24(4):622-625
    [13] 王宝庭,宋玉普,张燕坤,基于刚体一弹簧模型的混凝土微裂纹行为模拟[J].工程力学1999,16(2):140-144
    [14] 王宝庭,徐道远,基于刚体一弹簧元法的全级配混凝土本构特性模拟[J],河海 大学学报2000,28(1):22-25
    [15] 刘彩平,田鹭璐,宋振铎,徐锋,细骨料混凝土细观断裂试验研究[J].矿业研究与开发2005,25(1):17-201
    [16] 陈兴周,李建林,刘杰,周济芳,关于分形理论及其在岩石断裂中的应用[J].西北水电2005,(2):63-66
    [17] 宋世谦,徐立克,辛宏玉,分形几何在混凝土研究中的应用及其前景[J].青岛建筑工程学院学报2005,26(2):35-38
    [18] 赵艳华,徐世煨,吴智敏,混凝土结构裂缝扩展的双G准则[J].土木工程学报2004,37(10):13-18
    [19] 杨庆生,孙艳丰,裂纹扩展过程的数值模拟[J].铁道学报1997,10(5):116-120
    [20] 朱万成,黄明利.混凝土试件裂纹扩展及破坏过程的计算机模拟[J].辽宁工程技术学学报,2000,19(3):271-274.
    [21] 翟奇愚,林皋,尹双增,周晶,应用修正的虚裂纹模型研究混凝土结构的三维裂缝扩展计算[J].结构力学及其应用,1992,9(1):71-78
    [22] 雷和荣,虞吉林,虚裂纹扩展法计算了积分的研究[J].中国科学技术大学学报,1994,24(2):208-213
    [23] 孙亮,秦红三维裂纹弹塑性J积分计算技术研究及工程应用[J].压力容器,1998(6):25-32
    [24] 贾建军,彭颖红,阮雪榆,一种有限元裂纹扩展仿真的网格技术[J].模具技术,2001(5):4-6
    [25] 杨庆生,杨卫,裂纹扩展过程的有限元模拟[J].计算力学学报1997,14(4):407-412
    [26] 殷有泉.固体力学非线性有限元引论[M].北京:北京大学出版社,清华大学出版社
    [27] 丁皓江,何福保,谢贻权,徐兴.弹性和塑性力学中的有限单元法[M].北京:机械工业出版社
    [28] Hillerborg A, Modeer M, Petersson P. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement Concrete Research 1976, 6:773-782
    [29] Decks AJ, Wolf JP. A virtual work derivation of the scaled boundary finite-element method for elastostatics[J]. Computational Mechanics 2002, 28(6):489-504
    [30] Xie M, Gerstle WH. Energy-based cohesive crack propagation modelling[J]. ASCE Journal of Engineering Mechanics 1995, 121 (12): 1349-1458
    [31] Yang ZJ and Deeks AJ. Modelling cohesive crack growth using a Two-step FEM-SBFEM coupled method[J]. International Journal of Fracture, under review.
    [32] Riks E. An incremental approach to the solution of snapping and buckling problems[J]. Solids Structures 1979,15: 529~551
    [33] Ramm E. Strategies for Tracing the Non-Linear Response Near Lim it Points In: Wunderlich W , Stein E and Bathe KJ ed s. Non-Linear Finire Element Analysis in Structural Mechanics[M]. 1981,63~89
    [34] Crisfield MA. A fast incremental/iteratire solution procedure that handles "snap-Through" [J]. Computers & Structures. 1981,13: 55~62
    [35] 段云岑.非线性方程组的解法:局部弧长法[J]力学学报.1997(1):67—69.
    [36] 张汝清,詹先义.非线性有限元分析[M]重庆:重庆大学出版社,1990.
    [37] Yang ZJ, Proverbs D. A comparative study of numerical solutions to nonlinear discrete crack modelling of concrete beams involving sharp snap-back[J]. Engineering Fracture Mechanics 2004, 71(1):81-105
    [38] B.L. Karihaloo, H.M. Abdalla, Q.Z. Xiao. Deterministic size effect in the strength of cracked concrete structures[J].Cement and Concrete Reasearch 2006,36:171-188
    [39] Song CM, Wolf JP. Semi-analytical representation of stress singularities as occurring in cracks in anisotropic multi-materials with the scaled boundary finite-element method[J].Computers & Structures 2002, 80(2): 183-197.
    [40] Doherty JP, Deeks AJ. Scaled boundary finite-element analysis of a non-homogeneous axisymmetric domain subjected to general loading[J]. International Journal for Numerical and Analytical Methods in Geomechanics 2003, 27(10):813-835.
    [41] Deeks AJ. Prescribed side-face displacements in the scaled boundary finite-element method[J].Computers & Structures 2004, 82(15-16):1153-1165.
    [42] Wolf JP, Song CM. The scaled boundary finite-element method - a primer: derivations[J].Computers & Structures 2000,78 (1-3):191-210.
    
    [43] Song CM, Wolf JP. The scaled boundary finite-element method - a primer: solution procedures[J]. Computers & Structures 2000, 78(1-3):211-225.
    
    [44]Chongmin Song. A super-element for crack analysis in the time domain[J]. International journal for numerical methods in engineering 2004, 61:1332 - 1357
    
    [45] Bazant Z P,Xiang Yuxin. Size Effect in Compression Fracture: Splitting Crack Band Propagation [J]. Journal of Engineering Mechanics, ASCE, Vol. 123, No. 2, 1997.
    
    [46] Bazant Z P. Scaling of Quasibrittle Fracture: Asympototic Analysis[J]. Journal of Fracture, 1997, Vol. 83, No. 1.
    
    [47] 黄海燕,张子明. 混凝土的统计尺寸效应[J]. 河海大学学报, 2004, 132(5): 291-294.
    
    [48] Petersson PE. Crack growth and development of fracture zone in plain concrete and similar materials. Report TVBM-1006, Lund Inst. of tech., Lund, Sweden, 1981
    
    [49] Carpinteri A, Valente S, Ferrara G, Melchiorri G. Is mode II fracture energy a real material property[J]. Computers and Structures 1993,48(3):397-413
    
    [50] Kaplan M.F. Crack propagation and the fracture of concrete[J]. Journal of American Concrete Institution 1961, 58(5):591-610
    
    [51]Ngo,D.and Scordelis,A.C., Finite Element Analysis of Reinforced Concrete Beams[J].Journalof ACI, 1967,64(3): 152-163
    
    [52]Bazant,Z.P.,Size effect in blunt fracture:Concrete,Rock,Metal[J].Journal of Engineering Mechanics, 1984,110(4):518-535
    
    [53]Bazant,Z.P.,Ozbolt,J.,Eligehausen,R.,Fracture Size Effect:review of evidence for concrete structures[J].,Journalof Structural Engineering,ASCE,1994, 120(8):2377-2398
    
    [54]Weibull,W.,The phenomenon of rupture in solids,In:Proceedings [J].,Royal Swedish Institute of Engineering Research(In genioersvtenskaps Akad.Handl.) ,1939, 153:1-55
    
    [55]Bazant,Z.P.,Xi,Y .and Reid,S.G,Statistical size effect in quasibritle structure:1.Is Weibull theory applicable? [J].,Journal of Engineering Mechanics, 1991, 117(11):2609-2622
    [56] Bazant,Z.P.,Xi,Y.,Statistical size effect in quasibritle structure: Ⅱ .Nonlocal theory [J].,Journal of Engineering Mechanics, 1991, 117(11): 2623-2640
    [57] 徐世烺,赵国藩,混凝土断裂力学研究[M].,大连:大连理工大学出版社,1991
    [58] Hillerborg.A,Theoretical Basis of Method to Determine Fracture Energy G_F of Concrete [J],Materials and Structures, 1985,18 (106):291-296.
    [59] Hillerborg.A,Results of three comparative test seriesf of determining the fracture G_F of Concrete[J],Materials and Structures, 1985,18( 107): 407-413
    [60] Sidney Mindess,The effect of specimen size on the fracture energy of concrete[J],Cement and Concrete Research, 1984,14(3): 431-436.
    [61] W.Brameshuber, and H.K.Hilsdorf, Influence of ligament length and stress state on fracture energy of concrete[J],Engineering Fracture Mechanics, 1990,35(1/2/3): 95-10
    [62] Belytschko T, Lu Y Y, Gu L. Element free galerkin methods [J]. International J. for Numerical Methods in Engineering,1994,37(2):229-256.
    [63] Lu Y Y, Belytschko T, Gu L. A new implementation of the element-free Galerkin method [J]. Computer Methods in Applied Mechanics Engineering, 1994,113(3-4) :397-414
    [64] 周维垣,寇晓东.无单元法及其在岩土工程中的应用[J].岩土工程学报,1998,20(1):5-9.
    [65] 寇晓东,周维垣.应用无单元法追踪裂纹扩展[J].岩石力学与工程学报,2000,19(1):18-23.
    [66] 胡云进,周维垣,寇晓东.三维无单元法及其应用[J].岩石力学与工程学报,2004,23(7):1132-1136
    [67] 周维垣,黄岩松,林鹏.三维无单元伽辽金法及其在拱坝分析中的应用[J].水利学报,2005,36(6):1-8
    [68] 石根华 著.数值流形方法与非连续变形分析[M].北京:清华大学出版社,1997.
    [69] Song Ch, Wolf JP. Semi-analytical representation of stress singularity as occurring in cracks in anisotropic multi-materials with the scaled boundary finite-element method[J]. Computers and Structures ,2002,80:183-197.
    [70] Yang ZJ. Fully automatic modelling of mixed-mode crack propagation using scaled botmdary finite element method[J]. International Journal of Fracture, 2006,73: 1711-1731.
    [71] Galvez JC, Cervenka J, Cendon DA, Saouma V. A discrete crack approach to normal/shear cracking of concrete[J]. Cement and Concrete Research 2002, 32:1567-1585
    [72] Galvez JC, Elices M, Guinea GV, Planas J. Mixed mode fracture of concrete under proportional and nonproportional loading[J]. International Journal of Fracture 1998, 94:267-284
    [73] Cendon DA, Galvez JC, Elices M, Planas J. Modelling the fracture of concrete under mixed loading[J]. International Journal of Fracture 2000, 103:293-310
    [74] Yang Z J, A.J.Deeks. Fully-automatic modelling of cohesive crack growth using a finite element-scaled boundary finite element coupled method. Engineering Fracture Mechanics, in press.
    [75] Song Ch, Wolf JP. The scaled boundary finite element method—alias consistent infinitesimal finite element cell method—for elastodynamics [J].Comput Methods Appl Mech Eng, 1997, 147 (324) :329-355.
    [76] Decks A J, Cheng L. Potential flow around obstacles using the scaled boundary finite element method[J]. International Journal for Numerical Methods in Fluids, 2003,41 : 721-741.
    [77] Bazant Z P,Oh b h.Crack Band Theory For Fracture of Concrete Structures[J]. Materials and Structures, 1983,16(3).
    [78] JENQ Y S,SHAH S P.Two parameter fracture model for Concrete[J].Joumal of Engineering Mechanics, 1985,111 (10): 1227-1241.
    [79] Karihaloo B L,Nallathambi P.Effective crack model for the determination of fracturen toughness of concrete[J].Engineering Fracture Mechanics, 1990, 37(4/5) :637-645.
    [80] 徐世烺,赵国藩.混凝土结构裂缝扩展的双K断裂准则[M].北京:科学技术文献 出版社,1997.
    [80]Banks-Sills L, Sherman D. Comparison of methods for calculating stress intensity factors with quarter-point elements [J]. International Journal of Fracture, 1986, 32: 127-140.
    [81]Bazant Z P,Planas J.Fracture and Size Effect in Concrete and Other Quasibrittle Materials[M].CRC Press,Boca Raton, 1998.
    [82]Crisfield M A.Variable Step-Lengthe for Non-Linear Structural Analysis. Transport and Road Research Laboratory,Report LR 1049, Crmwthorne, Berkshire, England,1982.
    [83]Bazant,Z .P.,C hen,E .P.,Scaling of structural failure [J].Applied Mechanics Reviews ASME, 1997, 50(10): 593-627.
    [84] H.M. Abdalla, B.L. Karihaloo, Determination of size-independent specific fracture energy of concrete from three-point bend and wedge splitting tests, Mag. Concr. Res. 55 (2003) 133- 141.
    [85]Brant Z P; Planas J. Fracture and size effect in concrete and other quasibrittle materials[M]. CRC Press, Boca Raton, 1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700