用户名: 密码: 验证码:
水稻铬毒害和耐性的生理与分子机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤铬污染已对农业生产和人类健康造成了严重的威胁。环境中的铬主要以Cr3+和Cr6+两种氧化形态存在。虽然Cr3+是人类和动物必需的营养元素,但Cr3+和Cr6+对植物都具有严重的毒害作用,且Cr6+的毒性远强于Cr3+。与镉、铅、铝等重金属相比,铬的电子化学结构更为复杂,在自然条件下Cr3+与Cr6+极易通过氧化还原反应发生相互转化,这些特性使铬毒害和耐性研究相对迟缓。迄今,铬在植物生长发育和生理代谢上的毒害作用虽已有一定的了解,但有关铬毒害和耐性的机理尚缺乏深入研究。本研究以铬耐性与积累差异显著的水稻基因型(秀水113和单K5)为材料,从铬的环境化学、铬的毒害效应、水稻对铬的吸收和积累、铬在水稻组织的亚细胞分布以及水稻铬胁迫响应的蛋白质组学等方面系统地研究了水稻铬耐性的生理和分子机理,并探索了缓解铬毒害的化学调控途径。主要研究结果如下:
     1.土壤pH值和有机质含量对土壤重金属有效态以及水稻籽粒中重金属含量的影响
     植物对重金属的吸收一方面与植物的遗传和生理特性有关,另一方面主要受土壤中重金属迁移性和有效性的影响,而它们则由土壤的各种理化特性决定。本试验通过测定Cr、Cu、Fe、Mn、Pb和Zn等重金属在不同土壤中的有效态含量和水稻植株与籽粒中的浓度,研究了土壤pH值和有机质含量对稻田重金属有效性和水稻吸收重金属的影响。结果显示,土壤中有效态重金属含量与土壤pH值呈显著负相关,而与有机质含量呈显著正相关。多元回归分析表明,土壤pH和有机质含量对Cu、Pb和Zn的有效性变化均有显著影响,而Cr、Fe的有效性主要受有机质含量的影响,Mn的有效性受土壤pH的影响较大。结果还显示,土壤中有效态重金属含量高的试验点水稻植株重金属含量相对较高,说明土壤重金属的有效性影响着水稻对重金属的吸收和积累。相关分析表明,水稻植株和籽粒中重金属的含量与土壤pH值呈负相关,而与土壤有机质含量呈正相关。多元回归分析结果揭示,土壤pH值是影响水稻植株中重金属含量的重要因素。由此推测,大田生产上通过相关农艺措施调节土壤的酸碱度,可有效降低稻米的重金属含量。
     2.水稻籽粒中铬、镉、铅含量的基因型和环境差异
     重金属的吸收和积累在不同作物种类之间以及同一作物不同基因型之间存在着显著差异,选育或培育具有重金属低积累特性的作物品种是降低重金属污染地区作物产品重金属含量的有效途径。在低积累重金属作物品种的筛选上,有效地评估和鉴定食用器官的重金属含量是关键技术。本试验以138份水稻品种(品系)为材料,分析了它们种植在不同污染程度土壤中的植株和籽粒重金属含量。结果显示,水稻籽粒Cr、Cd和Pb含量随土壤污染程度的加重而增加,同时不同基因型之间存在着显著的差异。在三种污染程度下,138份水稻材料的籽粒Cr浓度最大值/最小值比均达20倍以上,基因型间的变异系数超过55%。水稻基因型与环境(污染程度)对籽粒中Cr、Cd以及Pb含量有显著的互作效应。本研究筛选到一批籽粒Cr、Cd、Pb含量在三种污染程度下始终保持高水平或低水平的水稻品种(品系),如HG-5、单K5和湖优-1的籽粒在三种污染程度下均具有高Cr含量;而秀水113、秀水09和明珠1号的籽粒则具有低Cr含量;秀水11、嘉02-5和明珠1号为籽粒高镉积累材料,而春江026、春江11和湖97-98为籽粒低镉积累材料;单K5、单K8、嘉单繁18为籽粒高铅积累材料,而嘉02-5、嘉C1和单K15为籽粒低铅积累材料。
     3.铬胁迫对水稻抗氧化系统和养分吸收积累的影响
     本试验以两个前期筛选出的籽粒铬积累特性不同的水稻品种(秀水113和单K5)为材料,分析了铬胁迫对水稻抗氧化系统和养分吸收积累的影响。低水平铬处理(10μM Cr)对MDA含量影响不大,但增加SOD和POD的活性。在高铬水平(100μM)下,水稻叶片和根系的MDA含量显著增加,SOD和POD活性则显著降低,说明高水平铬处理对水稻幼苗造成了严重的氧化胁迫。另外,高浓度铬处理显著降低水稻根、茎、叶、籽粒中营养元素的含量,说明铬胁迫干扰植物养分的吸收和分配。水稻单株养分积累量在10μM Cr处理下最高,在100μM Cr处理下最低,其原因与铬胁迫造成水稻植株生长受阻和根细胞损伤有关。铬对养分积累的影响因基因型而异,铬胁迫下单K5中N、P、K、Ca、Zn的单株积累量均显著高于秀水113。
     4.铬胁迫对水稻根际pH值变化和有机酸分泌的影响
     本试验通过测定水稻培养液的pH值和检测水稻根系分泌的有机酸含量,研究了不同铬处理水平下根际pH值和有机酸分泌的变化。结果表明,水稻根际的pH值随铬处理浓度的增加和处理时间的延长而显著升高。当营养液中铬处理浓度增加到100μM时,根际pH值明显高于初始调节的pH值(5.10),说明100μM Cr处理严重影响水稻的根系活力以及阴阳离子的吸收平衡。随着铬胁迫水平的升高,根系分泌的有机酸含量显著增加。在测定的六种有机酸中,草酸和苹果酸含量明显高于柠檬酸、乙酸、乳酸和琥珀酸,可以认为前两种是铬胁迫下水稻分泌的主要有机酸。相关分析显示,铬在水稻体内的积累量与根际pH值、草酸、苹果酸、柠檬酸含量呈显著正相关,说明根际pH值升高以及草酸、苹果酸和柠檬酸分泌量增加导致水稻植株中铬积累量增多。另外,根际pH值也与草酸、苹果酸和柠檬酸分泌量呈显著正相关,表明这三种有机酸的分泌对根际pH值的变化可能起有重要作用。
     5.水稻铬吸收的动力学研究
     无论Cr3+还是Cr6+对各种生物都具有显著的毒害作用,而且Cr6+的毒性远高于Cr3+。植物对铬的吸收是铬植物体内积累和对植物造成毒害的前提,但是,迄今为止植物对铬的吸收动态及模式尚缺乏研究。本试验以水稻为材料,研究了溶液培养条件下水稻根对Cr3+和Cr6+吸收的动力学特征。结果显示,在Cr3+0-250μM和Cr6+0-500μM范围内,水稻根系对Cr3+和Cr6+的吸收速率均随着溶液中铬浓度的提高而增加,并逐渐在高铬浓度处理下趋于饱和。拟合分析表明,Cr3+和Cr6+的吸收均可用Michaelis-Menten动力学方程描述,Cr3+具有较低的Km值和较高的Vmax值,水稻根系对Cr3+的亲和力和吸收能力均大于Cr6+。在0.5-48 h处理时间内,水稻根系中铬浓度随着时间的推移而增加。但是, Cr3+含量在t=12h后趋于饱和,而Cr6+含量仍持续增加。水稻根系对Cr3+和Cr6+的响应速率表现不同,100μM Cr3+处理0.5h后,水稻根中铬含量可达400 mg g-1 DW,而100μM Cr6+处理0.5h后,水稻根中铬含量不到20 mg g-1 DW,说明Cr3+比Cr6+更易被水稻根系吸收,且其达到吸收饱和较快。另外,Cr吸收的动力学特征显示两供试基因型存在着差异,单K5对Cr3+和Cr6+的Km值和Vmax值都明显高于秀水113,说明单K5对Cr的亲和力虽不如秀水113,但其铬吸收潜力较大。营养液中添加正钒酸盐和2,4-DNP(代谢抑制剂),Cr6+的吸收显著降低,而Cr3+的吸收影响较小,说明Cr6+的吸收需要能量参与,而Cr3+的吸收需能较少由此可见Cr6+与Cr3+分别具有不同的吸收途径或方式。
     6.铬在水稻组织和亚细胞水平上的分布和化学形态特征分析
     重金属在植株体内过量积累是植物受重金属毒害的重要原因,而植物组织中重金属的亚细胞水平分布与重金属毒害关系密切。本试验以铬积累特性不同的水稻品种为材料,采用同步辐射微束X射线荧光光谱分析μ-SRXRF)、差速离心以及逐步化学提取法研究了铬在水稻组织和亚细胞水平上的分布特点和化合形态特征,试图阐明铬在水稻植株体内的吸收、积累的机理以及水稻的耐性机制。μ-SRXRF结果显示,水稻根系中的Cr绝大部分累积在表皮细胞中;水稻茎和叶中的铬则主要分布于表皮和维管束组织,其他组织中的铬含量非常低,说明表皮层细胞对铬的阻隔作用可能是植物体内铬迁移受到限制的重要原因,而水稻根系吸收的Cr则主要通过木质部导管向地上部组织运输。在亚细胞水平上,不管在何种Cr处理浓度下,水稻根系中的Cr绝大部分都分布在细胞壁上;而在水稻茎秆和叶片细胞中,随着Cr处理水平的升高,Cr在可溶性组分中的分配比例显著增加。以上结果表明,细胞壁和液泡是水稻细胞内Cr的主要分布部位,而细胞中具有重要代谢功能的细胞器(如:叶绿体、线粒体等)Cr分布相对较少。另外,逐步化学试剂提取法对水稻植株体内铬的化学形态研究表明,低铬处理下,水稻组织中铬以乙醇和去离子水提取态为主,说明硝酸盐、氯化物和氨基酸以及某些水溶性有机酸对铬的吸收和转运具有重要作用;而高铬处理下,乙醇和去离子水提取态比例显著下降,盐酸和残渣提取态转为铬的主要存在形态,表明磷酸盐、草酸盐以及难溶性高分子量化合物在阻止铬在水稻根系中移动、缓解铬毒害上发挥着一定的作用。
     7.水稻叶、根在不同铬处理下蛋白质差异表达的研究
     为了深入阐明植物铬毒害和耐性的分子机理,本研究利用双向电泳和MALDI-TOF质谱技术对Cr积累特性不同的两个水稻基因型(秀水113、单K5)叶片和根在0、2、200μM Cr处理条件下蛋白质组表达的变化进行了分析。水稻叶片中鉴定成功41个蛋白点,其中秀水113有21个,单K5有20个,这些蛋白以RuBisco和能量代谢相关蛋白为主。水稻根系中仅14个蛋白点质谱鉴定成功,其中秀水113有4个,单K5有10个,它们大多数与环境胁迫相关。本研究检测到一批对铬胁迫有响应且表达上调的蛋白,如NADP-异柠檬酸脱氢酶、热激蛋白(Hsp90)、乙二醛酶Ⅰ、蛋白质糖基化多肽、S-腺苷甲硫氨酸合成酶、谷氨酰胺合成酶、ATP合成酶以及两个信号分子,G蛋白β亚基和信号识别颗粒54蛋白等。这些蛋白质中,大部分已被证实与盐害、冷害等环境胁迫的耐性有关,但在铬胁迫的耐性研究中涉及非常少,而蛋白质糖基化多肽与重金属等环境胁迫的关系为首次报道。本研究鉴定到的铬胁迫响应蛋白可为深入阐明水稻铬耐性机理提供新的契机。
     8.外源还原型谷胱甘肽(GSH)对水稻铬毒害的缓解效应
     本试验通过分析Cr胁迫下不同浓度GSH处理后水稻植株生长、叶绿素和可溶性蛋白质含量、抗氧化酶活性以及膜脂过氧化程度的变化,研究了外源GSH处理对铬胁迫的缓解效应。结果显示,100μM Cr处理下,植株生长、叶绿素和可溶性蛋白含量显著降低,添加外源GSH后,铬胁迫造成的抑制效应得到明显缓解,说明外源GSH可减轻了Cr胁迫对水稻幼苗的毒害。100μM Cr处理导致水稻叶片和根系中MDA含量的急剧增加以及某些抗氧化物酶活性的降低,说明对水稻幼苗产生了严重的氧化胁迫,而外源GSH的加入显著提高叶片和根系的抗氧化物酶活性,降低叶片和根系中的MDA含量,表明GSH可通过增强水稻的抗氧化能力而减轻铬的毒害。此外,外源GSH的加入虽然显著增加根的铬含量,但显著降低水稻地上部组织中的铬含量,即降低了铬由地下部向地上部的转运,说明外源GSH促使更多的铬滞留在水稻根系,这可能与GSH的还原以及对金属离子的螯合区室化效应有关。
     9.硅营养对水稻铬毒害的缓解效应
     本试验研究了施硅对铬胁迫下水稻植株生长、可溶性蛋白质含量、抗氧化酶活性以及膜脂过氧化的影响。结果表明,100μM Cr处理显著降低水稻株高和干重、可溶性蛋白含量和根系抗氧化酶活性,而明显增加组织中Cr含量和MDA含量。水培液中添加硅营养,铬胁迫对水稻植株生长造成的抑制效应得到有效缓解。硅营养加入也显著降低水稻植株对铬的吸收及向地上部组织的转运。另外,硅营养可通过增高叶片和根系中抗氧化物酶活性和降低MDA含量缓解Cr毒害引起的氧化胁迫。试验结果还显示,硅营养对氧化胁迫的缓解有一定的基因型效应,单K5叶片中SOD、POD、CAT以及AXP活性在低浓度Si处理(75mg L-1)即可快速增加,而秀水113则需高浓度Si处理(150mg L-1),说明硅营养对单K5氧化胁迫的缓解效应要比秀水113更为有效。
Chromium occurs naturally in several oxidation states, with the trivalent (Cr3+) and hexavalent (Cr6+) forms being the most stable and common. Although Cr3+ is considered as an essential element for human and animals, both Cr3+ and Cr6+ are toxic to plants. Hexavalent chromium is known to be much more toxic than trivalent chromium to living organisms, and is easily reduced to Cr3+ by redox reaction. In comparison with some other toxic metals, like Cd and Pb, Cr has received relatively little attention from plant scientists. Its complex electronic chemistry and changeable station have been a major factor affecting the research on its toxicity mechanisms in plants. Chromium phyto-toxicity has been intensively studied from the multiple levels, including plant growth and development, physiological processes, antioxidant system. However, there is little information on the mechanisms and genotypic difference of Cr toxicity and tolerance in plants. The current experiments were carried out to investigate the physiological and molecular mechanisms of Cr toxicity and tolerance in rice plants, based on the research on chromium availability in soil, Cr toxicity in rice plants, Cr kinetic uptake, subcellular distribution and chemical forms of Cr in plant tissues, and the proteomic changes in responses to chromium toxicity. Meanwhile, the possibility of reducing Cr uptake and alleviating Cr stress in rice plants by exogenous application of chemical regulators were also studied. The major results are summarized as follows:
     1. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants
     Soil pH, organic matter content and EDTA-extractable heavy metal contents in 27 paddy soils from three locations of Zhejiang province and the heavy metal concentrations in rice plants were investigated to elevate the influence of soil properties on heavy metal uptake and translocation in rice plants. The results showed that the soils from Nanhu exhibited the highest soil organic matter content and EDTA-extractable heavy metal contents, but the lowest pH value. Simple linear regression analysis suggested that the EDTA-extractable contents of Cr, Cu, Fe, Mn, Pb and Zn was negatively correlated with soil pH value, but positively correlated with organic matter content. The combination of soil pH and Log10(OM) in the stepwise multiple linear regression analysis could produce a more precise model for estimation of EDTA-extractable Cu, Pb and Zn contents in soils, but not for Cr, Fe and Mn, indicating that availability of heavy metal in soil was a complex parameter, and determined by many soil factors. Rice plants grown in Nanhu soil had the higher straw heavy metal concentrations than those grown, coinciding with the results of soil EDTA-extractable heavy metal content. Simple linear regression analysis suggested that heavy metal concentrations in rice straw and grains were negatively correlated with soil pH value, but positively correlated with soil organic matter content, except grain Pb and Zn concentrations. Stepwise multiple linear regression analysis indicated that soil pH played an important role in predicting heavy metal concentrations in rice plants, suggesting that it is possible to reduce the heavy metal accumulation in rice plants by regulating the pH level in paddy soil through agronomic approaches.
     2. Genotypic and environmental variation in chromium, cadmium and lead concentrations in rice grains
     Genotypic and environmental variation in Cr, Cd and Pb concentrations of rice grains and the interaction between these metals were investigated by using 138 rice genotypes grown in three contaminated soils. There are significantly genotypic differences in the three heavy metal concentrations of rice grains, with the absolute difference among 138 rice genotypes in grain Cr, Cd and Pb concentrations being 24.5,9.1 and 23.8 folds under the slightly contaminated soil (Cr, Cd and Pb content was 4.61,1.09 and 28.28 mg kg-1, respectively), respectively. Some genotypes, such as Xiushui 113, Zhongjian 9836 and Yongdan 24 etc. which showed consistently low grain Cr, Cd or Pb concentration under the 3 contaminated soils were identified. There was a highly significant interaction between genotype and environment in the 3 heavy metal concentration of the rice grains, suggesting the importance of cultivar choice for a given environment. Correlation analysis showed that Cr concentration in rice grains was not correlated with Cd and Pb concentration in the three contaminated soils. However, there was a significant correlation between Cd and Pb in slightly and highly contaminated levels. The results indicated that interaction between heavy metals in their availability in soil and accumulation in plant is complex.
     3. The influence of chromium toxicity on antioxidant system and nutrient uptake and accumulation in rice plants
     The effect of chromium (Cr) on the lipid peroxidation, activities of antioxidant enzymes, and the uptake and accumulation of nutrient were studied in two rice genotypes, Xiushui 113 and Dan K5, differing in grain Cr accumulation. The treatment with low Cr level (10μM) showed little influence on lipid peroxidation but increased the activities of SOD and POD. However, Cr stress with high level (100μM) significantly increased MDA content and decreased the activities of SOD and POD in both leaf and root, suggesting that high chromium level in medium would induce serious oxidative to rice plant. Furthermore, chromium toxicity significantly decreased the uptake and distribution of nutrients in rice plants. Maximum nutrient accumulation occurred at level of 10μM Cr, while the minimum accumulation occurred at level of 100μM Cr, indicating more plant growth at 10μM Cr than the control and other Cr treatments. It may be assumed that there might be a synergistic effect of Cr on the plant growth in micro doses. Chromium accumulation was significantly and negatively correlated with the accumulation of each nutrient, suggesting that increasing Cr level may create nutrient deficiencies or imbalance in rice.
     4. Changes of organic acid exudation and rhizosphere pH in the rice plants under chromium stress
     The changes of rhizosphere pH, organic acid exudation of roots under chromium stress and their effects on chromium uptake and accumulation were studied using two rice genotypes though determining organic acid contents and checking the solution pH values. The results showed that rhizosphere pH increased with Cr level in the culture solution and the exposed time. The effects of Cr level and exposed time on organic acid exudation varied with the species of organic acids as well as genotypes. Among the 6 organic acids examined in this experiment, oxalic and malic acid contents were much higher than citric, latic, acetic and succinic acid, and had significantly positive correlation with rhizosphere pH, indicating that the exudation of these organic acids might play an important role in the change of rhizosphere pH. In addition, Cr accumulation in rice plants showed significantly positive correlations with rhizosphere pH, oxalic, malic and citric acid contents, respectively. It may be suggested that increase in rhizosphere pH, and oxalic, malic and citric acid exudation enhances Cr accumulation in rice plants.
     5. Kinetic characteristics of chromium uptake by rice root
     The kinetic characteristics of Cr uptake by rice roots for both Cr3+ and Cr6+ were studied with hydroponic culture and different Cr supply concentrations and exposure time. The results showed that the uptake rate of both Cr3+ and Cr6+ by rice root increased with the Cr supplying level, but they were saturated at high Cr level (Cr3+,100μM; Cr6+ 400μM). When fitted to Michaelis-Menten equation (V= Vmax* C/(Km+C)), the kinetic uptake of Cr3+ and Cr6+ for two rice genotypes could be illustrated as the following equations:for Xiuhui 113, V(Cr3+)= 2295.99* C / (34.78+C), R2= 0.9785**; V(Cr6+)= 853.24* C/(273.36+C), R2= 0.9701**; for Dan K5, V(Cr3+)= 2777.83* C (38.60+C), R2= 0.9438**; V(Cr6+)= 1232.00* C/(550.09+C), R2= 0.9915**. Hexavalent chromium showed much higher Km value but much lower Vmax than Cr3+, suggesting that Cr3+ had much more affinity with rice roots than Cr6+. In addition, both Km and Vmax values of Dan K5 were much higher than those of Xiushi 113, indicating that Dan K5 had lower affinity with Cr but higher potentiality to uptake Cr than Xiushui 113. During 0.5-48h with supplying 100μM Cr3+ and Cr6+, Cr concentration in rice root increased with the exposure time. However, Cr3+ concentration was saturated at t=12h, while Cr6+ was not saturated at that time. Furthermore, the uptake of Cr3+ was more rapid than of that of Cr6+. For an example, at 0.5h after treatment, Cr concentration in rice roots rose up to 400μg g-1 DW when supplied with Cr3+, while only 20μg g-1 DW when supplied with Cr6+. The experiment of metabolic inhibitors and low temperature showed that the uptake Cr6+ was energy dependent, but Cr3+ required much less energy. It may be assumed that that Cr6+ uptake is an active process, while Cr3+ uptake is passive one.
     6. Subcellular distribution and chemical forms of chromium in rice plants under different chromium stress
     The subcellular distribution and chemical forms of different heavy metals in rice is correlated with their bio-toxicity. An experiment was conducted to investigate the subcellular distribution and chemical forms of chromium (Cr) in two rice genotypes (Oryza sativa L. cvs. Xiushui 113 and Dan K5) differing in Cr accumulation, to understand the mechanism of Cr toxicity and tolerance in rice plants. The results of microbeam synchrotron radiation X-ray fluorescence (μ-SRXRF) showed that Cr in rice tissues mainly distributed in epidermis and vascular bundles, indicating that the epidermis and xylem play important roles in Cr fixation and translocation, respectively. Furthermore, it was found that Cr in the root cells of rice plants exposed to Cr stress was mainly localized in cell walls, whereas Cr in leaf or stem cells were mainly present in both cell walls and vacuoles, suggesting that both compartments act as important protective barriers against Cr toxicity in rice cells. Although Cr ions in all plant tissues exist predominantly in the forms extracted by 80% ethanol and d-H2O, the amount of Cr in the chemical forms extracted by 2% HAc,0.6M HCl and in residues was significantly increased under the highest Cr level (100μM Cr) compared to the plants grown under lower Cr levels. These results also indicate that excess Cr accumulated in rice plants under Cr stress is bound to undissolved or low bioavailable compounds, such as undissolved phosphate and oxalate, being beneficial for rice plants to alleviate Cr toxicity. In addition, under the highest Cr level (100μM), Dan K5 had a higher percentage of Cr in the chemical forms extracted by 2% HAc,0.6μM HCl and in residues compared to Xiushui 113 in both stems and leaves, indicating that more Cr ions in shoots of Dan K5 were bound to undissolved or low bio-available compounds, in comparison with those of Xiushui 113. It is evident that the low bioavailability of Cr in the shoots of Dan K5 is related to a high Cr accumulation.
     7. Proteomic changes in response to chromium treatments in rice
     The mechanisms of chromium toxicity and tolerance still remain to be illustrated. In the present study, an investigation aimed at understanding molecular mechanisms of chromium toxicity was carried out using proteomic analysis. The seedlings of two rice genotypes (Oryza sativa L. cvs. Xiushui 113 and Dan K5) differing in Cr accumulation were exposed to three Cr treatments from 0 to 200μM. Proteins were extracted from the leaves and roots collected from both control and stressed seedlings. Two-dimensional gel electrophoresis (2-DE) coupled with mass spectrometry was adopted to investigate the protein expression patterns of rice leaves and roots in responses to Cr stress. A total of 55 proteins (41 in leaves and 14 in roots) were identified in response to chromium stress by MALDI-TOF mass spectrometry analysis, containing RuBiCo, proteins involved in energy and material metabolism, and the potential proteins involved in Cr tolerance. A group of novel proteins were identified to up-regulate in responding to Cr stress, including Hsp90, NADP-isocitrate dehydrogenase, S-adenosylmethionine synthetase, glyoxalase I, reversibly glycosylated polypeptide, Glutamine synthetase, ATP synthase, Guanine nucleotide-binding protein beta subunit-like protein and Signal recognition particle 54 kDa. These proteins are involved in several cellular processes, including cell wall synthesis, energy production and metabolism, electron transport and detoxification. A protein, named reversibly glycosylated polypeptide, which is involved in cell wall synthesis, was the first time being found associated with heavy metal stress.
     8. Effect of glutothione in alleviating chromium toxicity to rice plants
     The effect of exogenous glutathione (GSH) in alleviating chromium stress was estimated through examining plant growth, chlorophyll and soluble protein contents, antioxidant enzyme activity and lipid peroxidation in rice seedlings exposed to chromium stress. The results showed that plant growth, and chlorophyll and soluble protein contents were severely reduced when the rice plants were exposed to 100μM Cr. Addition of GSH in the culture solution dramatically alleviated the reduction of plant growth, and chlorophyll and soluble protein contents. The activities of some antioxidant enzymes, including SOD, CAT and GR in rice leaves and CAT and GPX in rice roots were increased under Cr stress, which is attributed to defending response to oxidative stress in plants. Addition of GSH reduced the MDA accumulation and increased the activities of antioxidant enzymes in both leaves and roots, suggesting that GSH may enhance antioxidant capacity in Cr-stressed plants. Furthermore, GSH addition significantly decreased Cr uptake and root-to-shoot transport in rice plants exposed to Cr stress. It can be assumed that GSH is involved in Cr compartmentalization in root cells.
     9. Effect of silicon in alleviating chromium toxicity to rice plants
     The alleviatory effect of Si on Cr toxicity to rice was investigated using a hydroponic experiment with 12 factorial treatments of two Cr levels (0 and 100μM), three Si levels (0,75 and 150mg L-1) and two rice genotypes (Dan K5 and Xiushui113). The results showed that 100μM Cr markedly decreased plant height, dry biomass, soluble protein content, and root antioxidant enzyme activity, whereas significantly increased Cr concentration and MDA content. However, the reduction of plant height, dry biomass and soluble content was greatly alleviated from Si addition to the hydroponic solution. Compared with the plants treated with Cr alone, Si addition significantly reduced Cr uptake and translocation in rice plants. No significant difference was observed between the two Si treatments (75 or 150mg L-1) in shoot Cr concentration and Cr translocation factor. Si addition also alleviated the reduction of anti-oxidative enzymes SOD and APX in leaves; CAT and APX in roots and the increase of MDA content in the Cr-stressed plants. Furthermore, the beneficial effects of Si on activities of anti-oxidative enzymes under Cr stress were genotype dependent. The highest activities of SOD, POD, CAT and APX in leaves occurred in the treatment Cr+Si 150 for Xiushui113 and in the treatment Cr+Si 75 for Dan K5, respectively. It may be suggested that the beneficial effect of Si on alleviating oxidative stress was much more pronounced in Dan K5 than in Xiushui113. The current results showed that Si alleviates Cr toxicity through lowering Cr uptake and translocation and enhancing the activities of anti-oxidative enzymes.
引文
Abdel-Sablur, M.F., Mortvedt, J.J., Kelsoe, J.J.,1998. Cadmium-Zinc interactions in plants and extractable cadmium and zinc fractions in soil. Soil Science 145,424-434.
    Adams, M.L., Zhao, F.J., McGrath, S.P., Nicholson, F.A., Chambers, B.J.,2004. Predicting cadmium concentrations in wheat and barley grain using soil properties. Journal of Environmental Quality 33,532-541.
    Adriano, D.C.,1986. Trace elements in the terrestrial environment. New York:Springer Verlag; pp. 105-123.
    Aebi, H.,1984. Catalase in vitro. Methods in Enzymology 105,121-126.
    Ahsan, N., Lee, D.G., Alam, I., Kim, P.J., Lee, J.J., Ahn, Y.O., Kwak, S.S., Lee, I.J., Bahk, J.D., Kang, K.Y., Renaut, J., Komatsu, S., Lee, B.H.,2008. Comparative proteomic study of arsenic-induced differentially expressed proteins in rice roots reveals glutathione plays a central role during As stress. Proteomics 8,3561-3576.
    Ahsan, N., Lee, D.G., Lee, S.H., Kang, K.Y., Bahk, J.D., Choi, M.S., Lee, I.J., Renaut, J., Lee, B.H., 2007a. A comparative proteomic analysis of tomato leaves in response to waterlogging stress. Physiologia Plantarum 131,555-570.
    Ahsan, N., Lee, S.H., Lee, D.G., Lee, H.,2007b. Physiological and protein profiles alternation of germinating rice seed lings exposed to acute cadmium toxicity. Comptes Rendus Biologies 330, 735-746.
    Ahsan, N., Lee, D.G., Lee, S.H., Kang, K.Y.,2007c. Excess copper induced physiological and proteomic changes in germinating rice seeds. Chemosphere 67,1182-1193.
    Ahsan, N., Renaut, J., Komatsu, S.,2009. Recent developments in the application of proteomics to the analysis of plant responses to heavy metals. Proteomics 9,2602-2621.
    Aina, R., Labra, M., Fumagalli, P., Vannini, C.,2007. Thiolpeptide level and proteomic changes in response to cadmium toxicity in Oryza sativa L. roots. Environmental and Experimental Botany 59,381-392.
    Ali, G.M., Komatsu, S.,2006. Proteomic analysis of rice leaf sheath during drought stress. Journal of Proteome Research 5,396-403.
    Allen, D. L., Jarrell, W. M.,1989. Proton and copper adsorption to maize and soybean root cell walls. Plant Physiology 89,823-832.
    Almas, A.R., Singh, B.R.,2001. Plant uptake of cadmium109 and zinc65 at different temperature and organic matter levels. Journal of Environmental Quality 30,869-877.
    Alvarez, S., Berla, B.M., Sheffield, J., Cahoon, R.E., Jez, J.M., Hicks, L.M.,2009. Comprehensive analysis of the Brassica juncea root proteome in response to cadmium exposure by complementary proteomic approaches. Proteomics 9,2419-2431.
    Amme, S., Matros, A., Schlesier, B., Mock, H.P.,2006. Proteome analysis of cold stress response in Arabidopsis thaliana using DIGE-technology. Journal of Experimental Botany 57,1537-1546.
    An, Y.J., Kim, Y.M., Kwon, T.I., Jeong, S.W.,2004. Combined effect of copper, cadmium, and lead upon Cucumis sativus growth and bioaccumulation. Science of the Total Environment 326,85-93.
    Anderson, A.J., Meyer, D.R., Mayer, F.K.,1972. Heavy metal toxicities:levels of nickel, cobalt and chromium in the soil and plants associated with visual symptoms and variation in growth of an oat crop. Australian Journal of Agricultural Research 24,557-571.
    Anderson, R.A.,1989. Essentiality of Cr in humans. Science of the Total Environment 86,75-81.
    Anderson, R.A.,1997. Chromium as an essential nutrient for humans. Regulatory Toxicology and Pharmacology 26,35-41.
    Antoniadis, V., Robinson, J.S., Alloway, B.J.,2008. Effects of short-term pH fluctuations on cadmium, nickel, lead, and zinc availability to ryegrass in a sewage sludge-amended field. Chemosphere 71, 759-764.
    Arao, T., Ae, N.,2003. Genotypic variations in cadmium levels of rice grain. Soil Science andPlant Nutrition 49,473-479.
    Arnfalk, P., Wasay, A., Tokunaga, S.,1996. A comparative study of Cd, Cr(III), Cr(VI), Hg, and Pb uptake by minerals and soil materials. Water, Air and Soil Pollution 87,131-148.
    Athalye, V.V., Ramachandran, V., D'Souza, D.J.,1995. Influence of chelating agents on plant uptake of 51Cr,210Pb and 210PO. Environmental.Pollution 89,47-53.
    Audi, G., Wapstra, A.H., Thibault, C., Blachot,J., Bersillon, O.,2003. The NUBASE evaluation of nuclear and decay properties. Nuclear Physics A 729,3-128.
    Aydinalp, C., Marinova, S.,2003. Distribution and forms of heavy metals in some agricultural soils. Polish Journal of Environmental Studies 12,629-633.
    Badawy, S. H., Helal, M.I.D., Chaudri, A.M., Lawlor, K., McGrath, S. P.,2002. Soil Solid-phase controls lead activity in soil solution. Journal of Environmental. Quality 31,162-167.
    Bae, M.S., Cho, E.J., Choi, E.Y., Park, O.K.,2003. Analysis of Arabidopsis nuclear proteome and its response to cold stress. The Plant Journal 36,652-663.
    Bah, A.M., Sun, H.Y., Chen, F., Zhou, J., Dai, H.X., Zhang, G.P., Wu, F.B.,2010. Comparative proteomic analysis of Typha angustifolia leaf under chromium, cadmium and lead stress. Journal of Hazardous Materials 184,191-203.
    Bai, T.H., Li, C.Y., Ma, F.W., Shu, H.R., Han, M.Y.,2009. Exogenous salicylic acid alleviates growth inhibition and oxidative stress induced by hypoxia stress in Malus robusta Rehd. Journal of Plant Growth Regulation 28,358-366.
    Baker, A.J.M., Brooks, R.R.,1989. Terrestrial higher plants which hyperaccumulate metallicelements--a review of their distribution, ecology and phytochemistry. Biorecovery 1, 81-126.
    Baker, N.R., Rosenqvist, E.,2004. Applications of chlorophyll fluorescence can improve crop production strategies:an examination of future possibilities. Journal of Experimental Botany 55, 1607-1621.
    Bang, J., Hesterberg, D.,2004. Dissolution of trace element contaminants from two Coastal Plain soils as affected by pH. Journal of Environmental. Quality 33,891-901.
    Barber, J.,2008. Crystal structure of the oxygen-evolving complex of photosystem Ⅱ. Inorganic Chemistry 47,1700-1710.
    Barcelo, J., Poschenrieder, C.,1997. Chromium in plants. In:Carati S, Tottarelli F, Seqmi P (Eds.), Chromium environment issue. Francotangati Press, Milan. pp.101-129.
    Barcelo, J., Poschenrieder, C., Gunse, B.,1986. Water relations of chromium VI treated bush bean plants (Phaseolus vulgaris L cv Contender) under both normal and water stress conditions. Journal of Experimental Botany 37,178-187.
    Barcelo, J., Poschenriender, C., Ruano, A., Gunse, B.,1985. Leaf water potential in Cr (VI) treated bean plants(Phaseolus vulgaris L). Plant. Physiology Supplement 77,163-164.
    Barry, B.A., Hicks, C., De Riso, A., Jenson, D.L.,2005. Calcium ligation in photosystem II under inhibiting conditions. Biophysical Journal 89,393-401.
    Bartlett, R.J.,1991. Chromium cycling in soils and water:links, gaps and methods. Environmental Health Perspectives 92,31-34.
    Bartlett, R.J., Kimble, J.M.,1976. Behavior of chromium in soils. Ⅱ. Hexavalent forms. Journal of Environmental Quality 5,383-386.
    Barton, L.L., Johnson, G.V., O'Nan, A.G., Wagener, B.M.,2000. Inhibition of ferric chelate reductase in alfalfa roots by cobalt, nickel, chromium, and copper. Journal of Plant Nutrition 23,1833-1845.
    Bassi, M., Corradi, M., Ricci, A.,1990b. Effects of Cr (VI) on two freshwater plants, Lemna minor and Pistia stratiotes:2. Biochemical and physiological observations. Cytobios 62,101-109.
    Baylis, A.D., Gragopoulou, C., Davidson, K.J., Birchall, J.D.,1994. Effects of silicon on the toxicity of aluminum to soybean. Communications in Soil Science and Plant Analysis 25,537-546.
    Beauchamp, C., Fridovich, I.,1971. Superoxide dismutase:improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry 44,276-287.
    Becquer, T., Quantin, C., Sicot, M., Boudot, J.P.,2003. Chromium availability in ultramafic soils from New Caledonia. Science of the Total Environment 301,251-261.
    Belimov, A.A., Safronova, V.I., Tsyganov, V.E., Borisov, A.Y., Kozhemyakov, A.P., Stepanok, V.V., Martenson, A.M., Gianinazzi-Pearson, V., Tikhonovich, I.A.,2003. Genetic variability in tolerance to cadmium and accumulation of heavy metals in pea. Euphytica 131,25-35.
    Bell, M.J., McLaughlin, M.J., Wright, G.C., Cruickshank, J.,1997. Inter- and intra- specific variation in accumulation of cadmium by peanut, soybean, and navy bean. Austrian Journal of Agricultural Research 48,1151-1160.
    Berg, M.G., Gardner, E.H.,1978. Methods of soil analysis used in the soil testing laboratory at Oregon State University. Oregon State University. Agricultural Experiment Station, Corvallis. Special Report.321, pp.44.
    Biacs, P.A., Daood, H.G., Kadar, I.,1995. Effect of Mo, Se, Zn, and Cr treatments on the yield, element concentration, and carotenoid content of carrot. Journal of Agricultural and Food Chemistry 43, 589-591.
    Bishnoi, N.R., Chugh, L.K., Sawhney, S.K.,1993a. Effect of chromium on photosynthesis, respiration and nitrogen fixation in pea (Pisum sativum L.) seedlings. Journal of Plant Physiology 142,25-30.
    Bluskov, S., Arocena, J.M., Omotoso, O.O., Young, J.P.,2010. Uptake, distribution, and speciation of chromium in Brassica Juncea. International Journal of Phytoremediation 7,153-165.
    Bogs, J., Bourbouloux, A., Cagnac, O., Wachter, A., Rausch, T., Delrot, S.,2003. Functional characterization and expression analysis of a glutathione transporter, BjGTl, from Brassica juncea: evidence for regulation by heavy metal exposure. Plant, Cell and Environment 26,1703-1711.
    Bonet, A., Poschenrieder, C., Barcelo, J.,1991. Chromium Ⅲ-iron interaction in Fe-deficient and Fe-sufficient bean plants:Ⅰ. Growth and nutrient content. Journal of Plant Nutrition 14,403-414.
    Bradford, M.M.,1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72,248-254.
    Braillier,S., Harrison, R.B., Hennry, C.L., Dogsen, X.,1996. Liming effects on availability of Cd, Cu, Ni and Zn in a soil amended with sewage sludge 16 years previously. Water, Air and Soil Pollution 86,195-206.
    Brauer, S.L., Wetterhahn, K.E.,1991. Chromium (VI) forms thiolate complex with glutathione. Journal of the American Chemical Society 113,3001-3007.
    Broadley, M.R., White, P.J., Hammond, J.P., Zelko, I., Lux, A.,2006. Zinc in plants. New Phytologist 173,677-702.
    Brooks, R.R., Shaw, S., Marfil, A.A.,1981. The chemical form and physiological function of nickel in some Iberian Alyssum species. Physiologia Plantarum 51,167-170.
    Brune, A., Urbach, W., Dietz, K. J.,1994. Compartment and transport of zinc in barley leaves as basic mechanism involved in zinc tolerance. Plant, Cell and Environmental.17,153-162.
    Buerge, I.J., Hug, S J.,1997. Kinetics and pH dependence of Cr6+ reduction by Fe2+. Environmental Science and Technology 31,1426-1432.
    Calba, H., Cazevieille, P., The, C., Poss, R., Jaillard, B.,2004. The dynamics of protons, aluminium and calcium in the rhizosphere of maize cultivated in tropical acid soils, experimental study and modelling. Plant and Soil 260,33-46.
    Cary, E.E., Allaway, W.H., Olson, O.E.,1977a. Control of Cr concentrations in food plants.1. Absorption and translocation of Cr by plants. Journal of Agricultural and Food Chemistry 25, 300-304.
    Cary, E.E., Allaway, W.H., Olson,O.,1977b. Control of chromium concentrations in food plants. Ⅱ. Chemistry of chromium in soil and its availability to plants.Journal of Agricultural and Food Chemistry 25,305-309.
    Cervantes, C., Campos-Garcia, J., Devars, S., Gutierrez-Corona, F., Loza-Tavera, H., Torres-guzman, J. C., Moreno-Sanchez R.,2001. Interactions of chromium with micro- organisms and plants. FEMS Microbiol Reviews 25,335-347.
    Chaignon, V., Quesnoit, M., Hinsinger, P.,2004. Rhizosphere pH, bioavailability and extractability of copper in a copper-contaminated acidic soil as affected by liming. Rhizosphere 2004 Conference-Perspectives and Challenges-A Tribute to Lorenz Hiltner,12-17 September 2004, Munich, Germany (poster).
    Chandra, P., Sinha, S., Rai, U.N.,1997. Bioremediation of Cr from water and soil by vascular aquatic plants. In:Kruger EL, Anderson TA, Coats JR, editors. Phytoremediation of Soil and Water Contaminants. ACS Symposium Series, vol.664. Washington, DC7 American Chemical Society pp.274-82.
    Chaney, R.L., Brown, J.C., Tiffin, L.O.,1972. Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiology 50,208-213.
    Chatterjee, J., Chatterjee, C.,2000. Phytotoxicity of cobalt, chromium and copper in cauliflower. Environmental Pollution 109,69-74.
    Chaturvedi, R.K. and Sankar, K.,2006. Laboratory manual for the physico-chemical analysis of soil, water and plant. Wildlife Institute of India, Dehradun.
    Cheng, W.D., Zhang, G.P., Yao, H.G., Wu, W., Xu, M.,2006. Genotypic and environmental variation in cadmium, chromium, arsenic, nickel and lead concentrations in rice grains. Journal of Zhejiang University Science B 7,565-571.
    Chiang, P.N., Wang, M.K., Chiu, C.Y., Chou, S.Y.,2006. Effects of cadmium amendments on low-molecular-weight organic acid exudates in rhizosphere soils of tobacco and sunflower. Environmental Toxicity 21,479-488.
    Chitteti, B.R., Peng, Z.,2007. Proteome and phosphoproteome differential expression under salinity stress in rice (Oryza sativa) roots. Journal of Proteome Research 6,1718-1727.
    Choudhury, S., Panda, S. K.,2004. Induction of oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr.) Broth. under lead and arsenic phytotoxicity. Current Science 87,342-348.
    Clemens, S.,2001. Molecular mechallisms of plant metal tolerance and homeostasis. Planta 212, 475-486.
    Clemens, S., Kim, E.J., Neumann, D., Schroeder, J.I.,1999. Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. The EMBO Journal 18,3325-3333.
    Clemens, S., Palmgren, M.G., Kramer, U.,2002. A long way ahead:understanding and engineering plant metal accumulation. Trends in Plant Science 7,309-315.
    Clemens, S., Schroeder, J.I., Degenkolb, T.,2001. Caenorhabditis elegans expresses a functional phytochelatin synthase. European Journal of Biochemistry 268,3640-3643.
    Cobbett, C., Goldsbrough, P.,2002. Phytochelatins and metallothioneins:roles in heavy metal detoxification and homeostasis. Annual Review of Plant Biology 53,159-182.
    Cobbett, C.S.,2000. Phytochelatins and their roles in heavy metal detoxification. Plant Physiology 123, 825-833.
    Codex Alimentarius Commission,2000. Report of the thirty-second session of the Codex Committee on food additives and contaminants. Joint FAO/WHO Food Standards Program. Beijing, People's Republic of China, March, pp.20-24.
    Corradi, M.G., Bianchi, A., Albasini, A.,1993. Chromium toxicity in Salivia sclarea:Ⅰ Effects of hexavalent chromium on seed germination and seedling development. Environmental and Experimental Botany 33,405-413.
    Cosio, C., Martinoia, E., Keller, C.,2004. Hyperaccumulation of Cadmium and Zinc in Thlaspi caerulescens and Arabidops is halleri at the leaf cellular level. Plant Physiology 134,716-725.
    Costa, M.,1997. Toxicity and carcinogenicity of Cr(VI) in animal models and humans. Critical Reviews in Toxicology 27,431-442.
    Costa, M.,2000. Chromium and nickel. In:Zalups, R.K., Koropatnick, J. (Eds.), Molecular Biology and Toxicology of Metals. Taylor and Francis, Great Britain, pp.113-114.
    Cui, S., Huang, F., Wang, J., Ma, X., Cheng, Y, Liu, J.,2005. A proteomic analysis of cold stress responses in rice seedlings. Proteomics 5,3162-3172.
    Dai, J., Becquer, T., Rouiller, J.H., Reversat, G., Reversat, F.B., Lavelle. P.,2004. Influence of heavy metals on C and N mineralization and microbial biomass in Zn-, Pb-, Cu-, and Cd-contaminated soils. Applied Soil Ecology 25,99-109.
    Davies, F.T., Puryear, J.D., Newton, R.J., Egilla, J.N., Grossi, J.A.S.,2002. Mycorrhizal fungi increase chromium uptake by sunflower plants:influence on tissue mineral concentration, growth, and gas exchange. Journal of Plant Nutrition 25,2389-2407.
    Dazy, M., Beraud, E., Cotelle, Sylvie, Meux, E., Masfaraud, J.F., Ferard, J.F.,2008. Antioxidant enzyme activities as affected by trivalent and hexavalent chromium species in Fontinalis antipyretica Hedw. Chemosphere 73,281-290.
    Defilippis, L.F. and Pallaghy, C.K.,1994. Heavy metals:sources and biological effects. In:RAI, L.C.; GAUR, J.P. and SOEDER, C.J. eds. Advances in Limnology Series:Algae and Water Pollution, E. Scheizerbartsche Press, Stuttgart pp.31-77.
    Delhaize, E., Ryan, P.R., Raandall, P.J.,1993, Aluminum tolerance un wheat (Triticum aestivum L.):II. Aluminum stimulated excretion of malic acid from root apices. Plant Physiology 103,695-702.
    Desjardin, V., Bayard, R., Huck, N., Manceau, A., Gourdon, R.,2002. Effect of microbial activity on the mobility of chromium in soils. Waste Management 22,195-200.
    Diwan H., Ahmad A., Iqbal M.,2008. Genotypic variation in the phytoremediation potential of indian mustard for chromium. Environmental Management 41:734-741.
    Dixit, V., Pandey, V, Shyam, R.,2002. Chromium ions inactivate electron transport and enhance superoxide generation in vivo in pea (Pisum sativum L. cv. Azad) root mitochondria. Plant, Cell, and Environment 25,687-690.
    Dong, D.M., Ramsey, M.H., Thornton, I.,1995. Effect of soil pH on Al availability in soils and its uptake by the soybean plant (Glycine max). Journal of Geochemical Exploration 55,223-230.
    Dooki, A.D., Mayer-Posner, F.J., Askari, H., Zaiee, A.A., Salekdeh, G.H.,2006. Proteomic responses of rice young panicles to salinity. Proteomics 6,6498-6507.
    Drazic G, Mihailovic N.2005. Modification of cadmium toxicity in soybean seedlings by salicylic acid. Plant Science 168,511-517.
    Drew, M.C., Saker, L.R., Barber, S.A.,1984. Changes in the kinetics of phosphate and potassium absorption in nutrient-deficient barley roots measured by a sodium-depletion techanique. Planta 160,490-499.
    Du Laing, G., De Vos, R., Vandecasteele, B., Lesage, E., Tack, F.M.G., Verloo, M.G.2008. Effect of salinity on heavy metal mobility and availability in intertidal sediments of the Scheldt estuary. Estuarine, Coastal and Shelf Science 77,589-602.
    Du Laing, G., Rinklebe, J., Vandecasteele, B.,, Meers, E, Tack, F.M.G 2009. Heavy metal mobility and availability in estuarine and riverine floodplain soils and sediments:a review. Science of the Total Environment 407,3972-3985.
    Du Laing, G., Vanthuyne, D.R.J., Vandecasteele, B., Tack, F.M.G., Verloo, M.G.2007. Influence of hydrological regime on pore water metal concentrations in a contaminated sediment-derived soil. Environmental Pollution 147,615-625.
    Duarte, B., Delgado, M., Cacador, I.,2007. The role of citric acid in cadmium and nickel uptake and translocation in Halimione portulacoides. Chemosphere 69,836-840.
    Eary, L.E. and Rai, D.,1989. Kinetics of chromate reduction. American Journal of Science 289, 180-213.
    Eary, L.E. Rai, D.,1991. Chromate reduction by subsurface soils under acidic conditions. Soil Science Society of America Journal 55,676-683.
    Eary, L.E., Rai, D.,1987. Kinetics of Cr(III) oxidation bymanganese dioxide. Environmental Science and Technology 21,1187-1193.
    Eary, L.E., Rai, D.,1988. Chromate removal from aqueous wastes by reduction with ferrous iron. Environmental Science and Technology 22,972-977.
    El-Tayeb, M.A., El-Enany, A.E., Ahmed, N.L.,2006. Salicylic acid-induced adaptive response to copper stress in sunflower (Helianthus annuus L.). Plant Growth Regulation 50,191-199.
    Epstein, E.1994. The anomaly of silicon in plant biology. Proceedings of the National Academy of Sciences 91,11-17.
    Epstein, E.1999. Silicon. Annual Review of Plant Physiology and Plant Molecular Biology 50, 641-664.
    Epstein, E., Hagen, C.E.,1952. A kinetic study of the absorption of alkali cations by barley root. Plant Physiology 27,457-474.
    Farinati, S., DalCorso, G, Bona, E., Corbella, M., Lampis, S., Cecconi, D., Polati, R., Berta, G., Vallini, G., Furini, A.,2009. Proteomic analysis of Arabidopsis halleri shoots in response to the heavy metals cadmium and zinc and rhizosphere microorganisms. Proteomics 9,4837-4850.
    Ferreira, K.N., Iverson, T.M., Maghlaoui, K., Barber, J., Iwata, S.,2004. Architecture of the photosynthetic oxygen-evolving center. Science 303,1831-1838.
    Ferreira, S., Hjerno, K., Larsen, M., Wingsle, G.,2006. Proteome profiling of Populus euphratica Oliv. upon heat stress. Annals of Botany 98,361-377.
    Foy, C.D., Burns, G.R., Brown, J.C., Fleming, A.L.,1965. Differential aluminum tolerance of two wheat varieties associated with plant-induced pH changes around their roots. Soil Science Society of America Journal 29,64-66.
    Fridovich, I.,1986. Biological effects of superoxide radical. Archives of Biochemistry and Biophysics 247,1-11.
    Fukuda, T., Saito, A., Wasaki, J., Shinano, T.,2007. Metabolic alterations proposed by proteome in rice roots grown under low P and high Al concentration under low pH. Plant Science 172,1157-1165.
    Garcia-Hernandez, M., Murphy, A., Taiz, L.,1998. Metallothioneins 1 and 2 have distinct but overlapping expression patterns in Arabidopsis. Plant Physiology 118,387-397.
    Garcia-Limones, C,. Hervas, A., Navas-Cortes, J.A., Jimenez-Diaz, R.M., Tena, M.,2002. Induction of an antioxidant enzyme system and other oxidative stress markers associated with compatible and incompatible interactions between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp. Ciceris. Physiological and Molecular Plant Pathology 61,325-337.
    Gardea-Torresdey, J.L., Dokken, K., Tiemann, K.J., Parsons, J.G, Ramos, J., Pingitore, N.E., Gamez, G,2002. Infrared and X-Ray absorption spectroscopic studies on the mechanism of chromium (III) binding to alfalfa and malone biomass. Microchemical.Journal 71,157-166.
    Gardea-Torresdey, J.L., Tiemann, K.J., Armendariz, V., Bess-Oberto, L., Chianelli, R.R., Rios, J.J., Parsons, G., Gamez, G.,2000. Characterization of Cr (VI) binding and reduction to Cr (Ⅲ) by the agricultural byproducts of Avena monida (Oat) biomass. Journal of Hazardous Materials 80, 175-188
    Gardea-Torresdey, J.L., Tiemann, K.J., Peralta-Videa, J.R., Parsons, J.G, Delgado, M.,2004 Binding of erbium (III) and holmium (III) to native and chemically modified alfalfa biomass:A spectroscopic investigation. Microchemical Journal 76,65-76.
    Gianazza, E., Wait, R., Sozzi, A., Regondi, S.,2007. Growth and protein profile changes in Lepidium sativum L. plantlets exposed to cadmium. Environmental and Experimental Botany 59,179-187.
    Giardi, M.T., Koblizek, M., Masojidek, J.,2001. Photosystem II-based biosensors for the detection of pollutants. Biosensors and Bioelectronics 16,1027-1033.
    Gikas, P., Romanos, P.,2006. Effects of trivalent (Cr(III)) and hexavalent (Cr(VI)) chromium on the growth of activated sludge. Journal of Hazardous Materials 133,212-217.
    Girardini, J.E., Khayath, N., Amirante, A., Dissous, C., Serra, E.,2005. Schistosoma mansoni: ferredoxin-NADP(H) oxidoreductase and the metabolism of reactive oxygen species. Experimental Parasitology 110,157-161.
    Godbold, D.L., Horst, W.J., Collins, J.C., Thurman, D.A., Marschner, H.,1984. Accumulation of zinc and organic acids in roots of zinc tolerant and non-tolerant ecotypes of Deschampsia caespitosa. Journal of Plant Physiology 116,59-69.
    Goldsbrough, P.,2000. Metal tolerance in plants:the role of phytochelatins and metallothioneins. In: Terry N, Banuelos G, Eds. Phytoremediation of contaminated soil and water. CRC Press LLC, 221-233.
    Golovatyj, S.E., Bogatyreva, E.N.,1999. Effect of levels of chromium content in a soil on its distribution in organs of com plants. Soil Research Fertilizer 197-204.
    Gong, H.J., Randall, D.P., Flowers, T. J.,2006. Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow. Plant, Cell, and Environmental.,29, 1970-1979.
    Griffin, R.A., Au, A.K., Frost, R.R.,1977. Effect of pH [hydrogen-ion concentration] on adsorption of chromium from landfill-leachate by clay minerals. Journal of Environmental Science and Health Part A-Environmental Science and Engineering 12,431-449.
    Grill, E., Winnacher, E.L., Zenk, M.H.,1987. Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothionines. Proceedings of the National Academy of Sciences of USA 84,439-143
    Grill E., Winnacker E.L., Zenk M.H.,1985. Phytochelatins:the principal heavy-metal complexing peptides of higher plants. Science 230,674-676.
    Grubinger, V.P., Gutenmann, W.H., Doss, G.J., Rutzke, M., Lisk, D.J.,1994. Chromium in swiss chard grown on soil amended with tannery meal fertilizer. Chemosphere 4,717-720.
    Gunes, A., Inal, A., Bagei, E.G., Pilbeam, D.J.,2007. Silicon-mediated changes of some physiological and enzymatic parameters symptomatic for oxidative stress in spinach and tomato grown in sodic-B toxic soil. Plant and Soil 290,103-114.
    Gunes, A., Inal, A., Alpaslan, M., Cicek, N., Guneri, E., Eraslan, F., Guzelordu, T.,2005. Effects of exogenously applied salicylic acid on the induction of multiple stress tolerance and mineral nutrition in maize (Zea mays L.). Archives of Agronomy and Soil Science 51,687-695.
    Gunes, A., Inal, A., Alpaslan, M., Eraslan, F., Bagci, E.G., Cicek, N.,2007. Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. Journal of Plant Physiology 164,728-736.
    Guo, B., Liang, Y.C., Zhu, Y.G., Zhao, F.J.,2007. Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress. Environmental Pollution 147,743-749.
    Guo, W., Meetam, M., Goldsbrough, P.,2008. Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Physiology 146, 1697-1706.
    Guo, B., Liang, Y.C., Zhu, Y.G.,2009. Does salicylic acid regulate antioxidant defense system, cell death, cadmium uptake and partitioning to acquire cadmium tolerance in rice. Journal of Plant Physiology 166,20-31.
    Gupta, K., Mehta, R., Kumar, N., Dahiya, D.S.,2000. Effect of chromium (Ⅵ) on phosphorus fractions in developing sunflower seeds (Helianthus annuus L). Crop Research 20,46-51.
    Ha, S.B., Smith, A.P., Howden, R., Dietrich, W.M., Bugg, S.,1999. Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyes pombe. The Plant Cell 11,1153-1163
    Hajduch, M., Rakwal, R., Agrawal, G.K., Yonekura, M.,2001. High-resolution two-dimensional electrophoresis separation of proteins from metal-stressed rice(Oryza sativa L.) leaves:drastic reductions/fragmentation of ribulose-1,5-bisphosphate carboxylase/oxygenase and induction of stress-related proteins. Electrophoresis 22,2824-2831.
    Hajheidari, M., Eivazi, A., Buchanan, B.B., Wong, J.H., Majidi, I., Salekdeh, G.H.,2007. Proteomics uncovers a role for redox in drought tolerance in wheat. Journal of Proteome Research 6, 1451-1460.
    Hajheidari, M., Hosseini Salekdeh, G.H., Heidari, M., Abdollahian-Noghabi, M., Sadeghian, S.Y., 2005. Proteome analysis of sugar beet leaves under drought stress. Proteomics 5,995-960.
    Hall, J.L.,2002. Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany 53,1-11.
    Hammond, K.E., Evans, D.E., Hodson, M.J.,1995. Aluminium/silicon interactions in barley (Hordeum vulgare L.) seedlings. Plant and Soil 173,89-95.
    Hashimoto, M., Komatsu, S.,2007. Proteomics analysis of rice seedling during cold stress. Proteomics 7,1293-1302.
    Hauschild, M.Z.,1993. Putrescine (1,4-diaminobutane) as an indicator of pollution-induced stress in higher plants:barley and rape stressed with Cr(Ⅲ) or Cr(Ⅵ). Ecotoxicology and Environmental Safety 26,228-247.
    Heikal, M.M.D., Berry, W.L., Wanllance, A., Herman, D.,1989. Alleviation of nickel toxicity by calcium salinity. Soil Science 147,389-479.
    Hettiarachchi, G.M., Ryan, J.A., Chaney, R.L., La Fleur, C.M.,2003. Sorption and desorption of cadmium by different fractions of biosolids-amended soils. Journal of Environmental Quality 32, 1684-1693.
    Hinsinger, P., Plassard, C., Jaillard, B.,2005. Rhizosphere:a new frontier for soil biogeochemistry. Journal of Geochemical Exploration 88,210-213.
    Hinsinger, P., Plassard, C., Tang, C., Jaillard, B.,2003. Origins of root-induced pH changes in the rhizosphere and their responses to environmental constraints, a review. Plant and Soil 248,43-59.
    Hodges, D.M., DeLong, J.M., Forney, C.F., Prange, R.K.,1999. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207,604-611.
    Hodson, M.J., Sangster, A.G.,1993. The interaction between silicon and aluminum in Sorghum bicolor (L.) Moench:growth analysis and X-ray microanalysis. Annals of Botany 72,389-400.
    Horcsik, Z., Olah, V., Balogh, A., Meszaros, I., Simon, L., Lakatos, G.,2006. Effect of Chromium (VI) on growth, element and photosynthetic pigment composition of Chlorella pyrenoidosa. Acta Biologica Szegediensis 50,19-23.
    Horvath, E., Szalai, G., Janda, T.,2007. Induction of abiotic stress tolerance by salicylic acid signaling. Journal of Plant Growth Regulation 26,290-300.
    Hossner, L.R., Loeppert, R.H., Newton, R.J., Szaniszlo, P.J., Attrep, M.,1998. Literature review: phytoaccumulation of chromium, uranium, and plutonium in plant systems. Am. Nati. Resour. Center for Pluto., USA, pp.15-24.
    Howden, R., Goldsbrough, P.B., Andersen, C.R., Cobbett, C.S.,1995. Cadmium-sensitive, cad1, mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiology 107,1059-1066.
    Howe, J.A., Loeppe, R.H., DeRose, V. J., Hunter, D.B., Bertsch, P.M.,2003. Localization and speciation of chromium in subterranean clover using XRF, XANES and EPR Spectroscopy. Environmental Science and Technology 37,4091-4097.
    Huffman, Jr E.W.D., Allaway, W.H.,1973a. Growth of plants in solution culture containing low levels of chromium. Plant Physiology 52,72-75.
    Huffman, Jr E.W.D., Allaway, H.W.,1973b. Chromium in plants:distribution in tissues, organelles, and extracts and availability of bean leaf Cr to animals. Journal of Agricultural and Food Chemistry B 21,982-986.
    Iiasegawa, I., Emiko, T., Michio, S.,1997. Genetic improvement of heavy metal tolerance in plants by transfer of the yeast metallothionein gene(CUPI). Plant and Soil 196,277-281.
    Imin, N., Kerim, T., Rolfe, B.G., Weinman, J J.,2004. Effect of early cold stress on the maturation of rice anthers. Proteomics 4,1873-1882.
    Impellitteri, C.A., Lu, Y.F., Saxe J.K., Allen, H.E., Peijnenburg W.J.G.M.,2002. Correlation of the partitioning of dissolved organic matter fractions with the desorption of Cd, Cu, Ni, Pb and Zn from 18 Dutch soils. Environment International 28,401-410.
    Inal, A., Pilbeam, D.J., Gunes, A.,2009. Silicon Increases Tolerance to Boron Toxicity and Reduces Oxidative Damage in Barley. Journal of Plant Nutrition 32,112-128.
    Iwasaki, K., Maier, P., Fecht, M., Horst, W.J.,2002a. Effects of silicon supply on apoplastic manganese concentrations in leaves and their relation to manganese tolerance in cowpea (Vigna unguiculata (L.)WaIp.). Plant and Soil 238,281-288.
    Iwasaki,K., Maier,P., Fecht, M., Horst, W. J.,2002b. Leaf apoplastic silicon enhances manganese tolerance of cowpea (Vigna unguiculata). Journal of Plant Physiology 159,167-173.
    Iyaka, Y.A.,2009. Chromium in soils:a review of its distribution and impacts. Continental Journal of Environmental Sciences 3,13-18.
    Jaeckel, P., Krauss, G., Menge, S., Schierhorn, A., Rucknagel, P., Krauss, G J.,2005. Cadmium induces a novel metallothionein and phytochelatin 2 in an aquatic fungus. Biochemical and Biophysical Research Communications 333,150-155.
    Jain, R., Srivastava, S., Madan, V.K., Jain, R.,2000. Influence of chromium on growth and cell division of sugarcane. Indian Journal of Plant Physiology 5,228-231.
    Jangpromma, N., Kitthaisong, S., Lomthaisong, K., Daduang, S., Jaisil, P., Thammasirirak, S.,2010. A proteomics analysis of drought stress-responsive proteins as biomarker for drought-tolerant Sugarcane cultivars. American Journal of Biochemistry and Biotechnology 6,89-102.
    Jarvis, S.C., Jones, L.H.P., Hopper, M.J.,1976. Cadmium uptake from solution by plants and its transport from roots to shoots. Plant and Soil 4,179-191.
    Jean, L., Bordas, F., Bollinger, J.C.,2007. Chromium and nickel mobilization from a contaminated soil using chelants. Environmental Pollution 147,729-736.
    Jones, C., Jacobsen, J.2009. Micronutrients:cycling, testing and fertilizer recommendations. Nutrient management modules 7,#4449-7. Montana State University Extension Service. Bozeman, Montana.
    Jones, D.L., Darrah, P.R.,1994. Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant and Soil 166,247-257.
    Jorge, R.A., Arruda, P.,1997. Aluminum-induced organic acids exudation by roots of an aluminum-tolerant tropical maize. Phytochemistry 45,675-681.
    Joseph, G.W., Merrilee, R.A., Raymond, E.,1995. Comparative toxicities of six heavy metals using root elongation and shoot growth in three plant species. The symposium on environmental toxicology and risk assessment, Atlanta, GA, USA pp.26-29.
    Joshi, V.N., Rathore, S.S., Arora, S.K.,1999. Effect of chromium on growth and development of cowpea(Vigna unguiculata L.). Indian Journal of Environmental Protection 19,745-749.
    Jung, I.L., Kim, S.K., Kim, I.G.,2006. Tlhe RgxS-mediated regulation of isocitrate dehydmgenase gene expression in Escherichia coli. Current Microbiology 52,21-26.
    Kagi, J.H.R., Schaffer, A.,1988. Biochemistry of metallothionein. Biochemistry 27,8509-8551.
    Kahn, P.,1995. From genome to proteome:looking at a cell's proteins. Science 270,369-370
    Kang, H.M., Saltveit, M.,2002. Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. Physiologia Plantarum 115,571-576.
    Karunyal, S., Renuga, G., Paliwal, K.,1994. Effects of tannery effluent on seed germination, leaf area, biomass and mineral content of some plants. Bioresource Technology 47,215-218.
    Kashem, M.A., Singh, B.R.,2001. Metal availability in contaminated soils:Ⅰ. Effects of flooding and organic matter on changes in Eh, pH and solubility of Cd, Ni and Zn. Nutrient Cycling in Agroecosystems 61,247-255.
    Katz, S.A., Salem, H.,1994. The biological and environmental chemistry of chromium. VCH Publishers, Inc., New York.
    Kaya, C., Tuna, A. L., Sonmez, O., Ince, F., Higgs, D.,2009. Mitigation Effects of Silicon on Maize Plants Grown at High Zinc. Journal of Plant Nutrition 32,1788-1798.
    Khan, A.G., Kuek, C., Chaudhry, T.M., Khoo, C.S., Hayes, W.J.,2000. Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41,197-207.
    Khan, A.G.,2005. Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. Journal of Trace Elements in Medicine and Biology 18:355-364.
    Khan, N.A., Samiullah,2006. Cadmium toxicity and tolerance in plants. Narosa Publishers, New Delhi, India.
    Khan, S., Ullah, S.M., Sarwar, K.S.,2001. Interaction of chromium and copper with nutrient elements in rice (Oryza sativa cv BR-11). Bulletin of the Institute of Tropical Agriculture Kyushu University 23,35-39.
    Khan, W., Prithiviraj, B., Smith, D.L.,2003. Photosynthetic responses of corn and soybean to foliar application of salicylates. Journal of Plant Physiology 160,485-492.
    Kieffer, P., Dommes, J., Hoffmann, L., Hausman, J.F.,2008. Quantitative changes in protein expression of cadmium exposed poplar plants. Proteomics 8,2514-2530.
    Kim, D.W., Rakwal, R., Agrawal, G.K., Jung, Y.H.2005. A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. Electrophoresis 26,4521-4539.
    Kleiman, I.D., Cogliatti, D.H.,1998. Chromium removal from aqueous solutions by different plant species. Environmental Technology 19,1127-1132.
    Klonowska, A., Clark, M.E., Thieman, S.B., Giles, B.J., Wall, J.D., Fields, M.W.,2008. Hexavalent chromium reduction in Desulfovibrio vulgaris Hildenborough causes transitory inhibition of sulfate reduction and cell growth. Applied Microbiology and Biotechnology 78,1007-1016.
    Kochian, L.V.,1995. Cellular mechanisms of aluminum toxicity and resistance in plants. Annual Review of Plant Physiology and Plant Molecular Biology 46,237-260.
    Korkmaz, A.,2005. Inclusion of acetyl salicylic acid and methyl jasmonate into the priming solution improves low-temperature germination and emergence of sweet pepper. Horticultural Science 40, 197-200.
    Kotas, J., Stasicka, Z.,2000. Chromium occurrence in the environment and methods of its speciation. Environmental Pollution 107,263-283.
    Kramer, U.,2000. Cadmium for all meals-plants with an unusual appetite. New Phytologist 145:1-3.
    Kramer, U., Ingrid, J.P., Roger, C.P., Raskin, I., Salt, D.E.,2000. Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspe species. Plant Physiology 122, 1343-1353.
    Krantev, A., Yordanova, R., Janda, T., Szalai, G., Popova, L.,2008. Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. Journal of Plant Physiology 165,920-931.
    Krishnamurti, G.S.R., Huang, P.M., Kozak, L.M.,1999. Sorption and desorption kinetics of cadmium from soils:influnce of Phosphate. Soil science 164,888-898.
    Krotz, R.M., Evangelou, B.P., Wagner, GJ.,1989. Relationships between cadmium, zinc, Cd-peptide, and organic acid in tobacco suspension cells. Plant Physiology 91,780-787.
    Kuboi, T., Noguchi, A., Yazaki, J.,1986. Family-dependent cadmium accumulation characteristics in higher plants. Plant and Soil 92,405-415.
    Kumar, P.B.A., Dushenkov, V., Motto, H., Raskin, I.,1995. Phytoextraction:the use of plants to remove heavy metals from soils. Environmental Science and Technology 29,1232-1238.
    Kuo, S., Lai, M.S., Lin, C.W.,2006. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils. Environmental Pollution 144, 918-925
    Kurz, H., Schulz, R., Romheld, V.,1999. Selection of cultivars to reduce the concentration of cadmium and thallium in food and fodder plants. Journal of Plant Nutrition and Soil Science 162:323-328.
    Labra, M., Gianazza, E., Waitt, R., Eberini, I., Sozzi, A., Regondi, S., Grassi, F., Agradi, E., Zea mays, L.,2006. Protein changes in response to potassium dichromate treatments. Chemosphere 62,1234-1244.
    Lane, B., Kajioka, R., Kennedy, T.,1987. The wheat germ Ec protein is a zinc-containing metallothionein. Biochemistry and Cell Biology 65,1001-1005.
    Larkindale, J., Huang, B.R.,2005. Effects of abscisic acid, salicylic acid, ethylene and hydrogen peroxide in thermotolerance and recovery for creeping bentgrass. Plant Growth Regulation 47, 17-28.
    Lee, D.G., Ahsan, N., Lee, S.H., Kang, K.Y., Lee, J.J, Lee, B.H.,2007a. An approach to identify cold-induced low-abundant proteins in rice leaf. Cereal Research Communications 330,215-225.
    Lee, D.G., Ahsan, N., Lee, S.H., Kang, K.Y., Bhak, J.D., Lee, I.J.,2007b. A proteomic approach in analyzing heat-responsive proteins in rice leaves. Proteomics 7,3369-3383.
    Lee, S., Moon, J.S., Ko, T.S., Petros, D., Goldsbrough, P.B., Korban, S.S.,2003a. Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiology 131,656-663.
    Lee, S., Petros, D., Moon, J.S., Ko, T.S., Goldsbrough, P.B., Korban, S.S.,2003b. Higher levels of ectopic expression of Arabidopsis phytochelatin synthase do not lead to increased cadmium tolerance and accumulation. Plant Physiology and Biochemistry 41,903-910
    Li, T. Q., Yang, X. E., Yang, J. Y, He, Z. L.,2006. Zn accumulation and subcellular distribution in the Zn hyperaccumulator Sedum alfredii Hance. Pedosphere 16,616-623.
    Li, Y.M., Chaney, R.L., Schneiter, A.A., Miller, J.F., Elias, E.M., Hammond, J.J.,1997. Screening for low grain cadmium phenotypes in sunflower, durum wheat and flax. Euphytica 94,24-30.
    Liang, Y. C., Sun,W. C., Zhu, Y. G., Christie, P.,2007. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants:A review. Environmental Pollution 147,422-428.
    Liang, Y.C., Wong, J. W. C., Wei, L.,2005. Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere 58,475-483.
    Liang, Y.C., Yang, C.G., Shi, H.H.,2001. Effects of silicon on growth and mineral composition of barley grown under toxic levels of aluminum. Journal of Plant Nutrition 24,229-243.
    Lichtenthaler, H.K.,1987. Chlorophylls and carotenoids:pigments of photosynthetic biomembranes. Methods in Enzymology 148,350-382.
    Lima, A.I.G., Corticeiro, S.C., Figueira, E.,2006. Glutathione-mediated cadmium sequestration in Rhizobium leguminosarum. Enzyme and Microbial Technology 39,763-769.
    Lin, S.K., Chang, M.C., Tsai, Y.G., Lur, H.S.,2005. Proteomic analysis of the expression of proteins related to rice quality during caryopsis development and the effect of high temperature on expression. Proteomics 5,2140-2156.
    Lindsay, W.L., Norvell, W.A.,1978. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal 42,421-428.
    Liu, D.H., Zou, J.H., Wang, M., Jiang, W.S.,2008. Hexavalent chromium uptake and its effects on mineral uptake, antioxidant defence system and photosynthesis in Amaranthus viridis L. Bioresource Technology 99,2628-2636.
    Liu, J., Duan, C.Q., Zhang, X.H., Zhu, Y.N., Hu, C.,2009. Subcellular distribution of chromium in accumulating plant Leersia hexandra Swartz. Plant and Soil 322,187-195.
    Liu, J.G., Qian, M., Cai, G.L., Zhu, Q.S., Wong, M.H.,2007. Variations between rice cultivars in root secretion of organic acids and the relationship with plant cadmium uptake. Environmental Geochemistry and Health 29,189-195.
    Liu, J.G., Zhu, Q.S., Zhang, Z.J., Xu, J.K., Yang, J.C., Wong, M.H.,2005. Variations in cadmium accumulation among rice cultivars and types and the selection of cultivars for reducing cadmium in the diet. Journal of the Science of Food and Agriculture 85,147-153.
    Liu, J.G., Li, K.Q., Xu, J.K., Liang, J.S., Lu, X.L., Yang, J.C.,2003b. Interaction of Cd and five mineral nutrients for uptake and accumulation in different rice cultivars and genotypes. Field Crops Research 83,271-281.
    Liu, J.G., Liang, J.S., Li, K.Q., Zhang, Z.J., Yu, B.Y., Lu, X.L.,2003a. Correlations between cadmium and mineral nutrients in absorption and accumulation in various genotypes of rice under cadmium stress. Chemosphere 52,1467-1473.
    Liu, L.N., Chen, H.S., Cai, P., Liang, W., Huang, Q.Y.,2009. Immobilization and phytotoxicity of Cd in contaminated soil amended with chicken manure compost. Journal of Hazardous Materials 163, 563-567.
    Loosemore, N., Straczek, A., Hinsinger, P., Jaillard, B.,2004. Zinc mobilisation from a contaminated soil by three genotypes of tobacco as affected by soil and rhizosphere pH. Plant and Soil 260, 19-32.
    Lopez, M.L., Parsons, J.G., Peralta-Videa, J.R., Gardea-Torresdey, J.L.,2005. An XAS study of the binding and reduction of Au (III) by hop biomass. Microchemical Journal 81,50-56.
    Lopez-Bucio, J., Nieto-Jacobo, M.F., Ramirez-Rodriguez, V., Herrera-Estrella, L.,2000. Organic acid metabolism in plants, from adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Science 160,1-13.
    Lovley, D.R., Giovannoni, S.J., White, D.C., Champine, J.E., Phillips, E.J., Gorby, Y.A., Goodwin, S., 1993. Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Archives of Microbiology 159,336-344.
    Lu, L.LL., Tian, S. K., Yang, X.E., Wang, X.C., Brown, P., Li, T.Q., He, Z.L.,2008. Enhanced root-to-shoot translocation of cadmium in the hyperaccumulating ecotype of Sedum alfredii. Journal of Experimental Botany 60,3203-3213..
    Luo, Z., Wadhawan, A., Bouwer, E.J.,2010. Sorption behavior of nine chromium (III) organic complexes in soil. International journal of Environmental Science and Technology 7,1-10.
    Lyon, G.L., Peterson, P.J., Brooks, R.R.,1969a. Chromium-51 distribution in tissues and extracts of Leptospermum scoparium. Planta 88,282-287.
    Lyon, G.L., Peterson, P.J., Brooks, R.R., Butler, G.W.,1971. Calcium, magnesium and trace elements in a New Zealand serpentine flora. Journal of Ecology 59,421-429.
    Lytle, C.M., Lytle, F.W., Yang, N., Qian, J.H., Hansen, D., Zayed, A., Terry, N.,1998. Reduction of Cr(VI) to Cr(III) by wetland plants:potential for in situ heavy metal detoxification. Environmental Science and Technology 32,3087-3093.
    Ma, J. F., Miyake, Y., Takahashi, E.,2001. Silicon as a beneficial element for crop plants. In:Datnoff L, Snyder G, Korndorfer G (eds.) Silicon in Agriculture 2001. Elsevier Science, New York, p.17-39.
    Ma, J. F., Tamal, K., Yamaji, N., Mitani, N., Konishi, S., Katuhara, M., Ishiguro, M., Yano, M.,2006. A Si transporter in rice. Nature 440,688-691.
    Ma, J. F.,2004. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition 50,11-18.
    Ma, J. F., Zheng, S. J., Matsumoto, H.,1997. Defoxifying aluminum with buckwheat. Nature 390, 569-570.
    Ma, J.F.,2000. Role of organic acids in detoxicification of aluminum in higher plants. Plant and Cell Physiology 41,383-390.
    Ma, J.F., Furukawa, J.,2003. Recent progress in the research of external Al detoxification in higher plants, a minireview. Journal of Inorganic Biochemistry 97,46-51.
    Ma, J.F., Ryan, P.R., Delhaize, E.,2001. Aluminum tolerance in plants and the complexing role of organic acids. Trends in Plant Science 6,273-278.
    Ma, M., Lau, P.S., Jia, Y.T.,2003. The isolation and characterization of Type 1 metallodfionein (MT) cDNA from a heavy-metal-tolerant plant, Festuca rubra cv. Merlin. Plant Science 164,51-60.
    Majoul, T., Bancel, E., Triboi, E., Ben Hamida, J.,2003. Proteomic analysis of the effect of heat stress on hexaploid wheat grain:Characterization of heat-responsive proteins from total endosperm. Proteomics 3,175-183.
    Majoul, T., Bancel, E., Triboi, E., Ben Hamida, J.,2004. Proteomic analysis of the effect of heat stress on hexaploid wheat grain:Characterization of heat-responsive proteins from nonprolamins fraction. Proteomics 4,505-513.
    Makinoa, T., Kamewadab, K., Hattac, T., Takahashia Y., Sakuraia, Y.,1998. Determination of optimal chromium oxidation conditions and evaluation of soil oxidative activity in soils. Journal of Geochemical Exploration 64,435-441.
    Marschner, P., Crowley, D., Yang, C.H.,2004. Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant and Soil 261,199-208.
    Mates, J.M.,2000. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology 153,83-104.
    Mathys, W.,1977. The role of malate, oxalate, and mustard oil glucosides in the evolution of zinc-resistance in herbage plants. Plant Physiology 40,130-136.
    McCauley, A., Jones, C., Jacobsen, J.,2009. Soil pH and organic matter. Nutrient management modules 8,#4449-8. Montana State University Extension Service. Bozeman, Montana.
    McGrath, S.P., Smith, S.,1990. Chromium and nickel. In:Heavy Metals in Soils (Alloway, B.J., Ed.), pp.125-150.
    McLaughlin, M.J., Parkerb, D.R., Clarke, J.M.,1999. Metals and micronutrients-food safety issues. Field Crops Research 60,143-163.
    Megateli, S., Semsari, S., Couderchet, M.,2009. Toxicity and removal of heavy metals (cadmium, copper, and zinc) by Lemna gibba. Ecotoxicology and Environmental Safety 72,1774-1780.
    Mei, B., Puryear, J.D., Newton, R.J.,2002. Assessment of Cr tolerance and accumulation in selected plant species. Plant and Soil 247,223-231.
    Metwally, A., Finkemeier, I., Georgi, M., Dietz, K.J.,2003. Salicylic Acid Alleviates the Cadmium Toxicity in Barley Seedlings. Plant Physiology 132,272-281.
    Miller, R.O.,1998. Nitric-perchloric acid wet digestion in an open vessel. In:Kalra YP (ed), Handbook of reference methods for plant analysis, CRC Press, Taylor and Francis Group, Boca Raton, USA, pp 57-62.
    Minagawa, K.,1978. The chemical forms of heavy metal in Cadmium contaminated rice. Japanese Journal of Public Health 25,97-102.
    Mitsios, I.K., Golia, E.E., Tsadilas, C.D.,2005. Heavy metal concentrations in soils and irrigation waters in Thessaly region, central Greece. Communications in Soil Science and Plant Analysis 36, 487-501.
    Miyasaka, S.C., Buta, J.G., Howell, R.K., Foy, C.D.,1991. Mechanism of aluminum tolerance in snapbean. Root exudation of citric acid. Plant Physiology 96,737-743.
    Molassiotis A, Sotiropoulos T, Tanou G, Diamantidis G, Therios L.,2006. Boron-induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM 9 (Malus domestica Borkh). Environmental and Experimental Botany 56,54-62.
    Moore, M.D., Kaplan, S.,1992. Identification of intrinsic high-level resistance to rare-earth oxides and oxyanions in members of the class Proteobacteria:characterization of tellurite, selenite, and rhodium sesquioxide reduction in Rhodobacter sphaeroides. The Journal of Bacteriology 174, 1505-1514.
    Moral, R., Gomez, I., Pedreno, J.N., Mataix, J.,1996. Absorption of Cr and effects on micronutrient content in tomato plant (Lycopersicum esculentum M.). Agrochimica 40,132-138.
    Moral, R., Pedreno, J.N., Gomez, I., Mataix, J.,1995. Effects of chromium on the nutrient element content and morphology of tomato. Journal of Plant Nutrition 18,815-822.
    Miihlbachova, G., Simon, T., Pechova, M.,2005. The availability of Cd, Pb and Zn and their relationships with soil pH and microbial biomass in soils amended by natural clinoptilolite. Plant, Soil and Environment 51,26-33.
    Munoz, A.H., Corona, F.G., Wrobel, K., Soto, G.M., Wrobel, K.,2005. Subcellular distribution of aluminum, bismuth, cadmium, chromium, copper, iron, manganese, nickel, and lead in cultivated mushrooms (Agaricus bisporus and Pleurotus ostreatus). Biological Trace Element Research 106,265-277.
    Murphy, A., Zhou, J., Goldsbrough, P.B., Taiz, L.,1997. Purification and immunological identification of metallothioneins 1 and 2 from Arabidopsis thaliana. Plant Physiology 1997,1293-1301.
    Myttenaere, C., Mousny, J.M.,1974. The distribution of Cr-51 in lowland rice in relation to the chemical form and to the amount of stable Cr in the nutrient solution. Plant and Soil 41,65-72.
    Nagalakshmi, N., Prasad, M.N.V.,2001. Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus, Plant Science 160,291-299.
    Nakano, Y., Asada, K.,1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant, Cell and Physiology 22,867-880.
    Nathalie, A.L.M., Hassinen, V.H., Hakvoort, H.,2001. Enhanced copper tolerance in Silene vulgaris (Moench) garcke populations from copper mines is assoeiated with increased transcript levels of a 2b-type metallothionein gene. Plant Physiology 126,1519-1526.
    Neunann, D., zur Nieden, U.,2001. Silicon and heavy metal tolerance of higher plants. Phytochemistry 56,685-692.
    Ni, C.Y., Chen, Y.X., Lin, Q., Tian, G.M.,2005. Subcellular localization of copper in tolerant and non-tolerant plant. Journal of Environmental Sciences 17,452-456
    Nigam, R., Srivastava, S., Prakash, S., Srivastava, M.M.,2001. Cadmium mobilisation and plant availability in the impact of organic acids commonly exuded from roots. Plant and Soil 230, 107-113.
    Niosh,1977. Registry of toxic effects of chemical substances. DHEW (NIOSH) Pub.78-104-B. National Institute for Occupational Safety and Health, Cincinnati, Ohio.296-590.
    Nishizono, H., Ichikawa, H., Suziki, S., Ishii, F.,1987. The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense. Plant and Soil 101,15-20.
    Nohzadeh, M.S., Habibi, R.M., Heidari, M., Salekdeh, G.H.,2007. Proteomics reveals new salt responsive proteins associated with rice plasma membrane. Bioscience, Biotechnology, and Biochemistry 71,2144-2154.
    Nriagu, J.O., Nieboer, E.,1988. Chromium in the natural and human environments. Wiley-Interscience, New York.
    Nwugol, C.C., Huerta, A.J.,2008. Silicon-induced cadmium resistance in rice(Oryza sativa). Journal of Plant Nutrition and Soil Science 171,841-848.
    Ogawa, K.,2005. Glutahione-associated regulation of plant growth and stress responses. Antioxidants and Redox Signaling 7,973-981.
    Okamura, H., Aoyama, I.,1994. Interactive toxic effect and distribution of heavy metals in phytoplankton. Environmental Toxicology and Water Quality 9,7-15.
    Oliver, D.P., Hannam, R., Tiller, K.G., Wilhelm, N.S., Merry, R.H., Cozens, G.D.,1994. The effect of zinc fertilization on Cd concentration in wheat grain. Journal of Environmental Quality 23, 705-711.
    Oliver, D.P., Tiller, K.G., Connyers, M.K., Sattery, W.J., Alston, A.M., Merry, R.H.,1996. Effectiveness of liming to minimize uptake of cadmium by wheat and barley grain grown in the field. Australian Journal of Agricultural Research 47,1181-1193.
    Panda, S.K.,2007. Chromium-mediated oxidative stress and ultrastructural changes in root cells of developing rice seedlings. Journal of Plant Physiology 164,1419-1428.
    Panda, S.K.,2003. Heavy metal phytotoxicity induces oxidative stress in Taxithelium sp. Current Science 84,631-633.
    Panda, S.K.,2007. Chromium-mediated oxidative stress and ultrastructural changes in root cells of developing rice seedlings. Journal of Plant Physiology 164,1419-1428.
    Panda, S.K., Chaodhury I, Khan M.H.,2003.Heavy metal phytotoxicity induces lipid peroxidation and affect antioxidants in wheat leaves. Biology of Plants 46,289-294.
    Panda, S.K., Choudhury, S.,2005a. Changes in nitrate reductase activity and oxidative stress response in the moss Polytrichum commune subjected to chromium, copper and zinc toxicity. Braz. Journal of Plant Physiology 17,191-197.
    Panda, S.K., Choudhury, S.,2005b. Chromium stress in plants. Brazilian Journal of Plant Physiology 17,95-102.
    Panda, S.K., Khan, M.H.,2003. Antioxidant efficiency in rice(Oryza sativa L.) leaves under heavy metal toxicity. Journal of Plant Biology 30,23-29.
    Panda, S.K., Mahapatra, S., Patra, H.K.,2002. Chromium toxicity and water stress simulation effects in intact senescing leaves of greengram(Vigna radiate L. var Wilckzeck K851), In:Panda, S.K. (Ed), Advances in stress physiology of plants, pp.129-136. Scientific Publishers, India.
    Panda, S.K., Patra, H.K.,1997. Physiology of chromium toxicity in plants-a review. Plant Physiology and Biochemistry 24,10-17.
    Panda, S.K., Patra, H.K.,1998. Alteration of nitrate reductase activity by chromium ions in excised wheat leaves. Indian Journal of Agricultural Biochemistry 2,56-57.
    Panda, S.K., Patra, H.K.,2000. Does of Cr3+ produces oxidative damage in excised wheat leaves. Journal of Plant Biology 27,105-110.
    Panda, S.K., Patra, H.K.,2000. Nitrate and ammonium ions effect on the chromium toxicity in developing wheat seedlings. Proceedings of the National Academy of Sciences India Section B 70, 75-80.
    Panda, S.K., Patra, H.K.,2007. Effect of salicylic acid potentiates cadmium-induced oxidative damage in Oryza sativa L. leaves. Acta Physiologiae Plantarum 29,567-575.
    Panda, S.K., Patra, H.K.,1997. Physiology of chromium toxicity in plants. Plant Physiology and Biochemistry 24,10-17.
    Pandey, N., Sharma, C.P.,2003. Chromium interference in iron nutrition and water relations of cabbage. Environmental and Experimental Botany 49,195-200.
    Pandey, V., Dixit, V., Shyam, R.,2005. Antioxidative responses in relation to growth of mustard (Brassica juncea cv. Pusa Jaikisan) plants exposed to hexavalent chromium. Chemosphere 61, 40-47.
    Papadopoulos, A., Prochaska, C., Papadopoulos, F., Gantidis, N., Metaxa, E.,2007. Determination and evaluation of cadmium, copper, nickel, and zinc in agricultural soils of western Macedonia, Greece. Environmental Management 40,719-726.
    Park, C.H., Keyhan, M., Wielinga, B., Fendorf, S., Matin, A.,2000. Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase. Applied and Environmental Microbiology 66,1788-1795.
    Parker, R., Flowers, T.J., Moore, A.L., Harpham, N.V.,2006. An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina. Journal of Experimental Botany 57,1109-1118.
    Parr, P.D., Taylor Jr, F.G.,1982. Germination and growth effects of hexavalent chromium in Orocol TL (a corrosion inhibitor) on Phaseolus vulgaris. Environmental International 7,197-202.
    Parsons, J.G., Aldrich, M.V., Gardea-Torresdey, J.L.,2002. Environmental and biological applications of extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) spectroscopies. Applied Spectroscopy Reviews 37,187-222.
    Parsons, J.G., Peralta-Videa, J.R., Tiemann, K.J., Saupe, G.B., Gardea-Torresdey, J.L.,2005. Use of chemical modification and spectroscopic techniques to determine the binding and coordination of gadolinium (Ⅲ) and neodymium (Ⅲ) ions by alfalfa biomass. Talanta 67,34-45.
    Patterson, R.R., Fendorf, S.E., Fendorf, M.,1997. Reduction of hexavalent chromium by amorphous iron sulfide. Environmental Science and Technology 31,2039-2044.
    Paul, B., Antoni, R.S., Julian, P.W.,2004. Phytochemistry 65,1665-1669.
    Pawlik-Skowronska B.,2001. Phytochelatin production in freshwater algae Stigeoclonium in response to heavy metals contained in mining water:effects of some environmental factors. Aquatic Toxicology 52:241-249.
    Pawlisz, A.V.,1997. Canadian water quality guidelines for Cr. Environmental Toxicology and Water Quality 12,123-161.
    Pellet, D.M., Papernik, L.A., Jones, D.L., Darrah, P.R., Grunes, D.L., Kochian, L.V.,1997. Involvement of multiple aluminum exclusion mechanisms in aluminum tolerance in wheat. Plant and Soil 192,63-68.
    Peng, H.Y., Yang, X.E., Tian, S.K.,2005. Accumulation and ultrastructural distribution of copper in Elsholtzia splendens. Journal of Zhejiang University Science B 6,311-318.
    Penner, G.A., Clarke, J., Bezte, L.J., Leisle, D.,1995. Identification of RAPD markers linked to a gene governing cadmium uptake in durum wheat. Genome 38,543-547.
    Peralta, J.R., Gardea Torresdey, J.L., Tiemann, K.J., Gomez, E., Arteaga, S., Rascon, E., et al.,2001. Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa) L. Bulletin of Environmental Contamination and Toxicology 66,727-734.
    Pettersson, O.,1977. Differences in cadmium uptake between plant species and cultivars. Swedish Journal of Agricultural Research 7,21-24.
    Pichtel, J., Pichtel, T.M.,1997. Comparison of solvents for ex situ removal of chromium and lead from contaminated soil. Environmental Engineering Science 14,97-104.
    Pilon-Smitsand, E.A.H., Freeman, J.L.,2006. Environmental cleanup using plants:biotechnol- ogical advances and ecological considerations. Frontiers in Ecology and the Environment 4,203-210.
    Pinto, A.P., Simoes, I., Mota, A.M.,2008. Cadmium impact on root exudates of sorghum and maize plant:a speciation study. Journal of Plant Nutrition 31,1746-1755.
    Poschenrieder, C., Gunse, B., Barcelo, J.,1993. Chromium-induced inhibition of ethylene evolution in bean (Phaseolus vulgaris) leaves. Physiologia Plantarum 89,404-408.
    Poschenrieder, C., Vazquez, M.D., Bonet, A., Barcelo, J.1991. Cr3+ iron interaction in iron sufficient and iron deficient bean plants. Ⅱ Ultrastructural aspects. Journal of Plant Nutrition 14,415-428.
    Pradoa, C.. Rodriguez-Montelongob, L., Gonzalezc, J.A., Paganod, E.A., Hilala, M., Pradoa, F. E., 2010. Uptake of chromium by Salvinia minima:Effect on plant growth, leaf respiration and carbohydrate metabolism. Journal of Hazardous Materials 177,546-553.
    Prasanna, B., Chandrama, P.,2008. Salt stress alleviation in transgenic Vigna mungo L. Hepper (blackgram) by overexpression of the glyoxalase I gene using a novel Cestrum yellow leaf curling virus (CmYLCV) promoter. Molecular Breeding 22,169-181.
    Pratt, P.F.,1966. Chromium. In Diagnostic Criteria for Plants and Soils. Ed.. H D Chapman. Ch.9, pp. 136-141. University of California, Riverside.
    Putter, J.,1974. Peroxidases. In:Bergmeyer HU (Ed), Methods of enzymatic analysis:Ⅱ. Academic Press, New York, pp 685-690.
    Qian, J.H., Zayed, A., Zhu, Y.L., Yu, M., Terry, N.,1999. Phytoaccumulation of trace elements by wetland plants:III. Uptake and accumulation of ten trace elements by twelve plant species. Journal of Environmental Quality 28,1448-1455.
    Rai, D., Sass, B.M. Moore. D.A.,1987. Cr(III) hydrolysis constants and solubility of Cr(III) hydroxide. Inorganic Chemistry 26,345-349.
    Rai, V, Vajpayee, P., Singh, S.N., Mehrotra, S.,2004. Effect of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, proline level and eugenol content of Ocimum tenuiftorum L. Plant Science 167,1159-1169.
    Ramachandran, V., D'Souza, T.J., Mistry, K.B.,1980. Uptake and transport of chromium in plants. Journal of Nuclear Agriculture and Biology 9,126-129.
    Ramadan, M.A.E., Al-Ashkar, E. A.,2007. The effect of different fertilizers on the heavy metals in soil and tomato plant. Australian Journal of Basic and Applied Sciences 1,300-306.
    Rauser, W.E.1990. Phytochelatins. Annual Review of Biochemistry 59,61-86.
    Rauser, W.E.,1995. Phytochelatins and related peptides. Structure, biosynthesis, and function. Plant Physiology 109,1141-1149
    Rauser, W.E.,1999. Structure and function of metal chelators produced by plants:the case for organic acids, amino acids, phytin, and metallothioneins. Cell Biochemistry and Biophysics 31,19-48.
    Renaut, J., Lutts, S., Hoffmann, L., Hausman, J.F.,2004. Responses of poplar to chilling temperature:proteomics and physiological aspects. Plant Biology 6,81-90.
    Rengel, Z.,1992. The role of calcium in salt toxicity. Plant, Cell and Environment 43,375-414.
    Requejo, R., Tena, M.,2005. Proteome analysis of maize roots reveals that oxidative stress is a main contributing factor to plant arsenic toxicity. Phytochemistry 66,1519-1528.
    Requejo, R., Tena, M.,2006. Maize response to acute arsenic toxicity as revealed by proteome analysis of plant shoots. Proteomics 6,156-162.
    Richmond, K.E., Sussman, M.,2003. Got silicon? The non-essential beneficial plant nutrient. Current Opinion in Plant Biology 6,268-272.
    Robinson, N.J., Evans, I.M., Cheeks, C.,1993. Plant metallothioneins. Biochemical Journal 295,1-10.
    Rocchetta, I., Mazzuca, M., Conforti, V, Ruiz, L., Balzaretti, V., Rios de Molina, M.C.,2006. Effect of chromium on the fatty acid composition of two strains of Euglena gracilis. Environmental Pollution 141,353-358.
    Rock, M.L., James, B., Helz, G.R.,2001. Hydrogen peroxide effects on Cr oxidation state and solubility in four diverse, Cr-enriched soils. Environmental Science and Technology 35, 4054-4059.
    Rogalla H, Romheld V.2002. Role of leaf apoplast in silicon-mediated manganese tolerance of Cucumis sativus L. Plant, Cell and Environment 25,549-555.
    Rosa, G.D., Peralta-Videa, J.R., Montes, M., Parsons, J.G., Cano-Aguilera, I., Gardea-Torresdey, J.L. 2004. Cadmium uptake and translocation in tumbleweed (Salsola kali), a potential Cd-hyperaccumulator desert plant species:ICP/OES and XAS studies. Chemosphere 55, 1159-1168.
    Roth, U., von Roepenack-Lahaye, E., Clemens, S.,2006. Proteome changes in Arabidopsis thaliana roots upon exposure to Cd2+. Journal of Experimental Botany 57,4003-4013.
    Ryan, J., Estefan, G., Rashid, A.,2001. Soil and Plant Analysis Laboratory Manual. Second ed. Jointly published by the International Center for Agricultural Research in the Dry Areas (ICARDA) and the National Agricultural Research Center (NARC). Aleppo, Syria.
    Sahibin, A.R., Zulfahmi, A.R., Lai, K.M., Errol, P., Talib, M.L.,2002. Heavy metals content of soil under vegetables cultivation in Cameron Highland. in:Omar, R., Ali Rahman, Z., Latif, M.T., Lihan, T., Adam, J.H. (Eds.) Proceedings of the regional symposium on environment and natural resources. Hotel Renaissance Kuala Lumpur, Malaysia.1, pp.660-667.
    Saleh, F., Parkerton, T.F., Lewis, R.V., Huang, J.H., Dickson, K.L.,1989. Kinetics of chromium transformations in the environment. Science of the Total Environment 86,25-41.
    Salt, D.E., Rauser, W.E.,1995. MgATP-dependent of phytochelatins across the tonoplast of oat roots. Plant Physiology 107,1293-1301.
    Samac, D.A., Tesfaye, M.,2003. Plant improvement for tolerance to aluminum in acid soils. A review. Plant Cell, Tissue and Organ Culture 75,189-207.
    Sanchez-Aguayo, I., Rodriguez-Galan, J.M., Garcia, R., Torreblanca, J., Pardo, J.M.,2000. Salt stress enhances xylem development and expression of S-adenosyl-L-methionine synthase in lignifying tissues of tomato plants. Planta 220,278-285.
    Sarry, J.E., Kuhn, L., Ducruix, C., Lafaye, A.,2006. The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics 6, 2180-2198.
    Sawalha, M.F., Gardea-Torresdey, J.L., Parsons, J.G., Saupe, G., Peralta-Videa, J.R.,2005. Determination of adsorption and speciation of chromium species by saltbush(Atriplex canescens) biomass using a combination of XAS and ICP-OES. Microchemical Journal 81,122-132.
    Saxena, I.M., Brown Jr, R.M.,1999. Are the reversibly glycosylated polypeptides implicated in plant cell wall biosynthesis non-processive beta-glycosyltransferases? Trends in Plant Science 4,6-7.
    Schiavon, M., Pilon-Smits, E.A., Wirtz, M., Hell, R., Malagoli, M.,2008. Interactions between chromium and sulfur metabolism in Brassica juncea. Journal of Environmental Quality 37, 1536-1545.
    Schmoger, M.E.V., Oven, M., Grill, E.,2000. Detoxification of arsenic by phytochelatins in plants. Plant Physiology 122,793-801
    Schwartz, K., Mertz, W.,1959. Chromium(Ⅲ) and the glucose tolerant factor. Archives of Biochemistry and Biophysics 85,292-295.
    Senaratna, T., Touchell, D., Bunns, E., Dixon, K.,2000. Acetyl salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regulation 30,157-161.
    Shahandeh, H., Hossner, L.R.,2000a. Enhancement of Cr(III) phytoaccumulation. International Journal of Phytoremediation 2,269-286.
    Shanker, A.K.,2003. Physiological, biochemical and molecular aspects of chromium toxicity and tolerance in selected crops and tree species. PhD Thesis, Tamil Nadu Agricultural University, Coimbatore, India.
    Shanker, A.K., Cervantes, C., Loza-Tavera, H., Avudainayagam, S.,2005. Chromium toxicity in plants. Environmental International 31,739-753.
    Shanker, A.K., Djanaguiraman, M., Sudhagar, R., Chandrashekar, C.N., Pathmanabhan, G.,2004. Differential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in green gram (Vigna radiata (L) R Wilczek, cv CO 4) roots. Plant Science 166,1035-1043.
    Sharma, S.S., Dietz, K.J.,2006. The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. Journal of Experimental Botany 57,711-726.
    Sharma, D.C., Sharma, C.P.,1993. Chromium uptake and its effects on growth and biological yield of wheat. Cereal Research Communications 21,317-321.
    Shen, R.F., Iwashita, T., Ma, J.F.,2004. Form of Al changes with Al concentration in leaves of buckwheat. Journal of Experimental Botany 55,131-136.
    Shen, R.F., Ma, J.F., Kyo, M., Iwashita, T.,2002. Compartmentation of aluminium in leaves of an Al-accumulator, Fagopyrum esculentum Moench. Planta 215, 394-398.
    Sheoran, I.S., Aggarwal, N., Singh, R.,1990. Effects of cadmium and nickel in vivo carbon dioxide exchange rate of pigeon pea (Cajanus Cajan L.). Plant and Soil 129,243-249.
    Shewry, P.R., Peterson, J.P.,1974. The uptake of chromium by barley seedlings (Hordeum vulgare L). Journal of Experimental Botany 25,785-797.
    Shi, G.R., Cai, Q.S., Liu, C.F., Wu, L.,2010. Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes. Plant Growth Regulation 61,45-62.
    Shi, Q.H., Bao, Z.Y., Zhu, Z.J., He, Y., Qian, Q.Q., Yu, J.Q.,2005a. Silicon-mediated alleviation of Mn toxicity in Cucumis sativus in relation to activities of superoxide dismutase and ascorbate peroxidase. Phytochemistry 66,1551-1559.
    Shi, X. H., Zhang, C.C., Wang, H., Zhang, F.S.,2005b. Effect of Si on the distribution of Cd in rice seedlings. Plant and Soil 272,53-60.
    Shi, S.Y., Wang, G., Wang, Y.D., Zhang, L.G., Zhang, L.X.,2005. Protective effect of nitric oxide against oxidative stress under ultraviolet-B radiation. Nitric Oxide 13,1-9.
    Shrestha, R., Fischer, R., Sillanpaa, M.,2007. Investigations on different positions of electrodes and their effects on the distribution of Cr at the water sediment interface. International journal of Environmental Science and Technology 4,413-420.
    Singla-Pareek, S.L., Reddy, M.K., Sopory, S.K.,2003. Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proceedings of the National Academy of Sciences of USA 100,14672-14677.
    Sinha, S., Saxena, R., Singh, S.,2002. Comparative studies on accumulation of Cr from metal solution and tannery effluent under repeated metal exposure by aquatic plants:its toxic effects. Environmental Monitoring and Assessment 80,17-31.
    Sinha, P., Dube, B.K., Chatterjee, C.,2006. Manganese stress alters phytotoxic effects of chromium in green gram physiology (Vigna radiata L.) cv. PU 19. Environmental and Experimental Botany 57, 131-138.
    Sinha, S., Saxena, R., Singh, S.,2005. Chromium induced lipid peroxidation in the plants of Pistia stratiotes L.:role of antioxidants and antioxidant enzymes. Chemosphere 58,595-604.
    Skeffington, R.A., Shewry, P.R., Peterson, P.J.,1976. Chromium uptake and transport in barley seedlings (Hordeum vulgare L.). Planta 132,209-214.
    Smith, A.P., DeRidder, B.P., Guo, W.J., Seeley, E.H.,2004. Proteomic analysis of Arabidopsis glutathione s-transferases from benoxacor and copper-treated seedlings. Journal of Biological Chemistry 279,26098-26104.
    Sobkowiak, R., Deckert, J.,2006. Proteins induced by cadmium in soybean cells. Journal of Plant Physiology 163,1203-1206.
    Song, A. L., Li, Z. J., Zhang, J., Xue, G. F., Fan, F.L,, Liang, Y.C.,2009. Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity. Journal of Hazardous Materials 172, 74-83.
    Srivalli, S., Khanna-Chopra, R.,2008. Role of glutathione in abiotic stress tolerance. In:Khan NA, Singh S, Umar S (eds), Sulfur assimilation and abiotic stress in plants, Springer-Verlag Berlin Heidelberg, pp 207-225.
    Srivastava, S., Prakash, S., Srivastava, M.M.,1999. Chromium mobilization and plant availability-the impact of organic complexing agents. Plant and Soil 212,203-208.
    Strobel, B.W.,2001. Influence of vegetation on low-molecular-weight carboxylic acids in soil solution-a review. Geoderma 99,169-198.
    Sudhakar, G., Jyothi, B., Venkateswarlu, V.,1991. Metal pollution and its impact on algae in flowing water in India. Archives of Environmental Contamination and Toxicology 21,556-566.
    Sukreeyapongse,O., Holme, P.E., Strobel, B.W., Panichsakpatana, S., Magid, J., Hansen, H.C.B.,2002. pH-dependent release of cadmium, copper, and lead from natural and sludge-amended soils. Journal of Environmental Quality 31,1901-1909.
    Sule, A., Vanrobaeys, F., Hajo, G., Van beeumen, J.2004. Proteomic analysis of small heat shock protein isoforms in barley shoots. Phytochemistry 65,1853-1863.
    Sundaramoorthy, P., Chidambaram, A., Ganesh, K.S., Unnikannan, P., Baskaran, L.,2010. Chromium stress in paddy:(ⅰ) Nutrient status of paddy under chromium stress; (ⅱ) Phytoremediation of chromium by aquatic and terrestrial weeds. Comptes Rendus Biologies 333,597-607.
    Suseela, M.R., Sinha, S., Singh, S., Saxena, R.,2002. Accumulation of chromium and scanning electron microscopic studies in scirpus lacustris 1 treated with metal and tannery effluent. Bulletin of Environmental Contamination and Toxicology 68,540-548.
    Suzuki, T., Miyata, N., Horitsu, H., Kawai, K., Takamizawa, K., Tai, Y., Okazaki, M.,1992. NAD(P)H-dependent chromium (Ⅵ) reductase of Pseudomonas ambigua G-1:a Cr(V) intermediate is formed during the reduction of Cr(Ⅵ) to Cr(Ⅲ). Journal of Bacteriology 174, 5340-5345.
    Swinbanks, D.,1995. Government backs proteome proposal. Nature 378,653.
    Syracuse Research Corporation,1993. Toxicological profile for chromium. Prepared for U.S. Dept. Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, under Contract No.205-88-0608.
    Tao, S., Chen, Y.J., Xu, F.L., Cao, J., Li, B.G.,2003. Changes of copper speciation in maize rhizosphere soil. Environmental Pollution 122,447-454.
    Tasgin, E., Attici, O., Nalbantogly, B.,2003. Effect of salicylic acid and cold on freezing tolerance in winter wheat leaves. Plant Growth Regulation 41,231-236.
    Teo, Y.H., Beyrouty, C.A., Gbur, E.E.,1992. Nitrogen, phosphorus, and potassium influx kinetic parameters of three rice cultivar. Journal of Plant Nutrition 15,435-444.
    Terry, N.,1981. An analysis of the growth responses of Beta vulgaris L. to phtotoxic trace elements. Ⅱ. Chromium. Final report to the Kearney Foundation of Soil Science. July,1975-June,1980.
    Tiemann, K.J., Gamez, G., Dokken, K., Parsons, J.G., Gardea-Torresdey, J.L.,2002b. Chemical modification and X-ray absorption studies for Lead (Ⅱ) binding by Medicago sativa (Alfalfa) biomass. Microchemical Journal 71,287-293.
    Tiemann, K.J., Gardea-Torresdey, J.L., Gamez, .G., Dokken, K., Sias, S.,1999. Use of X-ray absorption spectroscopy and esterification to investigate Cr (Ⅵ) and Ni (Ⅱ) ligands in alfalfa biomass. Environmental Science and Technology 33,150-154.
    Tiemann, K.J., Rascon, A.E., Gamez, G., Parsons, J.G., Baig, T., Cano-Aguilera, I., Gardea-Torresdey, J.L.,2002a. Heavy metal binding by the tissues of Solanum elaeagnifolium:Chemical and subsequent XAS Studies. Microchemical Journal 71,133-141.
    Tiffin, L.O.,1970. Translocation of iron citrate and phosphorus in xylem exudate of soybean. Plant Physiology 45,280-283.
    Toppi, L.S.D., Fossati, F., Musetti, R., Mikerezi, I., Favali, M.A.,2002. Effects of hexavalent chromium on maize, tomato, and cauliflower plants. Journal of Plant Nutrition 25,701-717.
    Tripathi, A.K., Tripathi Sadhna, Tripathi, S.,1999. Changes in some physiological and biochemical characters in Albizia lebbek as bio-indicators of heavy metal toxicity. Journal of Environmental Biology 20,93-98.
    Tuomainen, M.H., Nunan, N., Lehesranta, S.J., Tervahauta, A.I., et al.,2006. Multivariate analysis of protein profiles of metal hyperaccumulator Thlaspi caerulescens accessions. Proteomics 6, 3696-3706.
    Turner, M.A., Rust, R.H.,1971. Effects of chromium on growth and mineral nutrition of soybeans. Proceedings-Soil Science Society of America 35,755-758.
    Uraguchi, S., Mori, S., Kuramata, M., Kawasaki, A., Arao, T., Ishikawa, S.,2009. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. Journal of Experimental Botany 60,2677-2688.
    Usman, A.R.A., Kuzyakov, Y., Stahr, K.,2008. Sorption, desorption, and immobilization of heavy metals by artificial soil. M. SC. Thesis, University of Hohenhiem, Stuttgart.
    Vajpayee, P., Rai, U.N., Ali, M.B., Tripathi, R.D., Yadav, V., Sinha, S., Singh, S.N.,2001. Chromium induced physiological changes in Vallisneria spiralis L. and its role in phytoremediation of tannery effluent. Bulletin of Environmental Contamination and Toxicology 67,246-256.
    Van Assche, F.V., Clijsters, H.,1990. Effects of metals on enzyme activity in plants. Plant, Cell and Environment 13,95-206.
    Vatamaniuk, O.K., Bucher, E.A., Ward, J.T., Rea, P.A.,2001. A new pathway for heavy metal detoxification in animals phytochelatin synthase is required for cadmium tolerance in Caenorhabditis elegans. Journal of Biological Chemistry 276,20817-20820
    Vazquez, M.D., Poschenrieder, C.H., Barcelo, J.,1987. Chromium VIinduced structural and ultrastructural changes in bushbean plants (Phaseolus vulgaris L.). Annals of Botany 59,427-438.
    Vega, F.A., Covelo, E.F., Andrade, M.L., Marcet, P.,2004. Relationships between heavy metals content and soil properties in minesoils. Analytica Chimica Acta 524,141-150.
    Verkleij, J. A. C., Schat, H.,1990. Mechanisms of metal tolerance in higher plants. In:Heavy metal tolerance in plants:Evolutionary Aspects (Eds A. J. Shaw), pp.179-194. CRC Press, Inc. Boca Raton, Florida.
    Vernay, P., Gauthier-Moussard, C., Hitmi, A.,2007. Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne L. Chemosphere 68,1563-1575.
    Viamajala, S., Peyton, B.M., Apel, W.A., Petersen, J.N.,2002. Chromate reduction in Shewanella oneidensis MR-1 is an inducible process associated with anaerobic growth. Biotechnology Progress 18,290-295.
    Vincent, J.B.,2010. Chromium:celebrating 50 years as an essential element? Dalton transaction 39, 3787-3794.
    Wangner, G.J.,1993. Accumulation of cadmium in crop plants and its consequences to human health. Advances in Agronomy 51:173-212.
    Wang, L., Wang, W., Chen, Q., Cao, W., Li, M., Zhang, F.,2000. Silicon-induced cadmium tolerance of rice seedlings. Journal of Plant Nutrition 23,1397-1406.
    Wang, A.S., Angle, J.S., Chaney, R.L., Delorme, T.A., Reeves, R.D.,2006. Soil pH effects on uptake of Cd and Zn by Thlaspi caerulescens. Plant and Soil 281,325-337.
    Wani, P.A., Khan, M.S., Zaidi, A.,2008. Chromium-reducing and plant growth-promoting Mesorhizobium improves chickpea growth in chromium-amended soil. Biotechnology Letters 30, 159-163.
    Warington, K.,1946. Molybdenum as a factor in the nutrition of lettuce. Annals of Applied Biology 33, 249-254.
    Watanabe, T., Misawa, S., Osaki, M.,2005. Alumunum accumulation in the roots of Melastoma malabathricum L., an aluminum-accumulating-plant. Canadian Journal of Botany 83,1518-1522.
    Watanabe, T., Osaki, M., Yoshihara, T., Tadano, T.,1998. Ditribution and chemical speciation of aluminum resistance in the Al accumulator plant, Melastoma malabathricum L.. Plant and Soil 201,165-173.
    Wegele, H., Muller, L., Buchner, J.,2004. Hsp70 and Hsp90:a relay team for protein folding. Reviews of Physiology, Biochemistry and Pharmacology 151,1-44.
    Weigel, H.J., Jager, H.J.,1980. Subcellular Distribution and Chemical Form of Cadmium in Bean Plants. Plant Physiology 65,480-482.
    Wetterhahn, K.E., Hamilton, J.W.,1989. Molecular basis of hexavalent chromium carcinogenicity-effect on gene expression. Science of the Total Environment 86,113-129.
    Widodo, Broadley, M.R., Rose, T., Frei, M., Pariasca-Tanaka, J., Yoshihashi, T., Thomson, M., Hammond, J.P., Aprile, A., Close, T.J., Ismail, A.M., Wissuwa, M.,2010. Response to zinc deficiency of two rice lines with contrasting tolerance is determined by root growth maintenance and organic acid exudation rates, and not by zinc-transporter activity. New Phytologist 186, 400-414.
    Wild, H.,1974. Indigenous plants and chromium in Rhodesia. Kiekia 9,233-241.
    Wittbrodt, P.R., Palmer, C.D.,1995. Reduction of Cr6+ in the presence of excessive soil fulvic acid. Environmental Science and Technology 29,255-263.
    Wu, F.B., Chen, F., Wei, K., Zhang, G.P.,2004. Effect of cadmium on free amino acid, glutathione and ascorbic acid concentrations in two barley genotypes (Hordeum vulgare L.) differing in cadmium tolerance. Chemosphere 57,447-454.
    Wu, F.B., Dong, J., Qian, Q.Q., Zhang, G.P.,2005. Subcellular distribution and chemical form of Cd and Cd-Zn interaction in different barley genotypes. Chemosphere 60,1437-1446.
    Wu, F.B., Zhang, G.P.,2002. Genotypic differences in effect of Cd on growth and mineral concentrations in barley seedlings. Bulletin of Environmental Contamination and Toxicology 69, 219-227.
    Xiang, C., Werner, B., Christensen, E., Oliver, D.J.,2001. The biological function of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiology 126, 564-574.
    Yadava, S.K., Dhotea, M., Kumarb, P., Sharmaa, J., Chakrabartia, T., Juwarkara, A.A.,2010. Differential antioxidative enzyme responses of Jatropha curcas L. to chromium stress. Journal of Hazardous Materials 180,609-615.
    Yan, S,P., Zhang, Q.Y., Tang, Z.C., Su, W.A., Sun, W.N.,2006. Comparative proteomic analysis provides new insight into chilling stress response in rice. Molecular and Cellular Proteomics 5, 484-496.
    Yang, Q., Wang, Y, Zhang, J., Shi, W.,2007. Identification of aluminum-responsive proteins in rice roots by a proteomic approach:cysteine synthase as a key player in Al response. Proteomics 7, 737-749.
    Yang, X.E., Baligar, V.C., Foster, J.C., Martens, D.C.,1997. Accumulation and transport of nickel in relation to organic acids in ryegrass and maize grown with different nickel levels. Plant and Soil 196,271-276.
    Yang, Z.M., Wang, J., Wang, S.H., Xu, L.L.,2003. Salicylic acid-induced aluminum tolerance by modulation of citrate efflux from roots of Cassia tora L. Planta 217,168-174.
    Yoshida, S., Forna, D.A., Cock, J.H., Gomez, K.A.,1976. Laboratory Manual for Physiological Studies of Rice. Intemational Rice Research Institute,Los Banos, Philippines, pp 62-63.
    Yoshimura, K., Masuda, A., Kuwano, M., Yokota, A., Akashi, K.,2008. Programmed proteome response for drought avoidance/tolerance in the root of a C3 Xerophyte (Wild Watermelon) under water deficits. Plant and Cell Physiology 49,226-241.
    Yu, H., Wang, J.L., Fang, W., Yuan, J.G., Yang Z.Y.,2006. Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice. Science of the Total Environment 370, 302-309.
    Zalidis, G., Barbayiarinis, N., Matsi, Theodora.,1999. Forms and distribution of heavy metals in soils of the Axios delta of northern Greece. Communications in Soil Science and Plant Analysis 30, 817-827.
    Zang, X., Komatsu, S.,2007. A proteomics approach for identifying osmotic-stress-related proteins in rice. Phytochemistry 68,426-437.
    Zayed, A., Lytle, C.M., Jin-Hong, Q., Terry, N., Qian, J.H.,1998. Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta 206,293-299.
    Zayed, A.M., Terry, N.,2003. Chromium in the environment:factors affecting biological remediation. Plant and Soil 249,139-156.
    Zeid, I.M.,2001. Responses of Phaseolus vulgaris to chromium and cobalt treatments. Biology of Plants 44,111-115.
    Zeng, F.R., Mao, Y., Cheng, W.D., Wu, F.B., Zhang, G.P.,2008a. Genotypic and environmental variation in chromium, cadmium and lead concentrations in rice. Environmental Pollution 153, 309-314.
    Zeng, F. R., Chen, S., Miao, Y., Wu, F.B., Zhang, G. P.,2008b. Changes of organic acid exudation and rhizosphere pH in the rice plants under chromium stress. Environmental Pollution 155,284-289.
    Zhang C, Wang L, Nie Q, Zhang W, Zhang F.2008. Long-term effects of exogenous silicon on cadmium translocation and toxicity in rice(Oryza sativa L.). Environmental and Experimental Botany 62,300-307.
    Zhang, G.P., Fukami, M., Sekimoto, H.,2000. Genotypic differences in effects of cadmium on growth and nutrient compositions in wheat. Journal of Plant Nutrition 23,1337-1350.
    Zhang, G.P., Fukami, M., Sekimoto, H.,2002. Influence of cadmium on mineral concentrations and yield components in wheat genotypes differing in Cd tolerance at seedling stage. Field Crops Research 77,93-98.
    Zhang, H.X., Lian, C.L., Shen, Z.G.,2009. Proteomic identification of small, copper-responsive proteins in germinating embryos of Oryza sativa.Annals of Botany 103,923-930.
    Zhao, X.J., Sucoff, E., Stadelmann, E.J.,1987. Al3+ and Ca2+ alteration of membrane permeability of Quercus rubra root cortex cells. Advances in Botanical Research 22,45-96.
    Zhen, Y, Qi, J.L., Wang, S.S., Su, J.,2007. Comparative proteome analysis of differentially expressed proteins induced by Al toxicity in soybean. Physiologia Plantarum 131,542-554.
    Zhitkovich, A., Voitkun, V., Costa, M.,1996. Formation of the amino acid-DNA complexes by hexavalent and trivalent chromium in vitro. Importance of trivalent chromium and phosphate group. Biochemistry 35,7275-7282.
    Zhu, Y.L., Pilon-Smiths, E.A., Jouanin, L., Terry, N.,1999a.Overexpression of glutathione synthetase in indian mustard enhances cadmium accumulation and tolerance. Plant Physiology 109, 1141-1149.
    Zhu, Y.L., Pilon-Smits, E.A., Tarun, A., Weber, S.U., Jouanin, L., Terry, N.,1999b. Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing y-glutamylcysteine synthetase. Plant Physiology 121,1169-1177.
    Zhu, Z. J., Wei, G. Q., Li, J., Qian, Q. Q., Yu, J.Q.,2004. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Science 167,527-533.
    Zhu, G.P., Golding, G.B., Dean, A.M.,2005. The selective cause of an ancient adaptation. Science 307, 1279-1282.
    Zou, J.H., Yu, K.L., Zhang, Z.G., Jiang, W.S., Liu, D.H.,2009. Antioxidant response system and chlorophyll fluorescence in chromium (Ⅵ)-treated Zea mays L. seedlings. Acta Biologica Cracoviensia Series Botanica 51,23-33.
    Zurayk, R., Sukkariyah, B., Baalbaki, R.,2001. Common hydrophytes as bioindicators of nickel, chromium and cadmium pollution. Water, Air and Soil Pollution 127,373-388.
    Zwarich, M.A., Mills, J.G.,1982. Heasvy metal accumulation by some vegetable crops grown on sewage sludge-amended soils. Canadian Journal of Soil Science 62,243-247.
    白利平,王业耀,2009.铬在土壤及地下水中迁移转化研究综述.地质与资源18,144-148.
    巢丽仪,秦华明,陈结清,余土元,周玲艳,2008.重金属铬胁迫对玉米幼苗生长的影响.种子27,28-31.玉米科学17,74-78.
    陈碧德,朱建勇,2010.水杨酸对番茄种子萌发及幼苗生长铬胁迫的缓解效应.北方园艺2,13-16.
    陈晓玲,余土元,秦华明,梁雪莲,吴培钿,伦锦华,周玲艳,2009.钙对铬胁迫下玉米幼苗生长及生理特性的影响.玉米科学17,74-78.
    陈英旭,林琦,陆芳,何云峰,2000.有机酸对铅、镉植株危害的解毒作用研究.环境科学学报20,467-472.
    陈英旭,骆永明,朱永官,1994.土壤中铬的化学行为研究.土壤学报31,77-85.
    陈玉胜,陈亚华,王桂萍,沈振国,2007.硫对水稻种子萌发过程中铜毒害的缓解效应.南京农业大学学报30,44-48.
    邓成菊,张建斌,贾彩红,金志强,徐碧玉,2010.香蕉乙二醛酶基因增强酿酒酵母对非生物胁迫抵抗能力的研究.中国生物工程杂志30,22-26.
    杜慧玲,冯两蕊,牛志峰,王涛,郭平毅,王曰鑫,2007.铬胁迫对芹菜养分吸收及抗氧化系统的影响.华北农学报2007,82-85.
    樊金萍,柏锡,李勇,纪巍,王希,才华,朱延明,2008.野生大豆S-腺苷甲硫氨酸合成酶基因的克隆及功能分析.作物学报34,1581-1587.
    方临川,黄巧云,蔡鹏,梁巍,2008XAFS技术在重金属界面吸附研究中的应用.应用与环境生物学报14,737-744.
    傅晓萍,豆长明,胡少平,陈新才,施积炎,陈英旭,2010.有机酸在植物对重金属耐性和解毒机制中的作用.植物生态学报34,1354-1358.
    郭丽红,陈善娜,龚明,2004.氯化钙浸种对玉米幼苗抗逆性的影响及其与谷胱甘肽还原酶的关系.云南植物研究26,111-117.
    郭彦,杨洪双,侯连真,2009.水杨酸、过氧化氢对铬胁迫下小麦幼苗生长与生理活性的影响.江苏农业科学2,90-91.
    何振立,1998.污染及有益元素的土壤化学平衡.中国环境科学出版社,北京,pp.161-208
    李彩霞,李鹏,苏永发,郑普勤,张芬琴,张勇,2006.水杨酸对镉胁迫下玉米幼苗质膜透性和保护酶活性的影响.植物生理学通讯42,882-884.
    李德明,朱祝军,2004.镉在不同品种小白菜中的亚细胞分布.科技通报20,278-282.
    李晶晶,彭恩泽,2005.综述铬在土壤和植物中的赋存形式及迁移规律.工业安全与环保31,31-33.
    刘传平,郑爱珍,田娜,沈振国,2004.外源GSH对青菜和大白菜镉毒害的缓解作用.南京农业大学学报27,26-30.
    刘培桐,1995.环境学概论.高等教育出版社,北京.
    刘婉,李泽琴,2007.水中铬污染治理的研究进展.广东微量元素科学14,5-9.
    刘洋,刘琳,晏月明,宋未,2008.蛋白质组学在农业生物科学研究中的应用.生物技术通报1,1-7.
    刘云惠,魏显有,王秀敏,2000.土壤中铬的吸附与形态提取研究.河北农业大学学报23,16-20.
    柳玲,吕金印,张微,2010.不同浓度Cr6+处理下芹菜的铬累积量及生理特性.核农学报24,639-644.
    卢志红, 赵小敏,朱美英,2008.铬Cr6+对水稻种子萌发及幼苗生长的影响.中国土壤与肥料3,60-62.
    罗亚平,刘杰,张学洪,黄华苑,胡澄,孙家君,蔡湘文,2009.铬胁迫下李氏禾显微结构的变化.安徽农业科学37,8931-8934.
    马敬坤,袁永泽,欧吉权,欧阳敏,鲍世颖,张楚富,2006.外源水杨酸对水稻(Oryza sativa L.)幼苗根的NaCl胁迫缓解效应.武汉大学学报(理学版)52,471-474.
    钱小红,贺福初.蛋白质组学.科学出版社,北京,1998.
    沈根祥,姚芳,胡宏,倪吾钟,朱荫湄,2006.浮萍吸收不同形态氮的动力学特性研究.土壤通报37,505-508.
    沈奇,秦信蓉,张敏琴,郭贵敏,杜才富,2009.铬胁迫对油菜种子萌发及幼苗生长的毒性效应.贵州农业科学37,25-26.
    沈仁芳,2008.铝在土壤—植物中的行为及植物的适应机制.科学出版社,北京.
    宋福强,杨国亭,孟繁荣,田兴军,董爱荣,2004.丛枝菌根化大青杨苗木根际微域环境的研究.生态环境13,211-216.
    孙瑞莲,周启星,2005.高等植物重金属耐性与超积累特性及其分子机理研究.植物生态学报29,497-504.
    王虹,1991.土壤肥料分析方法,辽宁大学出版社,沈阳.
    王松华,储卫红,周正义,陈庆榆,2005.水杨酸对小麦镉毒害的缓解效应.种子25,14-17.
    王松华,杨志敏,徐朗莱,2003.植物铜素毒害及其抗性机制研究进展.生态环境12,336-341
    王云,张海军,唐为忠,张冠钦,董英,2008.硫对镐胁迫下小麦幼苗生长和二些生理特性的影响.农业环境科学学报27,1029-1032.
    邬飞波,2002.大麦镉积累和耐性基因型差异的机理研究.博士学位论文,浙江大学,杭州.
    吴箐,杜锁军,曾晓雯,方晓航,于方明,仇荣亮,2006.锌在长柔毛委陵菜细胞内的分布和化学形态研究.生态环境15,40-44.
    武晓燕,2005.乙酰水杨酸对水生植物重金属毒害的缓解效应.硕士学位论文,南京师范大学,南京.
    夏来坤,郭天财,朱云集,康国章,王晨阳,2006.土壤重金属铜、镉胁迫对冬小麦碳氮运转的影响.水土保持学报20,117-120.
    徐成斌,裴晓强,马溪平,2004.六价铬对玉米种子萌发及生理特性的影响.环境保护科学34,44-47.
    许建光,李淑仪,王荣萍,廖新荣,蓝佩玲,2007.硅对铬胁迫下小白菜生理指标的影响.生态学杂志26,865-868.
    杨德,吕金印,程永安,高峻凤,2007.铬在南瓜中的亚细胞分布及对某些酶活性的影响.农业环境科学学报26:1352-1355.
    杨和连,陈碧华,王广印,2008.外源重金属铬对菜豆幼苗生长的影响.种子27,46-51.
    杨和连,董新红,张百俊,胡俊美,2009.外源铬对豇豆幼苗生长及生理生化特性的影响.土壤通报40,1446-1449.
    杨和连,张百俊,冯春太,2007.重金属铬对豇豆幼苗生长的影响.种子26,79-81.
    杨居荣,贺建群,张国祥,毛显强,1995.农作物对Cd毒害的耐性机理探讨.应用生态学报6,87-91.
    杨居荣,黄翌,1994.植物对重金属的耐性机理.生态学杂志13,20-26.
    应蓉蓉,杜锁军,胡鹏杰,赵芝灏,周小勇,汤叶涛,仇荣亮,2008.长柔毛委陵菜对锌的吸收动力学特性.应用生态学报19,1349-1354.
    余涛,支立峰,彭论,2004.烟草中一条新的S-腺苷甲硫氨酸合成酶基因的克隆及表达分析.武汉植物学研究22,277-283.
    张黛静,姜丽娜,邵云,柴宝玲,李春喜,2009.铬胁迫下不同品种小麦萌发和内源激素的变化.应用与环境生物学报15,602-605.
    张开明,黄苏珍,原海燕,顾永华,2005.铜污染的植物毒害、抗性机理及其植物修复.江苏环境科技18,4-6.
    赵娟,施国新,徐勤松,王学,许丙军,胡金朝,2006.外源谷胱甘肽(GSH)对水鳖Zn2+毒害的缓解作用.热带亚热带植物学报14,213-217.
    赵雨云,周剑红,骆鹰,郭晓贤,李常健,2008.外源水杨酸对白菜种子铬毒害的缓解效应.中国种业8,43-44.
    张学洪,罗亚平,黄海涛,刘杰,朱义年,曾全方.2006.一种新发现的湿生铬超积累植物—李氏禾(Leersia hexandra Swartz)生态学报26:950-953.
    赵学强,介晓磊,李有田,许仙菊,谭金芳,化党领,2006.不同基因型小麦钾离子吸收动力学分析.植物营养与肥料学报12,307-312.
    中国环境监测总站,1990.中国土壤元素背景值.中国环境科学,北京.pp.106-109.
    周启星,宋玉芳,2004.污染土壤修复原理与方法.科学出版社,北京.
    周希琴,李裕红,2004.木麻黄种子萌发对铬胁迫的生理生态响应研究.中国生态农业学报12,53-55.
    朱定祥,倪守斌,2004.铬的生物地球化学及生物效应.广东微量元素科学11,1-9.
    朱国萍,黄恩启,赵品军,2007NADP-异柠檬酸脱氢酶的结构与功能.安徽师范大学学报(自然科学版)101,366-371.
    朱雪梅,林立金,杨远祥,何传云,蒋小军,邵继荣,2008.锌铬复合污染对水稻根系氮代谢的影响.土壤通报39,1145-1148.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700