用户名: 密码: 验证码:
多孔碳及其纳米复合材料的合成与电催化应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着碳纳米材料的迅猛发展,多孔碳纳米材料因为存在大量的孔,高的比表面积和独特的构架组成已经在各种不同的领域引起了研究者们的极大兴趣。近些年来,多孔碳纳米材料更广泛的被应用在电化学领域,例如用作电催化的催化剂和电容器的电极材料等。本论文在前人研究的基础上,制备了几种新型的多孔碳及其纳米复合材料并对其电催化应用进行研究,内容主要包括以下几个部分:
     (1)通过自模板方法合成了一种新型的介孔碳纳米纤维(M-CNF),将其修饰到电极上用来电化学检测多巴胺(DA),抗坏血酸(AA)和尿酸(UA),M-CNF/GCE对这些物质呈现出显著增强的电催化性能。而且,这种碳材料实现了在生理pH条件下(pH7.4)同时检测DA,AA和UA混合物,呈现出高的灵敏度和宽的线性范围。我们用M-CNF/GCE对嘌呤类物质进行了检测,优越的电催化性能表明M-CNF是一种有前途的电催化剂。进一步,我们将M-CNF作为载体,将金纳米粒子通过电沉积方法负载到M-CNF上,结合M-CNF独特的结构和高的表面积以及金纳米粒子高的催化性能,M-CNF-Au检测肼呈现出低的检出限,宽的线性范围和短的响应时间,这使M-CNF-Au成为有前途的高效检测肼的修饰电极材料。而且,此纳米复合物的制备在设计和构建基于M-CNF的电催化材料上有很大的指导意义。
     (2)我们制备了铂钯负载的大介孔碳(PtxPdy/LMC)纳米复合物,并将其应用于电化学,用H2O2和亚硝酸盐作为探针检测PtxPdy/LMC的电催化性能。H2O2和亚硝酸盐在PtxPdy/LMC/GCE上的检测结果表明Pt1Pd1/LMC/GCE呈现出较高的电催化活性。Pt, Pd合金纳米粒子高效催化能力和协同效应以及LMC基底的独特结构是Pt1Pd1/LMC/GCE产生增强的电催化性能的原因。Pt1Pd1/LMC/GCE不仅可以作为H2O2和亚硝酸盐的优良传感器而且可以作为检测其他物质的高效电催化剂。受大介孔碳制备方法的启发,我们以鱼精DNA为碳源和氮源实现了一步绿色法制备氮掺杂的大介孔碳(N-LMC)。研究了它对氧还原反应(ORR)的催化活性,与未掺氮的大介孔碳相比,有较高吡啶氮和石墨化氮含量的N-LMC-800(800℃碳化)显示出更高的ORR电催化活性,表明它是一种有前途的非金属氧还原电催化剂。
     (3)通过在有序介孔碳(OMC)制备过程中加入不同含量比的蔗糖和二苄基硫,成功的合成了不同量硫掺杂的有序介孔碳(OMC-S-X)。其中得到的OMC-S-3对ORR呈现出高的电催化活性,好的稳定性和优良的抗甲醇干扰能力。而且,我们研究了在OMC-S-X中不同的硫键对ORR的影响,结果表明C-S-C对ORR起着很重要的作用。
     (4)以聚多巴胺为前驱体,制备了钴掺杂的纳米孔空心碳球(PDA-HCS-Co)。虽然PDA-HCS对ORR有很小的催化活性,PDA-HCS-Co却呈现出与Pt-C催化剂相近的电催化活性,而且有高于Pt-C催化剂的稳定性和抗甲醇干扰能力。这表明结合了氮元素和Co-N对ORR的催化优势,我们合成的PDA-HCS-Co是一种有前途的非贵金属氧还原催化剂。
     (5)我们报导了一种合理的设计和制备新型孔石墨烯(P-GR)的方法,其中使用铜作为侵蚀试剂。不同的电活性化合物在P-GR/GCE上的电化学行为表明,与GR/GCE相比,P-GR/GCE有更好的电催化性能。这些生物分子在P-GR/GCE上增强的电化学活性归因于与GR相比,P-GR独特的孔结构,高含量的边缘缺陷位点(EDSs)和较多的酸性含氧官能团。该工作具有很重要的意义,不仅仅因为它是一种新型的制备P-GR的方法,更重要的是它构建了一种基于P-GR的新型的电化学传感平台,扩展了P-GR的应用范围。
With the development of carbon nanomaterials, owing to their massive pores, highspecific surface area and unique frame, porous carbon nanomaterials have received a greatdeal of attention in different fields. Recent years, porous carbon nanomaterials have beenwidely used in electrochemistry area, such as used as catalyst in electrocatalytic reaction andused as electrode material in capacitor. Based on the previously research, we fabricated somenovel porous carbon and its nanocomposite materials, and then researched theirelectrocatalytic application, the content was listed below:
     (1) We examined the electrocatalytic application of a novel mesoporous carbonnanofiber (M-CNF) that was synthesized using a self templating strategy, it employed as acarbon electrode material for detecting DA, AA and UA and exhibited significantly enhancedelectrocatalytic performance. Moreover, the superior electrocatalytic capability of the M-CNFwas confirmed by its simultaneous detection of DA, AA and UA at a physiological pH of7.4,where it demonstrated a wide linear range and high sensitivity. In addition, other biomoleculessuch as some purines were examined in the presence of the M-CNF, and its outstandingperformance verified that the M-CNF was a promising electrocatalyst. Next, by combiningthe advantages of unique nanostructure and large surface area of M-CNF combined with theelectrocatalytic ability of Au nanoparticles, M-CNF-Au was successfully prepared as ahydrazine catalyst. Low detection limit, wide linear range and short response time providedan opportunity for M-CNF-Au as a promising electrode material for the fabrication of anefficient hydrazine amperometric sensor. Moreover, this nanocomposite suggests greatpotential applications in the design and construction of M-CNF based materials forelectrocatalytic application.
     (2) PtxPdy/LMC nanocomposites were prepared. In application to electrochemistry,hydrogen peroxide and nitrite were employed as the probes to measure the electrochemicalperformance of PtxPdy/LMC. Comparison of hydrogen peroxide reduction and nitriteoxidation on PtxPdy/LMC/GCE indicated that the Pt1Pd1/LMC/GCE exhibited the highestactivity. The combination the high-efficiency catalysis and synergistic effect of Pt, Pd alloynanoparticles to electrocatalytic reaction and the unique structure of LMC matrix endows theenhanced electrochemical performance of Pt1Pd1/LMC/GCE. It is expected that thePt1Pd1/LMC/GCE is not only a sensitive sensor for hydrogen peroxide and nitrite in practicalapplication, but also can used as a high-performance electrocatalyst for other substances.Inspired by LMC, we reported a one step and green approach for the fabrication of N-LMCby using herring sperm DNA as carbon and nitrogen precursor. N-LMC/GCE was fabricated, and its electrocatalytic performance for the ORR was investigated. With high amounts ofpyridinic N and graphitic N, N-LMC-800exhibited higher electrocatalytic activity for theORR than LMC, which made it a very promising cathode catalyst for fuel cell application.
     (3) We successfully prepared OMC-S-X with different sulfur contents through varyingthe relative amounts of sucrose and benzyl disulfide in the preparation procedure. Theresulting OMC-S-3served as metal-free catalyst that showed outstanding electrocatalyticactivity, good stability and excellent resistance tocrossover effect for ORR. Moreover, theinfluence of different S-bonding configurations in OMC-S-X for ORR was researched whichproved that C-S-C played an important role in promoting the ORR activity.
     (4) PDA-HCS-Co with nanoporous hollow sphere morphology was prepared. AlthoughPDA-HCS alone had little catalytic activity for ORR, PDA-HCS-Co exhibited similar highcatalytic activity but superior stability and methanol tolerance compared to commercial Pt-Ccatalyst. This indicates combining the advantages of nitrogen and Co-N for ORR; thesynthesized PDA-HCS-Co is a promising non-precious metal ORR catalyst.
     (5) We demonstrated the rational design and fabrication of a novel P-GR using copperas an etching agent. In particular, the electrochemical behaviors of various electroactivecompounds were studied on P-GR/GCE, which exhibited more favorable electron transferkinetics than that on GR/GCE. The greatly enhanced electrochemical reactivity of theseprobes on P-GR/GCE is attributed to the unique porous structure, higher amounts of EDSsand more acidic groups of P-GR relative to GR. This research is of great significance not onlybecause it is an innovative strategy of preparing P-GR but also because it constructs a novelelectrochemical biosensing platform based on the freshly prepared P-GR, expand theapplication field of P-GR.
引文
[1] Kim K, Choi M, Ryoo R. Ethanol-based synthesis of hierarchically porous carbon using nanocrystallinebeta zeolite template for high-rate electrical double layer capacitor[J]. Carbon,2013,60:175-185.
    [2] Li J J, Liang Y, Dou B J, et al. Nanocasting synthesis of graphitized ordered mesoporous carbon usingFe-coated SBA-15template[J]. Mater Chem Phys,2013,138(2-3):484-489.
    [3] Xia W, Qiu B, Xia D G, et al. Facile preparation of hierarchically porous carbons from metal-organicgels and their application in energy storage[J]. Sci Rep,2013,3.
    [4] Guo Z Y, Zhou D D, Dong X L, et al. Ordered hierarchical mesoporous/macroporous carbon: Ahigh-performance catalyst for rechargeable Li-O2batteries[J]. Adv Mater,2013,25(39):5668-5672.
    [5] Lee J, Yoon S, Hyeon T, et al. Synthesis of a new mesoporous carbon and its application toelectrochemical double-layer capacitors[J]. Chem Commun,1999,(21):2177-2178.
    [6] Ye Y, Jo C, Jeong I, et al. Functional mesoporous materials for energy applications: solar cells, fuel cells,and batteries[J]. Nanoscale,2013,5(11):4584-4605.
    [7] Walcarius A. Electrocatalysis, sensors and biosensors in analytical chemistry based on orderedmesoporous and macroporous carbon-modified electrodes[J]. TrAC Trends in Analytical Chemistry,2012,38:79-97.
    [8] Wang X Q, Liang C D, Dai S. Facile synthesis of ordered mesoporous carbons with high thermalstability by self-assembly of resorcinol-formaldehyde and block copolymers under highly acidicconditions[J]. Langmuir,2008,24(14):7500-7505.
    [9] Meng Y, Gu D, Zhang F Q, et al. A family of highly ordered mesoporous polymer resin and carbonstructures from organic-organic self-assembly[J]. Chem Mater,2006,18(18):4447-4464.
    [10] Han S, Wu D Q, Li S, et al. Graphene: A two-dimensional platform for lithium storage[J]. Small,2013,9(8):1173-1187.
    [11] Jiang H, Lee P S, Li C Z.3D carbon based nanostructures for advanced supercapacitors[J]. EnergyEnviron Sci,2013,6(1):41-53.
    [12] Xu C H, Xu B H, Gu Y, et al. Graphene-based electrodes for electrochemical energy storage[J]. EnergyEnviron Sci,2013,6(5):1388-1414.
    [13] Chen C M, Zhang Q, Huang C H, et al. Macroporous 'bubble' graphene film via template-directedordered-assembly for high rate supercapacitors[J]. Chem Commun,2012,48(57):7149-7151.
    [14] Wang Z L, Xu D, Wang H G, et al. In situ fabrication of porous graphene electrodes forhigh-performance energy storage[J]. ACS Nano,2013,7(3):2422-2430.
    [15] Huang X D, Qian K, Yang J, et al. Functional nanoporous graphene foams with controlled poresizes[J]. Adv Mater,2012,24(32):4419-4423.
    [16] Zhu Y W, Murali S, Stoller M D, et al. Carbon-based supercapacitors produced by activation ofgraphene[J]. Science,2011,332(6037):1537-1541.
    [17] Zhang L, Zhang F, Yang X, et al. Porous3D graphene-based bulk materials with exceptional highsurface area and excellent conductivity for supercapacitors[J]. Sci Rep,2013,3.
    [18] Zhao X, Hayner C M, Kung M C, et al. Flexible holey graphene paper electrodes with enhanced ratecapability for energy storage applications[J]. ACS Nano,2011,5(11):8739-8749.
    [19] Wang X L, Jiao L Y, Sheng K X, et al. Solution-processable graphene nanomeshes with controlledpore structures[J]. Sci Rep,2013,3.
    [20] Lin Y, Watson K A, Kim J W, et al. Bulk preparation of holey graphene via controlled catalyticoxidation[J]. Nanoscale,2013,5(17):7814-7824.
    [21] Fan Z J, Zhao Q K, Li T Y, et al. Easy synthesis of porous graphene nanosheets and their use insupercapacitors[J]. Carbon,2012,50(4):1699-1703.
    [22] Yi J, Lee D H, Lee W W, et al. Direct synthesis of graphene meshes and semipermanent electricaldoping[J]. J Phys Chem Lett,2013,4(13):2099-2104.
    [23] Tang Z H, Shen S L, Zhuang J, et al. Noble-metal-promoted three-dimensional macroassembly ofsingle-layered graphene oxide[J]. Angew Chem Int Ed,2010,49(27):4603-4607.
    [24] Kotchey G P, Allen B L, Vedala H, et al. The enzymatic oxidation of graphene oxide[J]. ACS Nano,2011,5(3):2098-2108.
    [25] Wang H, Bo X J, Ju J, et al. Preparation of highly dispersed gold nanoparticles/mesoporous carbonnanofiber composites and their application toward detection of hydrazine[J]. Catal Sci Technol,2012,2(11):2327-2331.
    [26] Ming J, Park J B, Sun Y K. Encapsulation of metal oxide nanocrystals into porous carbon withultrahigh performances in lithium-ion battery[J]. ACS Appl Mater Interfaces,2013,5(6):2133-2136.
    [27] Ryu W H, Shin J, Jung J W, et al. Cobalt (II) monoxide nanoparticles embedded in porous carbonnanofibers as a highly reversible conversion reaction anode for Li-ion batteries[J]. J Mater Chem A,2013,1(10):3239-3243.
    [28] Li S M, Wang Y S, Yang S Y, et al. Electrochemical deposition of nanostructured manganese oxide onhierarchically porous graphene-carbon nanotube structure for ultrahigh-performance electrochemicalcapacitors[J]. J Power Sources,2013,225:347-355.
    [29] Zhang Y F, Bo X J, Luhana C, et al. Facile synthesis of a Cu-based MOF confined in macroporouscarbon hybrid material with enhanced electrocatalytic ability[J]. Chem Commun,2013,49(61):6885-6887.
    [30] Liu L, Guo L P, Bo X J, et al. Electrochemical sensors based on binuclear cobaltphthalocyanine/surfactant/ordered mesoporous carbon composite electrode[J]. Anal Chim Acta,2010,673(1):88-94.
    [31] Yang G W, Han H Y, Li T T, et al. Synthesis of nitrogen-doped porous graphitic carbons usingnano-CaCO3as template graphitization catalyst, and activating agent[J]. Carbon,2012,50(10):3753-3765.
    [32] Nagaiah T C, Bordoloi A, Sánchez M D, et al. Mesoporous nitrogen-rich carbon materials as catalystsfor the oxygen reduction reaction in alkaline solution[J]. ChemSusChem,2012,5(4):637-641.
    [33] Liu R L, Wu D Q, Feng X L, et al. Nitrogen-doped ordered mesoporous graphitic arrays with highelectrocatalytic activity for oxygen reduction[J]. Angew Chem Int Ed,2010,49(14):2565-2569.
    [34] Lu J, Bo X J, Wang H, et al. Nitrogen-doped ordered mesoporous carbons synthesized from honey asmetal-free catalyst for oxygen reduction reaction[J]. Electrochim Acta,2013,108:10-16.
    [35] Yang L J, Jiang S J, Zhao Y, et al. Boron-doped carbon nanotubes as metal-free electrocatalysts for theoxygen reduction reaction[J]. Angew Chem Int Ed,2011,50(31):7132-7135.
    [36] Yang W, Fellinger T P, Antonietti M. Efficient metal-free oxygen reduction in alkaline medium onhigh-surface-area mesoporous nitrogen-doped carbons made from ionic liquids and nucleobases[J]. J AmChem Soc,2010,133(2):206-209.
    [37] Bo X J, Guo L P. Ordered mesoporous boron-doped carbons as metal-free electrocatalysts for theoxygen reduction reaction in alkaline solution[J]. Phys Chem Chem Phys,2013,15(7):2459-2465.
    [38] Wang S Y, Zhang L P, Xia Z H, et al. BCN graphene as efficient metal-free electrocatalyst for theoxygen reduction reaction[J]. Angew Chem,2012,124(17):4285-4288.
    [39] Zheng Y, Jiao Y, Ge L, et al. Two-step boron and nitrogen doping in graphene for enhanced synergisticcatalysis[J]. Angew Chem,2013,125(11):3192-3198.
    [40] Zhao Y, Yang L J, Chen S, et al. Can boron and nitrogen co-doping improve oxygen reduction reactionactivity of carbon nanotubes?[J]. J Am Chem Soc,2013,135(4):1201-1204.
    [41] Wang H, Bo X J, Zhang Y F, et al. Sulfur-doped ordered mesoporous carbon with high electrocatalyticactivity for oxygen reduction[J]. Electrochim Acta,2013,108:404-411.
    [42] Hong J D, Xia X Y, Wang Y S, et al. Mesoporous carbon nitride with in situ sulfur doping forenhanced photocatalytic hydrogen evolution from water under visible light[J]. J Mater Chem,2012,22(30):15006-15012.
    [43] Yang D S, Bhattacharjya D, Inamdar S, et al. Phosphorus-doped ordered mesoporous carbons withdifferent lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media[J]. JAm Chem Soc,2012,134(39):16127-16130.
    [44] Zheng D, Ye J S, Zhou L, et al. Simultaneous determination of dopamine, ascorbic acid and uric acidon ordered mesoporous carbon/nafion composite film[J]. J Electroanal Chem,2009,625(1):82-87.
    [45] Wang H, Bo X J, Guo L P. Electrochemical biosensing platform based on a novel porous graphenenanosheet[J]. Sens Actuators B,2014,192:181-187.
    [46] Zang J F, Guo C X, Hu F P, et al. Electrochemical detection of ultratrace nitroaromatic explosivesusing ordered mesoporous carbon[J]. Anal Chim Acta,2011,683(2):187-191.
    [47] Ma J Y, Zhang Y S, Zhang X H, et al. Sensitive electrochemical detection of nitrobenzene based onmacro-/meso-porous carbon materials modified glassy carbon electrode[J]. Talanta,2012,88:696-700.
    [48] Li F, Song J X, Shan C S, et al. Electrochemical determination of morphine at ordered mesoporouscarbon modified glassy carbon electrode[J]. Biosens Bioelectron,2010,25(6):1408-1413.
    [49] You C P, Yan X W, Kong J L, et al. Direct electrochemistry of myoglobin based on bicontinuousgyroidal mesoporous carbon matrix[J]. Electrochem Commun,2008,10(12):1864-1867.
    [50] Pei S P, Qu S, Zhang Y M. Direct electrochemistry and electrocatalysis of hemoglobin at mesoporouscarbon modified electrode[J]. Sensors,2010,10(2):1279-1290.
    [51] You C P, Yan X W, Kong J L, et al. Bicontinuous gyroidal mesoporous carbon matrix for facilitatingprotein electrochemical and bioelectrocatalytic performances[J]. Talanta,2011,83(5):1507-1514.
    [52] Sheng Q L, Zheng J B, Shang-Guan X D, et al. Direct electrochemistry and electrocatalysis ofheme-proteins immobilized in porous carbon nanofiber/room-temperature ionic liquid composite film[J].Electrochim Acta,2010,55(9):3185-3191.
    [53] Jiang X Y, Wu Y H, Mao X Y, et al. Amperometric glucose biosensor based on integration of glucoseoxidase with platinum nanoparticles/ordered mesoporous carbon nanocomposite[J]. Sens Actuators B,2011,153(1):158-163.
    [54] Wu B N, Miao C C, Yu L L, et al. Sensitive electrochemiluminescence sensor based on orderedmesoporous carbon composite film for dopamine[J]. Sens Actuators B,2014,195:22-27.
    [55] Collinson M M. Electrochemistry: An important tool to study and create new sol-gel-derivedmaterials[J]. Accounts Chem Res,2007,40(9):777-783.
    [56] Zhao Y, Zheng M B, Cao J M, et al. Easy synthesis of ordered meso/macroporous carbon monolith foruse as electrode in electrochemical capacitors[J]. Mater Lett,2008,62(3):548-551.
    [57] Chen Z P, Ren W C, Gao L B, et al. Three-dimensional flexible and conductive interconnectedgraphene networks grown by chemical vapour deposition[J]. Nat Mater,2011,10(6):424-428.
    [58] Merlet C, Rotenberg B, Madden P A, et al. On the molecular origin of supercapacitance in nanoporouscarbon electrodes[J]. Nat Mater,2012,11(4):306-310.
    [59] Xing W, Qiao S Z, Ding R G, et al. Superior electric double layer capacitors using ordered mesoporouscarbons[J]. Carbon,2006,44(2):216-224.
    [60] Zhai Y P, Dou Y Q, Zhao D Y, et al. Carbon materials for chemical capacitive energy storage[J]. AdvMater,2011,23(42):4828-4850.
    [61] Liu B, Creager S. Silica-sol-templated mesoporous carbon as catalyst support for polymer electrolytemembrane fuel cell applications[J]. Electrochim Acta,2010,55(8):2721-2726.
    [62] Zheng H J, Chen Z, Li Y, et al. Synthesis of ordered mesoporous carbon/tungsten carbides as areplacement of platinum-based electrocatalyst for methanol oxidation[J]. Electrochim Acta,2013,108:486-490.
    [63] Wang X Q, Lee J S, Zhu Q, et al. Ammonia-treated ordered mesoporous carbons as catalytic materialsfor oxygen reduction reaction[J]. Chem Mater,2010,22(7):2178-2180.
    [64] Guo Y X, He J P, Wang T, et al. Enhanced electrocatalytic activity of platinum supported on nitrogenmodified ordered mesoporous carbon[J]. J Power Sources,2011,196(22):9299-9307.
    [65] Liu H J, Wang X M, Cui W J, et al. Highly ordered mesoporous carbon nanofiber arrays from a crabshell biological template and its application in supercapacitors and fuel cells[J]. J Mater Chem,2010,20(20):4223-4230.
    [66] Ji L W, Zhang X W. Fabrication of porous carbon nanofibers and their application as anode materialsfor rechargeable lithium-ion batteries[J]. Nanotechnology,2009,20(15):155705-155711.
    [67] Li Z Q, Liu N N, Wang X K, et al. Three-dimensional nanohybrids of Mn3O4/ordered mesoporouscarbons for high performance anode materials for lithium-ion batteries[J]. J Mater Chem,2012,22(32):16640-16648.
    [68] Yang S B, Feng X L, Wang L, et al. Graphene-based nanosheets with a sandwich structure[J]. AngewChem Int Ed,2010,49(28):4795-4799.
    [1] He J J, Fugetsu B, Tanaka S. Electrochemical detection of ethidium bromide by using puresingle-walled carbon nanotube sheet as the electrode[J]. J Electroanal Chem,2010,638(1):46-50.
    [2] Baby T T, Aravind S S J, Arockiadoss T, et al. Metal decorated graphene nanosheets as immobilizationmatrix for amperometric glucose biosensor[J]. Sens Actuators B,2010,145(1):71-77.
    [3] Tang X F, Liu Y, Hou H Q, et al. A nonenzymatic sensor for xanthine based on electrospun carbonnanofibers modified electrode[J]. Talanta,2011,83(5):1410-1414.
    [4] Li W, Zhang F, Dou Y Q, et al. A self-template strategy for the synthesis of mesoporous carbonnanofibers as advanced supercapacitor electrodes[J]. Adv Energy Mater,2011,1(3):382-386.
    [5] Zhi L, Wu J, Li J, et al. Diels-alder reactions of tetraphenylcyclopentadienones in nanochannels:Fabrication of nanotubes from hyperbranched polyphenylenes[J]. Adv Mater,2005,17(12):1492-1496.
    [6] Steinhart M, Liang C, Lynn G W, et al. Direct synthesis of mesoporous carbon microwires andnanowires[J]. Chem Mater,2007,19(10):2383-2385.
    [7] de Pieri Troiani E, Faria R C. The influence of the cathodic pretreatment on the electrochemicaldetection of dopamine by poly(1-aminoanthracene) modified electrode[J]. Electroanalysis,2010,22(19):2284-2289.
    [8] Li F, Li J J, Feng Y, et al. Electrochemical behavior of graphene doped carbon paste electrode and itsapplication for sensitive determination of ascorbic acid[J]. Sens Actuators B,2011,157(1):110-114.
    [9] Sun C L, Lee H H, Yang J M, et al. The simultaneous electrochemical detection of ascorbic acid,dopamine, and uric acid using graphene/size-selected pt nanocomposites[J]. Biosens Bioelectron,2011,26(8):3450-3455.
    [10] Dursun Z, Gelmez B. Simultaneous determination of ascorbic acid, dopamine and uric acid at Ptnanoparticles decorated multiwall carbon nanotubes modified GCE[J]. Electroanalysis,2010,22(10):1106-1114.
    [11] Huang J S, Liu Y, Hou H Q, et al. Simultaneous electrochemical determination of dopamine, uric acidand ascorbic acid using palladium nanoparticle-loaded carbon nanofibers modified electrode[J]. BiosensBioelectron,2008,24(4):632-637.
    [12] Fang B Z, Binder L. A novel carbon electrode material for highly improved EDLC performance[J]. JPhys Chem B,2006,110(15):7877-7882.
    [1] Liang Y Y, Feng X Y, Zhi L J, et al. A simple approach towards one-dimensional mesoporous carbonwith superior electrochemical capacitive activity[J]. Chem Commun,2009,(7):809-811.
    [2] Liu H J, Wang X M, Cui W J, et al. Highly ordered mesoporous carbon nanofiber arrays from a crabshell biological template and its application in supercapacitors and fuel cells[J]. J Mater Chem,2010,20(20):4223-4230.
    [3] Li W, Zhang F, Dou Y Q, et al. A self-template strategy for the synthesis of mesoporous carbonnanofibers as advanced supercapacitor electrodes[J]. Adv Energy Mater,2011,1(3):382-386.
    [4] Song Y Z, Zhu A F, Zhong H, et al. Gold nanoparticle/single-walled carbon nanotube film on thesurface of glassy carbon electrode and its application[J]. Mater Lett,2011,65(23-24):3612-3614.
    [5] Hu Y W, Hua S C, Li F H, et al. Green-synthesized gold nanoparticles decorated graphene sheets forlabel-free electrochemical impedance DNA hybridization biosensing[J]. Biosens Bioelectron,2011,26(11):4355-4361.
    [6] Wang L X, Bo X J, Bai J, et al. Gold nanoparticles electrodeposited on ordered mesoporous carbon asan enhanced material for nonenzymatic hydrogen peroxide sensor[J]. Electroanalysis,2010,22(21):2536-2542.
    [7] Lu W B, Ning R, Qin X Y, et al. Synthesis of Au nanoparticles decorated graphene oxide nanosheets:Noncovalent functionalization by TWEEN20in situ reduction of aqueous chloroaurate ions for hydrazinedetection and catalytic reduction of4-nitrophenol[J]. J Hazard Mater,2011,197:320-326.
    [8] Hu G Z, Zhou Z P, Guo Y, et al. Electrospun rhodium nanoparticle-loaded carbon nanofibers for highlyselective amperometric sensing of hydrazine[J]. Electrochem Commun,2010,12(3):422-426.
    [9] Yi Q F, Li L, Yu W Q, et al. Novel nanoporous binary Ag-Ni electrocatalysts for hydrazine oxidation[J].Rare Met,2010,29(1):26-31.
    [10] Ra E J, Kim T H, Yu W J, et al. Ultramicropore formation in PAN/camphor-based carbon nanofiberpaper[J]. Chem Commun,2010,46(8):1320-1322.
    [11] Wang K X, Zhang W H, Phelan R, et al. Direct fabrication of well-aligned free-standing mesoporouscarbon nanofiber arrays on silicon substrates[J]. J Am Chem Soc,2007,129(44):13388-13389.
    [12] Rashid M H, Bhattacharjee R R, Mandal T K. Organic ligand-mediated synthesis of shape-tunablegold nanoparticles: An application of their thin film as refractive index sensors[J]. J Phys Chem C,2007,111(27):9684-9693.
    [13] Liu Y, Wang M K, Zhao F H, et al. Direct electron transfer and electrocatalysis of microperoxidaseimmobilized on nanohybrid film[J]. J Electroanal Chem,2005,581(1):1-10.
    [14] Fang B Z, Binder L. A novel carbon electrode material for highly improved EDLC performance[J]. JPhys Chem B,2006,110(15):7877-7882.
    [15] Wang G F, Zhang C H, He X P, et al. Detection of hydrazine based on nano-Au deposited onporous-TiO2film[J]. Electrochim Acta,2010,55(24):7204-7210.
    [16] Gholivand M B, Azadbakht A. A novel hydrazine electrochemical sensor based on a zirconiumhexacyanoferrate film-bimetallic Au-Pt inorganic-organic hybrid nanocomposite onto glassycarbon-modified electrode[J]. Electrochim Acta,2011,56(27):10044-10054.
    [17] Gattia M D, Antisari M V, Giorgi L, et al. Study of different nanostructured carbon supports for fuelcell catalysts[J]. J Power Sources,2009,194(1):243-251.
    [1] Zhou M, Shang L, Li B L, et al. Highly ordered mesoporous carbons as electrode material for theconstruction of electrochemical dehydrogenase-and oxidase-based biosensors[J]. Biosens Bioelectron,2008,24(3):442-447.
    [2] Xu B, Peng L, Wang G Q, et al. Easy synthesis of mesoporous carbon using nano-CaCO3as template[J].Carbon,2010,48(8):2377-2380.
    [3] Zhang H, Yin Y J, Hu Y J, et al. Pd@pt core-shell nanostructures with controllable compositionsynthesized by a microwave method and their enhanced electrocatalytic activity toward oxygen reductionand methanol oxidation[J]. J Phys Chem C,2010,114(27):11861-11867.
    [4] Winjobi O, Zhang Z Y, Liang C H, et al. Carbon nanotube supported platinum-palladium nanoparticlesfor formic acid oxidation[J]. Electrochim Acta,2010,55(13):4217-4221.
    [5] Jiang S J, Zhu L, Ma Y W, et al. Direct immobilization of Pt-Ru alloy nanoparticles on nitrogen-dopedcarbon nanotubes with superior electrocatalytic performance[J]. J Power Sources,2010,195(22):7578-7582.
    [6] Guo S J, Dong S J, Wang E K. Three-dimensional Pt-on-Pd bimetallic nanodendrites supported ongraphene nanosheet: Facile synthesis and used as an advanced nanoelectrocatalyst for methanoloxidation[J]. ACS Nano,2010,4(1):547-555.
    [7] Yang J H, Lee J Y, Zhang Q B, et al. Carbon-supported pseudo-core-shell Pd-Pt nanoparticles for ORRwith and without methanol[J]. J Electrochem Soc,2008,155(7): B776-B781.
    [8] Zhou X M, Fan L Z. Pt/Pd alloy nanoparticles composed of bimetallic nanobowls: Synthesis,characterization and electrocatalytic activities[J]. Electrochim Acta,2010,55(27):8111-8115.
    [1] Lefèvre M, Proietti E, Jaouen F, et al. Iron-based catalysts with improved oxygen reduction activity inpolymer electrolyte fuel cells[J]. Science,2009,324(5923):71-74.
    [2] Li B, Prakash J. Oxygen reduction reaction on carbon supported palladium-nickel alloys in alkalinemedia[J]. Electrochem Commun,2009,11(6):1162-1165.
    [3] Liu G C, Dahn J R. Fe-N-C oxygen reduction catalysts supported on vertically aligned carbonnanotubes[J]. Appl Catal A,2008,347(1):43-49.
    [4] Yang S B, Feng X L, Wang X C, et al. Graphene-based carbon nitride nanosheets as efficient metal-freeelectrocatalysts for oxygen reduction reactions[J]. Angew Chem Int Ed,2011,50(23):5339-5343.
    [5] Zhou X M, Yang Z, Nie H G, et al. Catalyst-free growth of large scale nitrogen-doped carbon spheres asefficient electrocatalysts for oxygen reduction in alkaline medium[J]. J Power Sources,2011,196(23):9970-9974.
    [6] Liu R L, Wu D Q, Feng X L, et al. Nitrogen-doped ordered mesoporous graphitic arrays with highelectrocatalytic activity for oxygen reduction[J]. Angew Chem Int Ed,2010,49(14):2565-2569.
    [7] Chen Z W, Higgins D, Chen Z. Nitrogen doped carbon nanotubes synthesized from aliphatic diaminesfor oxygen reduction reaction[J]. Electrochim Acta,2011,56(3):1570-1575.
    [8] Liu Z W, Peng F, Wang H J, et al. Phosphorus-doped graphite layers with high electrocatalytic activityfor the O2reduction in an alkaline medium[J]. Angew Chem Int Ed,2011,50(14):3257-3261.
    [9] Yu D S, Zhang Q, Dai L M. Highly efficient metal-free growth of nitrogen-doped single-walled carbonnanotubes on plasma-etched substrates for oxygen reduction[J]. J Am Chem Soc,2010,132(43):15127-15129.
    [10] Ndamanisha J C, Bo X J, Guo L P. Electrocatalytic reduction of oxygen at ordered mesoporous carbonfunctionalized with tetrathiafulvalene[J]. Analyst,2010,135(3):621-629.
    [1] Liu R L, Wu D Q, Feng X L, et al. Nitrogen-doped ordered mesoporous graphitic arrays with highelectrocatalytic activity for oxygen reduction[J]. Angew Chem,2010,122(14):2619-2623.
    [2] Gavrilov N, Pa ti I A, Mitri M, et al. Electrocatalysis of oxygen reduction reaction onpolyaniline-derived nitrogen-doped carbon nanoparticle surfaces in alkaline media[J]. J Power Sources,2012,220:306-316.
    [3] Rao C V, Ishikawa Y. Activity, selectivity, and anion-exchange membrane fuel cell performance ofvirtually metal-free nitrogen-doped carbon nanotube electrodes for oxygen reduction reaction[J]. J PhysChem C,2012,116(6):4340-4346.
    [4] Liu Z W, Peng F, Wang H J, et al. Phosphorus-doped graphite layers with high electrocatalytic activityfor the O2reduction in an alkaline medium[J]. Angew Chem Int Ed,2011,50(14):3257-3261.
    [5] Yang L J, Jiang S J, Zhao Y, et al. Boron-doped carbon nanotubes as metal-free electrocatalysts for theoxygen reduction reaction[J]. Angew Chem Int Ed,2011,50(31):7132-7135.
    [6] Yang Z, Yao Z, Li G F, et al. Sulfur-doped graphene as an efficient metal-free cathode catalyst foroxygen reduction[J]. ACS Nano,2012,6(1):205-211.
    [7] Ahmadi R, Amini M K. Synthesis and characterization of Pt nanoparticles on sulfur-modified carbonnanotubes for methanol oxidation[J]. Int J Hydrogen Energy,2011,36(12):7275-7283.
    [8] Monteverde Videla A H A, Zhang L, Kim J, et al. Mesoporous carbons supported non-noble metalFe-Nxelectrocatalysts for PEM fuel cell oxygen reduction reaction[J]. J Appl Electrochem,2013,43(2):159-169.
    [9] Nejad N F, Shams E, Amini M K, et al. Ordered mesoporous carbon CMK-5as a potential sorbent forfuel desulfurization: Application to the removal of dibenzothiophene and comparison with CMK-3[J].Microporous Mesoporous Mater,2012,168:239-246.
    [10] Kwon K, Sa Y J, Cheon J Y, et al. Ordered mesoporous carbon nitrides with graphitic frameworks asmetal-free, highly durable, methanol-tolerant oxygen reduction catalysts in an acidic medium[J]. Langmuir,2012,28(1):991-996.
    [11] Zhao D Y, Huo Q S, Feng J L, et al. Nonionic triblock and star diblock copolymer and oligomericsufactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures[J]. J Am ChemSoc,1998,120(24):6024-6036.
    [12] Choi C H, Park S H, Woo S I. Heteroatom doped carbons prepared by the pyrolysis of bio-derivedamino acids as highly active catalysts for oxygen electro-reduction reactions[J]. Green Chem,2011,13(2):406-412.
    [13] Yang S, Zhi L, Tang K, et al. Efficient synthesis of heteroatom (N or S)-doped graphene based onultrathin graphene oxide-porous silica sheets for oxygen reduction reactions[J]. Adv Funct Mater,2012,22(17):3634-3640.
    [14] Inamdar S, Choi H S, Wang P, et al. Sulfur-containing carbon by flame synthesis as efficient metal-freeelectrocatalyst for oxygen reduction reaction[J]. Electrochem Commun,2013,30:9-12.
    [15] Wohlgemuth S A, White R J, Willinger M G, et al. A one-pot hydrothermal synthesis of sulfur andnitrogen doped carbon aerogels with enhanced electrocatalytic activity in the oxygen reduction reaction[J].Green Chem,2012,14(5):1515-1523.
    [16] Ndamanisha J C, Bo X J, Guo L P. Electrocatalytic reduction of oxygen at ordered mesoporous carbonfunctionalized with tetrathiafulvalene[J]. Analyst,2010,135(3):621-629.
    [17] Yu D S, Zhang Q, Dai L M. Highly efficient metal-free growth of nitrogen-doped single-walled carbonnanotubes on plasma-etched substrates for oxygen reduction[J]. J Am Chem Soc,2010,132(43):15127-15129.
    [18] Wang S Y, Yu D S, Dai L M, et al. Polyelectrolyte-functionalized graphene as metal-freeelectrocatalysts for oxygen reduction[J]. ACS Nano,2011,5(8):6202-6209.
    [1] Liu R L, Wu D Q, Feng X L, et al. Nitrogen-doped ordered mesoporous graphitic arrays with highelectrocatalytic activity for oxygen reduction[J]. Angew Chem,2010,122(14):2619-2623.
    [2] Kruusenberg I, Mondal J, Matisen L, et al. Oxygen reduction on graphene-supported MN4macrocyclesin alkaline media[J]. Electrochem Commun,2013,33:18-22.
    [3] Wohlgemuth S A, Fellinger T P, J ker P, et al. Tunable nitrogen-doped carbon aerogels as sustainableelectrocatalysts in the oxygen reduction reaction[J]. J Mater Chem A,2013,1(12):4002-4009.
    [4] Vikkisk M, Kruusenberg I, Joost U, et al. Electrocatalysis of oxygen reduction on nitrogen-containingmulti-walled carbon nanotube modified glassy carbon electrodes[J]. Electrochim Acta,2013,87:709-716.
    [5] Zhao Y, Watanabe K, Hashimoto K. Self-supporting oxygen reduction electrocatalysts made from anitrogen-rich network polymer[J]. J Am Chem Soc,2012,134(48):19528-19531.
    [6] Ye W C, Hu H Y, Zhang H, et al. Multi-walled carbon nanotube supported Pd and Pt nanoparticles withhigh solution affinity for effective electrocatalysis[J]. Appl Surf Sci,2010,256(22):6723-6728.
    [7] Liang Y Y, Li Y G, Wang H L, et al. Co3O4nanocrystals on graphene as a synergistic catalyst for oxygenreduction reaction[J]. Nat Mater,2011,10(10):780-786.
    [8] Wang J, Qin H, Liu J, et al. Atomic structure of polypyrrole-modified carbon-supported cobaltcatalyst[J]. J Phys Chem C,2012,116(38):20225-20229.
    [9] Alexeyeva N, Shulga E, Kisand V, et al. Electroreduction of oxygen on nitrogen-doped carbon nanotubemodified glassy carbon electrodes in acid and alkaline solutions[J]. J Electroanal Chem,2010,648(2):169-175.
    [10] Huang H C, Shown I, Chang S T, et al. Pyrolyzed cobalt corrole as a potential non-precious catalystfor fuel cells[J]. Adv Funct Mater,2012,22(16):3500-3508.
    [11] Millán W M, Thompson T T, Arriaga L G, et al. Characterization of composite materials ofelectroconductive polymer and cobalt as electrocatalysts for the oxygen reduction reaction[J]. Int JHydrogen Energy,2009,34(2):694-702.
    [12] Yu D S, Zhang Q, Dai L M. Highly efficient metal-free growth of nitrogen-doped single-walled carbonnanotubes on plasma-etched substrates for oxygen reduction[J]. J Am Chem Soc,2010,132(43):15127-15129.
    [13] Davis R E, Horvath G L, Tobias C W. The solubility and diffusion coefficient of oxygen in potassiumhydroxide solutions[J]. Electrochim Acta,1967,12(3):287-297.
    [14] Wang L, Zhang L L, Bai L, et al. Nitrogen, cobalt-codoped carbon electrocatalyst for oxygen reductionreaction using soy milk and cobalt salts as precursors[J]. Electrochem Commun,2013,34:68-72.
    [1] Zhang Y L, Liu Y P, He J M, et al. Electrochemical behavior of caffeic acid assayed with goldnanoparticles/graphene nanosheets modified glassy carbon electrode[J]. Electroanalysis,2013,25(5):1230-1236.
    [2] Fan Z J, Zhao Q K, Li T Y, et al. Easy synthesis of porous graphene nanosheets and their use insupercapacitors[J]. Carbon,2012,50(4):1699-1703.
    [3] Zhu Y W, Murali S, Stoller M D, et al. Carbon-based supercapacitors produced by activation ofgraphene[J]. Science,2011,332(6037):1537-1541.
    [4] Ning G Q, Fan Z J, Wang G, et al. Gram-scale synthesis of nanomesh graphene with high surface areaand its application in supercapacitor electrodes[J]. Chem Commun,2011,47(21):5976-5978.
    [5] Park S J, Lee K S, Bozoklu G, et al. Graphene oxide papers modified by divalent ions-enhancingmechanical properties via chemical cross-linking[J]. ACS Nano,2008,2(3):572-578.
    [6] Hirata M, Gotou T, Horiuchi S, et al. Thin-film particles of graphite oxide1: High-yield synthesis andflexibility of the particles[J]. Carbon,2004,42(14):2929-2937.
    [7] Georgakilas V, Voulgaris D, Vázquez E, et al. Purification of HiPCO carbon nanotubes via organicfunctionalization[J]. J Am Chem Soc,2002,124(48):14318-14319.
    [8] Bai J, Bo X J, Zhu D X, et al. A comparison of the electrocatalytic activities of ordered mesoporouscarbons treated with either HNO3or NaOH[J]. Electrochim Acta,2010,56(2):657-662.
    [9] Brownson D A C, Kampouris D K, Banks C E. Graphene electrochemistry: Fundamental conceptsthrough to prominent applications[J]. Chem Soc Rev,2012,41(21):6944-6976.
    [10] Moore R R, Banks C E, Compton R G. Basal plane pyrolytic graphite modified electrodes:Comparison of carbon nanotubes and graphite powder as electrocatalysts[J]. Anal Chem,2004,76(10):2677-2682.
    [11] Salimi A, Mahdioun M, Noorbakhsh A, et al. A novel non-enzymatic hydrogen peroxide sensor basedon single walled carbon nanotubes-manganese complex modified glassy carbon electrode[J]. ElectrochimActa,2011,56(9):3387-3394.
    [12] Filip J, ef ovi ová J, Tom ík P, et al. A hyaluronic acid dispersed carbon nanotube electrode used fora mediatorless NADH sensing and biosensing[J]. Talanta,2011,84(2):355-361.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700