用户名: 密码: 验证码:
聚丙烯酸修饰壳聚糖纳米球锌卟啉结合体的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
壳聚糖是一种性能优良的生物高分子,具有良好的稳定性、水溶性和带正电性,这些特点使其在液态介质中可与带负电荷的聚合物、大分子甚至一些聚阴离子相互作用。壳聚糖是一类重要的药物控释载体材料,因其特别适用于多肽、蛋白质、核酸、疫苗等生物活性大分子药物的包埋和释放而受到关注。化学修饰后的壳聚糖纳米球仍能保持良好的生物相容性、低毒性和稳定性。聚丙烯酸修饰壳聚糖纳米球也是近年来制备很多的一种纳米材料,在很多方面有所应用。本论文首次将水不溶性金属卟啉锌配合物与聚丙烯酸修饰壳聚糖纳米球结合,制得一种新型的结合有功能化合物的水溶性天然高分子纳米球,以期拓宽壳聚糖和金属卟啉的应用领域。
     论文首先对多糖基纳米球的主要种类和用途进行了综述,并介绍了目前壳聚糖基纳米球的制备方法及其在负载各类药物方面的应用情况,总结了各种方法存在的问题。
     其次,用原位聚合的方法制备了聚丙烯酸修饰壳聚糖纳米球(CS-GA-PAA-NPs),将其与中位-四取代基苯基卟啉锌结合制备了四种聚丙烯酸修饰壳聚糖纳米球锌卟啉结合体( ZnTpMoPP/CS-GA-PAA-NPs、ZnTpHPP/CS-GA-PAA-NPs、ZnToHPP/CS-GA-PAA-NPs和ZnTmMpHPP/CS -GA-PAA-NPs),通过紫外-可见光谱、动态光散射等对其进行了表征,结果表明:CS-GA-PAA-NPs与卟啉锌配合物结合后体系稳定、粒径均一;推测卟啉锌与CS-GA-PAA-NPs以配位键结合;且CS-GA-PAA-NPs对卟啉锌的分散非常好,是有机溶剂与水的混合溶剂对卟啉锌分散程度的6~26倍。
     第三,论文从两个方面探索了聚丙烯酸修饰壳聚糖纳米球锌卟啉结合体的功能。(1)聚对氧自由基的清除:中位-四苯基金属卟啉及其衍生物的合成及分离较为简单,在氧自由基清除方面具有广阔的应用前景。由于人体内自由基处在亲水性环境中,因此提高金属卟啉作为氧自由基清除酶模型物的亲水性是目前需解决的最主要问题。本文研究了四种聚丙烯酸修饰壳聚糖纳米球锌卟啉结合体对O2.-的清除,发现其去除O2.-活性良好,EC50值在1.99μmol/L~ 8.60μmol/L之间,对天然SOD酶的模拟度最高可达3.02% ,其活性顺序为ZnTpMoPP/CS-GA-PAA-NPs > ZnTmMpHPP/CS-GA-PAA-NPs > ZnToHPP/CS-GA-PAA-NPs>ZnTpHPP/CS-GA-PAA-NPs。(2)在光电子转移反应中的光敏性。以ZnTpHPP/CS-GA-PAA-NPs为代表,研究了聚丙烯酸修饰壳聚糖纳米球锌卟啉结合体的光敏性,发现甲基紫精(MV2+)对ZnTpHPP/CS-GA-PAA-NPs的荧光有猝灭作用;在以TEOA为还原剂,ZnTpHPP/CS-GA-PAA-NPs为光敏剂的TEOA/[ZnTpHPP/CS-GA-PAA-NPs]/[MV2+]体系中,发现ZnTpHPP/CS-GA-PAA -NPs可将光电子转移到MV2+ ,使其变成激发态,表明ZnTpHPP/ CS-GA-PAA-NPs是一种良好的天然高分子光敏剂,并对其产氢功能进行了探索。
     总之,所制备的聚丙烯酸修饰壳聚糖纳米球锌卟啉结合体具有清除自由基性能和光敏性,研究结果拓宽了壳聚糖与金属卟啉的应用范围,对开发新型高分子抗氧化剂、高分子电子转移反应体系及新型能源有潜在应用前景。
Chitosan has good stability, water-solubility and positive electrical property, which is an excellent biological macromolecule. Because of its particularly suitable for embedding and releasing peptides, proteins, nucleic acids, vaccines and other bioactive molecules, chitosan was concerned by researchers in recent years. In this paper, in order to expand the application range of chitosan and metalloporphyrins, a new type of water-soluble, functional and natural polymer nanoparticles was prepared by the way of coordinate bonding. It was insoluble metalloporphyrins combined with chitosan/ poly (acrylic acid) nanoparticles.
     First of all, main types of polysaccharide nanoparticles, the preparation methods and applications of chitosan nanoparticles were reviewed.
     Secondly, the chitosan/ polyacrylic acid nanoparticles (CS-PAA-NPs) were prepared by in-situ polymerization. Then the glutaraldehyde crosslinked chitosan/polyacrylic acid nanoparticles (CS-GA-PAA-NPs) were obtained via glutaraldehyde cross-linking. Four kinds of chitosan/ polyacrylic acid nanoparticles binding porphinatozinc were prepared by the way of complexing different zinc porphyrins with CS-GA-PAA-NPs. And they were characterized by UV-Vis spectra and DLS, which were named as ZnTpMoPP/CS-GA-PAA-NPs, ZnTpHPP/CS-GA -PAA-NPs, ZnToHPP/CS-GA-PAA-NPs and ZnTmMpHPP/CS-GA-PAA-NPs. It was concluded that the system was stable and the size of nanoparticles was uniform. It was conjectured that porphyrinatozinc and CS-GA-PAA-NPs was complexed by coordinate bonding. It was shown that porphyrinatozinc was better dispersed by CS/ PAA nanoparticles than by the solution of mixed organic solvent and water.
     Thirdly, in this thesis, the functions of CS-GA-PAA-NPs binding porphinatozinc were explored from two aspects, respectively.
     1) The oxygen free radical scavenging property of CS-GA-PAA-NPs binding porphinatozinc. The synthesis and separation of meso-tetraphenylporphyrins and their derivatives were relatively simple. So they have a broad application in the oxygen free radical scavenging. Metalloporphyrins can be used as enzyme model compound to eliminate oxygen free radicals. To improve metalloporphyrins’hydrophilicity is the main problem need to be solved because free radicals of human body were in a hydrophilic environment. In this paper, the superoxide anion radical scavenging property of CS-GA-PAA-NPs binding porphinatozinc was investigated. CS-GA-PAA-NPs binding porphinatozinc showed excellent scavenging activity compared with the properties of CS-GA-PAA-NPs and porphinatozinc complexes. The EC50 values of CS-GA-PAA-NPs binding porphinatozinc were between 1.99μmol/L and 8.60μmol/L. The degree to simulate the natural SOD enzyme of CS-GA-PAA-NPs binding porphinatozinc was up to 3.02%. The order of scavenging activity of four kinds of CS-GA-PAA-NPs binding porphinatozinc was ZnTpMoPP / CS-GA-PAA-NPs > ZnTmMpHPP/CS-GA-PAA-NPs > ZnToHPP/CS-GA-PAA -NPs > ZnTpHPP/CS-GA-PAA-NPs.
     2) The photosensitivity of CS-GA-PAA-NPs binding porphinatozinc. In this thesis, the photosensitivity of ZnTpHPP/CS-GA-PAA-NPs was also investigated. The Fluorescence of ZnTpHPP/CS-GA-PAA-NPs can be quenched by methyl viologen (MV2+). The photoinduced electron transfer reaction from ZnTpHPP/CS-GA-PAA-NPs to the water-soluble cationic acceptor (MV2+) in [ZnTpHPP/CS-GA-PAA-NPs] / MV2+/ TEOA system was also studied with durative irradiated illumination. It was shown that ZnTpHPP/CS-GA-PAA-NPs was a good natural polymer photosensitizer. The function of hydrogen production was also explored.
     In a word, CS-GA-PAA-NPs binding porphinatozinc have good property of scavenging oxygen free radicals and photosensitivity. The application of chitosan and metalloporphyrin has been enhanced, which can provide potential application prospect to develop new polymer antioxiunts, polymer electronic transfer reaction system and new energy.
引文
[1] [日]纳米技术手册编辑委员会编.纳米技术手册[M].王鸣阳,郭成言,葛横,刘彬译.北京:科学出版社,2005: 28-28.
    [2]陈敬忠,刘剑洪主编.纳米材料科学导论[M].北京:高等教育出版社,2006: 4-5.
    [3] Zhao Y, Jiang L. Hollow micro/ nanomaterials with multilevel interior structures[J]. Advance Materials, 2009, 21(36): 3621-3638.
    [4]蒋挺大编著.壳聚糖[M].北京:化学工业出版社,2001: 7-16.
    [5] Tiyaboonchai W, Limpeanchob N. Formulation and characterization of amphotericin B-chitosan-dextran sulfate nanoparticles[J]. International Journal of Pharmaceutics, 2007, 329(1): 142-149.
    [6] Zheng F, Shi X W, Yang G F, Gong L L, Yuan H Y, Cui Y J, Wang Y, Du Y M, Li Y. Chitosan nanoparticle as gene therapy vector via gastrointestinal mucosa administration: Results of an in vitro and in vivo study[J]. Life Sciences, 2007, 80(4): 388-396.
    [7]邵自强等编著.纤维素醚[M].北京:化学工业出版社,2007: 1-210.
    [8]王舟希.生物相容的核壳型高分子纳米微球的制备和表征[D].上海:东华大学, 2006.
    [9]苏琼,王彦斌著.淀粉精细化学品合成及其应用[M].北京:民族出版社, 2004: 17-24.
    [10] Mir S, Shuman L S, Wright K, Bechtel W, Kudo S. Alteration in starch microsphere degraution following contrast angiography in the dog kidneys[J]. Investigative Radiology Invest. 1984, 19(2): 119-122.
    [11] SakamotoY Fujita M, Ota J, Sugiyama R, Sugimoto T, Taguchi T. Enhanced effect of intra-arterial adriamycin in combination with degrauble starch microspheres on an intra-arterial chemotherapy model of nude rats transplanted of human gastric cancer[J]. Nippon Gekkai Zasshi, 1990, 91(3): 326-334.
    [12] Gupta M, Gupta A K. Hydrogel pullulan nanoparticles encapsulating pBUDLacZ plasmid as an efficient gene delivery carrier [J]. Journal of Controlled Release, 2004, 99(1): 157-166.
    [13]肖苏尧,刘选明,童春义,刘俊,唐冬英,赵李剑.多聚赖氨酸淀粉纳米颗粒基因载体的研制及应用[J].中国科学B辑, 2004, 34(6): 473-477.
    [14]刘俊,刘选明,肖苏尧,童春意,唐冬英,赵李剑.基于超声波下淀粉纳米颗粒作载体的基因转导[J].高等学校化学学报, 2005, 26(4): 634-637.
    [15]刘善奎,钟延强,王芳,孙树汉,高申.口蹄疫DNA疫苗海藻酸钠微球的制备及体外释放[J].药学服务与研究, 2004, 4(2): 107-110.
    [16]周英辉,黄明智.明胶/海藻酸钠复合体系用于pH敏感智能药物释放体系的研究[J].北京化工大学学报, 2003, 30(5): 75-78.
    [17] Tiourina O P, Sukhorukov G B. Multilayer alginate/protamine microsized capsules: encapsulation of chymotrypsin and controlled release study[J]. International Journal of Pharmaceutics, 2002, 242(1-2): 155-161.
    [18]曹毅.可生物降解高分子纳米药物载体的合成表征[D].南京:南京大学, 2004.
    [19]高艳丽. Caco-2细胞对自组装海藻酸钠纳米粒的摄入研究[D].青岛:青岛大学, 2009.
    [20] Meyer K, Palmer J W.The Polysaccharide of the vitreous humor[J]. Journal of Biological Chemistry, 1934, 107(12): 629–634.
    [21]董学猛.受体介导的肿瘤靶向性透明质酸纳米药物载体的研究[J].青岛:中国海洋大学, 2008.
    [22]李旭东,陈震华,王彩红,周慧慧,桑琳.透明质酸-羟基磷灰石纳米复合球及其制备方法[P].中国发明专利CN101559241A, 20090515.
    [23] Rege P R,Shukla D J,Block L H,Chitinosans as tableting excipients for modified release delivery systems[J]. International Journal of Pharmaceutics, 1999, 181(l): 49-60.
    [24] Rege P R,Shukla D J,Block L H. Chitinosan-drug complexes:ecffct of electrolyte on naproxen release in vitro[J]. International Journal of Pharmaceutics, 2003, 250(1-2): 259-272.
    [25] Ohya Y, Shiratani M, Kobayashi H, Ouchi T. Release behavior of 5-fluorouracil from chitosan-gel nanospheres immobilizing 5-fluorouracil coated with polysaccharides and their cell specific cytotoxicity[J]. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 1994, 31(5): 629-642.
    [26] Banerjee T, Mitra S, Singh A K, Sharma R K, Maitra A. Preparation,characterization and biodistribution of ultrafine chitosan nanoparticles[J]. International Journal of Pharmaceutics, 2002, 243(1-2): 93-105.
    [27] Zhi J, Wang Y, Luo G. Adsorption of diuretic furosemide onto chitosan nanoparticles prepared with a water-in-oil nanoemulsion system[J]. Reactive and Functional Polymers, 2005, 63(3): 249-257.
    [28] Janes K A, Calvo P, Alonso M J. Polysaccharide colloiul particles as delivery systems for macromolecules[J]. Advanced Drug Delivery Reviews, 2001, 47(1): 83-97.
    [29] Alonso M J, Calvo P, Remunan C. Application of nanoparticles basect on hydrophilic polymers as pharmaceutical forms[P]. EP0860166, Aug. 1998
    [30] Cui Z R, Mumper R J. Chitosan-based nanoparticles for topical genetic immunization[J]. Journal of Controlled Release, 2001, 75(3): 409-419.
    [31] Hu Y, JiangX Q, Ding Y, Ge H X, Yuan Y Y, Yang C Z. Synthesis and characterization of chitosan–poly(acrylic acid) nanoparticles[J]. Biomaterials, 2002, 23(15): 3193-3201.
    [32] Hu Y, Jiang X Q, Ding Y, Chen Q, Yang C Z. Core-template-free strategy for preparing hollow nanopheres[J]. Advance Materials, 2004, 16(11): 933-937.
    [33] Hu Y, Chen Y, Chen Q, Zhang L Y, Jiang X Q, Yang C Z. Synthesis and stimuli-responsive properties of chitosan/poly(acrylic acid)hollow nanospheres[J]. Polymer, 2005, 46(26): 12703–12710.
    [34] Berthold A, Cremer K, Kreuter J. Preparation and characterization of chitosan microspheresas drug carrier for prednisolone sodium phosphate as model for anti-inflammatory drugs[J]. Journal of Controlled Release, 1996, 39(1): 17-25.
    [35] Tian X X, Groves M. Formulation and Biological Activity of Antineoplastic Proteoglycans Derived from Mycobacterium vaccae in Chitosan Nanoparticles[J]. Journal of Pharmacy and Pharmacology, 1999, 51(2): 151-157.
    [36] Nagamoto T, Hattori Y, Takayama K, Maitani Y. Novel Chitosan Particles and Chitosan-Coated Emulsions Inducing Immune Response via Intranasal Vaccine Delivery[J]. Pharmaceutical Research, 2004, 21(4): 671-674.
    [37] Banerjee T, Mitra S, Singh A K, Sharma R K, Maitra A. Preparation,characterization and biodistribution of ultrafine chitosan nanoparticles[J]. International Journal of Pharmaceutics, 2002, 243(1-2): 93-105.
    [38] Shantha K L, Harding D R K. Synthesis and characterization of chemically modified chitosan microspheres[J]. Carbohydrate Polymers, 2002, 48(3): 247-253.
    [39] Gorochovceva N, Maku?ka R. Synthesis and study of water-soluble chitosan-O-poly(ethylene glycol) graft copolymers[J]. European Polymer Journal, 2004, 40(4): 685-691.
    [40] Chae S Y, Son S, Lee M, Jang M K, Nah J W. Deoxycholie acid-conjugated chitosan oligosaccharide nanoparticles for efficient gene carrier[J]. Journal of Controlled Release, 2005, 109(1-3): 330-344.
    [41] Shikata F, Tokumitsu H, Ichikawa H, Fukumori Y. In vitro cellular accumulation of gadolinium incorporated into chitosan nanoparticles designed for neutron-capture therapy of cancer[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2002, 53(1): 57-63.
    [42]古永红,王连艳,谭天伟,马光辉.尺寸均一的壳聚糖微球的制备及其作为胰岛素控释载体的研究[J].生物工程学报, 2006, 22(1): 150-155.
    [43] Wang L Y, Ma G H, Su Z G. Preparation of uniform sized chitosan microspheres by membrane emulsification technique and application as a carrier of protein drug[J]. Journal of Controlled Release, 2005, 106(1-2): 62-75.
    [44]黄潇,魏锐利.眼用氟尿嘧啶的制备及体外评价[J].第二军医大学学报, 2008, 29(10): 1227-1229.
    [45]邹小智,张海丽,王芳,韩德艳.磁性纳米微球-血红蛋白修饰电极的电化学行为及对H202电催化还原的研究[J].分析科学学报, 2007, 23(6): 660-664.
    [46] Calvo P, Remu?án-López C, Vila-Jato J L, Alonso M J. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers[J]. Journal of Applied Polymer Science, 1997, 63(1): 125-132.
    [47] Huang M, Ma Z S, Khor E, Lim L Y. Uptake of FITC-Chitosan Nanoparticles by A549 Cells[J]. Pharmaceutical Research, 2004, 19(10): 1488-1494.
    [48] Xu Y, Du Y. Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles[J]. International Journal of Pharmaceutics, 2003, 250(1): 215-226.
    [49] Gan Q, Wang T, Cochrane C, Carron P M. Modulation of surface charge, particle size andmorphological properties of chitosan–TPP nanoparticles intended for gene delivery[J]. Colloids and Surfaces B: Biointerfaces, 2005, 44(2-3): 65-73.
    [50] Gan Q, Wang T. Chitosan nanoparticle as protein delivery carrier—Systematic examination of fabrication conditions for efficient loading and release[J]. Colloids and Surfaces B Biointerfaces, 2007, 59(1): 24-34.
    [51] Campos A M D, Sánchez A, Alonso M J. Chitosan nano-particles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporine A[J]. International Journal of Pharmaceutics, 2001, 224(1-2): 159-168.
    [52] Vila A, Sánchez A, Janes K, Behrens I, Kissel T, Jato J L V, Alonso M J. Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2004, 57(1): 123-131.
    [53] Wu Y, Yang W L, Wang C C, Hu J H, Fu S K. Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate[J]. International Journal of Pharmaceutics, 2005, 295(1-2): 235-245.
    [54]何文,匡长春,张洪,陈健.壳聚糖的分子参数对载药壳聚糖纳米粒体外性质的影响研究[J].中国药学杂志. 2005, 40(6): 438-453.
    [55]王春,扶雄,杨连生.一种新的蛋白释放载体-水溶性壳聚糖纳米粒子[J].科学通报, 2007, 52(1): 35-40.
    [56] Pan Y, Li Y J, Zhao H Y, Zheng J M, Xu H, Wei G, Hao J S, Cui F D. Bioadhesive polysaccharide in protein delivery system:chitosan nanoparticles improve the intestinal absorption of insulin in vivo[J]. International Journal of Pharmaceutics, 2002, 249(1-2): 139-147.
    [57] Fernández-Urrusuno R, Calvo P, Remu?án-López C, Vila-Jato J L, Alonso M J. Enhancement of Nasal Absorption of Insulin Using Chitosan Nanoparticles [J]. Pharmaceutical Research, 1999, 16(10): 1576-1581.
    [58] Janes K A, Fresneau M P, Marazuela A, Fabra A, Alonso M J. Chitosan nanoparticles as delivery systems for doxorubicin[J]. Journal of Controlled Release, 2001, 73(2-3) 255-267.
    [59] Krishnendu R. Chitosan-DNA nanoparticles:synthesis,characterization,subcellular transport and oral delivery of genetic vaccines[D]. Baltimore the Johns Hopkins University, 1999.
    [60] Mao H Q, Roy K, Troung-Le V L, Janes K A, Lin K Y, Wang Y, August J T, Leong K W. Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency[J]. Journal of Controlled Release, 2001, 70(3): 399-421.
    [61] Leong K W, Mao H Q, Truong-Le V L, Roy K, Walsh S M, August J T. DNA-polycation nanospheres as non-viral gene delivery vehicles [J]. Journal of Controlled Release, 1998, 53(1-3): 183-193.
    [62] Chen Y, Mohanraj V J, Parkin J E. Chitosan-dextran sulfate nanoparticles for delivery of an antiangiogenesis peptide[J]. Letters in Peptide Science, 2003, 10(5-6): 621-629.
    [63]姚倩,侯世祥,何伟玲,冯骥良,王新春,费洪新,陈正华.表面氨基游离的白藜芦醇壳聚糖纳米粒制备方法研究[J].中国中药杂志, 2006, 31(3): 205-208.
    [64] El-Shabouri M H. Positively charged nanoparticles for improving the oral bioavailability of cyclosporin-A[J]. International Journal of Pharmaceutics, 2002, 249(1-2): 101-108.
    [65] Zhang L N , Guo J, Peng X H, Jin Y. Preparation and release behavior of carboxymethylated chitosan/alginate microspheres encapsulating bovine serum albumin[J]. Journal of Applied Polymer Science, 2004, 92(2): 878–882.
    [66]黄河宁,谢麟,易瑞灶,方雪萍,黄河清.质谱和动力学技术研究胰岛素-多糖纳米粒稳定性和释放胰岛素速率[J].厦门大学学报(自然科学版), 2007, 46(5): 697-701.
    [67] Krishnendu R. Chitosan-DNA nanoparticles:synthesis,characterization,subcellular transport and oral delivery of genetic vaccines[D]. Baltimore the Johns Hopkins University, 1999.
    [68]罗志敏,马秀玲,陈盛,钱伟.磁性壳聚糖-聚丙烯酸微球的制备及表征[J].化学通报, 2005, (7): 551-554.
    [69] Hu F Q, Zhao M D, Yuan H, You J, Du Y Z, Zeng S. A novel chitosan oligosaccharide–stearic acid micelles for gene delivery: Properties and in vitro transfection studies[J]. International Journal of Pharmaceutics, 2006, 315(1-2): 158-166.
    [70] Park I K, Kim T H, Park Y H, Shin B A, Choi E S, Chowdhury E H, Akaike T, Cho C S. Galactosylated chitosan-graft-poly(ethylene glycol) as hepatocyte-targeting DNA carrier[J]. Journal of Controlled Release, 2001, 76(3): 349-362.
    [71] Park I K, Jiang H L, Cook S E, Cho M H, Kim S I, Jeong H J, Akaike T, Cho C S. Galactosylated chitosan (GC)-graft-poly(vinyl pyrrolidone) (PVP) as hepatocyte-targeting DNA carrier:in vitro transfection[J]. Archives of Pharmacal Research, 2004, 27(12): 1284-1289.
    [72] Kim J H, Kim Y S, Kim S, Park J H, Kim K, Choi K, Chung H, Jeong S Y, ParkR W, Kim I S, Kwon I C. Hydrophobically modified glycol chitosan nanoparticles as carriers for paclitaxel[J]. Journal of Controlled Release, 2006, 111(1-2): 228-234.
    [73]陈长敬,邓昱,闫尔云,胡勇,蒋锡群.生物矿化法制备多孔壳聚糖-聚丙烯酸-磷酸钙复合纳米微粒[J].科学通报, 2009, 54(10): 1322-1329.
    [74] Torrado S, Prau P, Torre P M, TorradoS. Chitosan-poly(acrylic) acid polyionic complex: in vivo study to demonstrate prolonged gastric retention[J]. Biomaterials, 2004, 25(5): 917-923.
    [75]罗志敏,陈盛,薛丽群,马秀玲.磁性壳聚糖-聚丙烯酸微球固载BSA研究[J].广州化学, 2006, 31(2): 7-12.
    [76]揭少卫,杨黎明,陈捷,单廷,钱锵.原位聚合法制备壳聚糖/聚丙烯酸水凝胶磁微球及其性能表征[J].高校化学工程学报, 2008, 22(5): 850-854. [77 ] Ahn J S, Choi H Y, Cho C S. A novel mucoadhesive polymer prepared by template polymerization of acrylic acid in the presence of chitosan[J]. Biomaterials, 2001, 22(9): 923-928.
    [78]赵保路.氧自由基和衰老[J].自然杂志, 1990, 13(8): 511-514.
    [79] Moldovan L, Moldovan N I, Sohn R H, Parikh S H, Goldschmidt-Clermont P J. Redox changes of cultured endothelial cells and actin dynamics [J]. Circulation Research, 2000, 86 (5): 549-557.
    [80] Uy B J, Shawen S, Liochev S I, Crapo J D. A metalloprhpyrin superoxide dismutase mimetic protects against paraquat-induced lung injury, in vivo[J]. Journal of Pharmacology and Experimental Therapeutics, 1996, 275(3): 1227-1232.
    [81] Pfeiffer S, Schrammel A, Schmidt K, Koesling D, Schnidt K, Mayler B. Molecular actions of a Mn(III) porphyrin superoxide dismutase mimetic and peroxynitrite scavenger: reaction with nitric oxide and direct inhibition of NO synthase and soluble guanylyl cyclase[J]. Molecular Pharmacology, 1998, 53(4): 795-800.
    [82] Lee J B, Hunt J A, Groves J T. Mechanisms of iron porphyrin reactions with peroxynitrite[J]. Journal of the American Chemical Society, 1998, 120 (30): 7493-7501.
    [83] Guo C C, Huang G, Zhang X B, Guo D C. Catalys of chitosan-supported iron tetraphenenylporphyrin for aerobic of cyclohexane in absence of reductants and solvent[J]. Applied Catalysis A: General, 2003, 247(2): 261-267.
    [84] Mifune M, Odo J, Iwado A, Saito Y, Motohashi N, Chikuma M, Tanaka H. Uricase-like catalyticactivity of ion-exchanged resin modified with metalloporphyrins[J]. Talantai, 1991, 38(7): 779-783.
    [85] Guo C C, Huang G, Zhang X B, Guo D C. Catalys of chitosan-supported iron tetraphenenylporphyrin for aerobic of cyclohexane in absence of reductants and solvent[J]. Applied Catalysis A: General, 2003, 247(2): 261-267.
    [86] Khan A R, Forgo P, Stine K J, D’souza V T. Method for selective modification of Cyclodextrines[J]. Chemical Reviews, 1998, 98(5): 1977-1996.
    [87] Korsvik C, Patil S, Seal S, Self W T. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles[J]. Chemical Communications, 2007, 48(10): 1056-1058.
    [1] Fukuzumi S. Electron Transfer Chemistry of Porphyrins and Metalloporphyrins [M] // Kadish K M, Smith K M, Guilard R. The Porphyrin Handbook, Vol 8, Electron Transfer, Chapter 56, Academic Press, 2000: 115.
    [2] Wang R M, Komatsu T, Nakagawa A, Tsuchiu E. Human serum albumin bearing covalently attached iron(II) porphyrins as O2-coordination sites[J]. Bioconjugate Chemistry, 2005, 16(1): 23-26.
    [3]王荣民,王云普,雷自强.高分子类卟啉金属配合物催化活化分子氧研究[J].西北师范大学学报(自然科学版), 2000, 36(1): 100-103.
    [4] Fujii H. Electronic structure and reactivity of high-valent oxo iron porphyrins[J]. Coordination Chemistry Reviews, 2002, 226(1-2): 51-60.
    [5]王荣民,赵明,何玉凤,郝二霞,申国瑞.聚类卟啉金属配合物[J].化学进展, 2007, 19(11): 1783-1790.
    [6] OnoN, Bougauchi M, Maruyama K M . Water-soluble porphyrins with four sugar molecules[J]. Tetrahedron Letters. 1992, 33: 1629.
    [7] Wang R. M, Song J. F , He Y.F, Mao J. J, Li Y. Conjugation of Chitooligosaccharide -5-fluorouracil with Bovine Serum Albumin[J]. Chinese Chemistry Letter. 2006, 17(11): 1495-1498.
    [8]王荣民,许晓韡,李岩,何玉凤,何乃普,李刚.光敏性卟啉金属配合物与牛血清白蛋白的结合及性能研究[J].西北师范大学学报(自然科学版), 2010, 46(1): 62-65.
    [9]陈长敬,邓昱,闫尔云,胡勇,蒋锡群.生物矿化法制备多孔壳聚糖-聚丙烯酸-磷酸钙复合纳米微粒[J].科学通报, 2009, 54(10): 1322-1329.
    [10] Torrado S, Prau P, Torre P M, TorradoS. Chitosan-poly(acrylic) acid polyionic complex: in vivo study to demonstrate prolonged gastric retention[J]. Biomaterials, 2004, 25(5): 917-923.
    [11]罗志敏,陈盛,薛丽群,马秀玲.磁性壳聚糖-聚丙烯酸微球固载BSA研究[J].广州化学,2006, 31(2): 7-12.
    [12]揭少卫,杨黎明,陈捷,单廷,钱锵.原位聚合法制备壳聚糖/聚丙烯酸水凝胶磁微球及其性能表征[J].高校化学工程学报, 2008, 22(5): 850-854.
    [13] Ahn J S, Choi H Y, Cho C S. A novel mucoadhesive polymer prepared by template polymerization of acrylic acid in the presence of chitosan[J]. Biomaterials, 2001, 22(9): 923-928.
    [14]王小萍,王君文,何明威,张勇,潘景浩. meso-四-(对甲氧基)苯基卟啉和meso-四-(对甲氧基)苯基锌卟啉的电化学性质[J].应用化学. 2001, 18(9): 713-716.
    [15]郭喜明,师宇华,张忆华,于连香,师同顺.系列羟基苯基卟啉的合成及其荧光光谱研究[J].有机化学. 2006, 26(2): 247-251.
    [16]陈德麒,刘恒椽.卟啉类化合物的合成I meso-(羟基苯)卟啉合成的研究[J].化学试剂. 1991, 13(3): 149-152.
    [17]王捷,王素文.四(3-甲氧基-4-羟基苯基)卟啉的合成与表征[J].山东化工. 2006, 35(6): 1-3.
    [18] Rothemund P. A New Porphyrin Synthesis. The Synthesis of Porphin[J]. Journal of the American Chemical Society, 1936, 58(4): 625-627.
    [19] Rothemund P. Porphyrin Studies. III. The Structure of the Porphine Ring System[J]. Journal of the American Chemical Society, 1939, 61(10): 2192-2195.
    [20] Adler L D, Longo F R, Shergalis W. Mechanistic Investigations of Porphyrin Syntheses. I. Preliminary Studies on ms-Tetraphenylporphin[J]. Journal of the American Chemical Society, 1964, 86(15): 3145–3149.
    [21] Adler A D, Longo F R, Finarelli J D, Goldmacher J, Assour J and Korsakoff L. A simplified synthesis for meso-tetraphenylporphin[J]. Journal of Organic Chemistry. 1967, 32(2): 476-476.
    [22] Lindsey J S, Hsu H C, Schreiman I C. Synthesis of tetraphenylporphyrins under very mild conditions[J]. Tetrahedron Letters, 1986, 27(41): 4469-4470.
    [23]郭灿成,何兴涛,邹纲要.合成四苯基卟啉及其衍生物的新方法[J].有机化学, 1991, 11(4): 416-419.
    [24]雷裕武,郭灿城,曾德璋.取代四苯基卟啉的催化合成[J].化学试剂, 1994, 16(2): 105-106.
    [25]潘继刚,何明威,刘轻轻.四苯基卟啉及其衍生物的合成[J].有机化学, 1993, 13(5): 533-536.
    [26]侯秀峰,黄祖恩,蔡瑞芳.四(3-甲氧基-4-羟基苯基)卟啉化合物及其钴配合物的合成、鉴定和催化氧化活性[J].复旦学报(自然科学版). 1997, 36(1): 53-58.
    [27]李来生,何欢锴.由水杨醛合成5,10,15,20-四(2-羟基苯基)卟啉的色谱法研究[J].分析化学. 1998, 26(3): 371-371.
    [28]童沈阳,赵凤林,孙国斌.meso-四(对羟基苯)卟啉的合成及其酸碱平衡的研究[J].分析化学. 1987, 15(12): 1067-1070.
    [29] Adler A D, Longo F R, Kampas F, Kim J. On the preparation of metalloporphyrins[J]. Journal of Inorganic and Nuclear Chemistry. 1970, 32 (7): 2443-2445.
    [30]张鹏燕,张建斌,于熙昌,张凌伟,魏雄辉.四苯基卟啉镁的合成、表征及光化学性质[J].物理化学学报. 2008, 24(1): 143-146.
    [31] Hu Y, Jiang X Q, Ding Y, Chen Q, Yang C Z. Core-template-free strategy for preparinghollow nanopheres[J]. Advance Materials, 2004, 16(11): 933-937.
    [32]动态光散射基本原理及其在纳米科技中的应用-粒径测量. http://emuch.net/html/200911/1655659.html, 2010.04.16.
    [33]朱永法.纳米材料的表征与测试技术[M].北京:化学工业出版社, 2006: 1-1.
    [34]动态光散射基本原理及其在纳米科技中的应用-Zeta电位测量. http://emuch.net/html/200911/1696424.html, 2010.04.12.
    [35]王舟希.生物相容的核壳型高分子纳米微球的制备和表征[D].上海:东华大学, 2006.
    [36]杨庆,梁伯润,窦丰栋,沈新元,郯志清.以乙二醛为交联剂的壳聚糖纤维交联机理探索[J].纤维素科学与技术, 2005, 13(4): 13-20.
    [37] Hu Y, Chen Y, Chen Q, Zhang L Y, Jiang X Q, Yang C Z. Synthesis and stimuli-responsive properties of chitosan/poly(acrylic acid)hollow nanospheres[J]. Polymer, 2005, 46(26): 12703–12710.
    [1] Fridovich I. The biology of oxygen radicals[J]. Science, 1978, 201(4359): 875-880.
    [2] Mccord J M. Free radicals and inflammation: protection of synovial fluid by superoxide dismutase[J]. Science, 1974, 185 (4150): 529-531.
    [3] Salin B M, McCord J M. Free radical and inflammation: Protection of phagocytosine leukocytes by superoxide dismutase[J]. Journal of Clinical Investigation. 1975, 56(5): 1319-1323.
    [4] Misra H P, Fridovich I. Superoxide dismutase and the oxygen enhancement of radiation lethality[J]. Archives of Biochemistry and Biophysics. 1976, 176(2): 577-581.
    [5]赵保路.氧自由基和衰老[J].自然杂志, 1990, 13(8):511-514.
    [6] Moldovan L, Moldovan N I, Sohn R H, Parikh S H, Goldschmidt-Clermont P J. Redox changes of cultured endothelial cells and actin dynamics [J]. Circulation Research, 2000, 86 (5): 549-557.
    [7] Uy B J, Shawen S, Liochev S I, Crapo J D. A metalloprhpyrin superoxide dismutase mimetic protects against paraquat-induced lung injury, in vivo[J]. Journal of Pharmacology and Experimental Therapeutics, 1996, 275(3): 1227-1232.
    [8] Pfeiffer S, Schrammel A, Schmidt K, Koesling D, Schnidt K, Mayler B. Molecular actions of a Mn(III) porphyrin superoxide dismutase mimetic and peroxynitrite scavenger: reaction with nitric oxide and direct inhibition of NO synthase and soluble guanylyl cyclase[J]. Molecular Pharmacology, 1998, 53(4): 795-800.
    [9] Lee J B, Hunt J A, Groves J T. Mechanisms of iron porphyrin reactions with peroxynitrite[J]. Journal of the American Chemical Society, 1998, 120 (30): 7493-7501.
    [10] Batini?-Haberle I, Liochev S I, Spasojevi? I, Fridovich I. A potent superoxide dismutase mimc: manganeseβ-octabromo-meso-tetrakis-(N-methylpyridinium -4-yl)porphyrin[J]. Archives of Biochemistry and Biophysics, 1997, 343(2): 225-233.
    [11] Khan A R, Forgo P, Stine K J, D’souza V T. Method for selective modification of Cyclodextrines[J]. Chemical Reviews, 1998, 98(5): 1977-1996.
    [12] Guo C C, Huang G, Zhang X B, Guo D C. Catalys of chitosan-supported iron tetraphenenylporphyrin for aerobic of cyclohexane in absence of reductants and solvent[J]. Applied Catalysis A: General, 2003, 247(2): 261-267.
    [13] Mifune M, Odo J, Iwado A, Saito Y, Motohashi N, Chikuma M, Tanaka H. Uricase-like catalyticactivity of ion-exchanged resin modified with metalloporphyrins[J]. Talantai, 1991, 38(7): 779-783.
    [14]杨文魁.多功能抗氧化模拟酶的构建[D].长春:吉林师范大学, 2007.
    [15]梅光泉,南建忠,黄可龙,罗勤慧. 3种咪唑桥联铜锌异双核配合物的模拟超氧化物歧化酶的研究[J].化学试剂, 2007, 29(5): 263-264, 268.
    [16] Wolfgang L, Bill T. Hydrogen: An Overview[J]. Chemical Reviews. 2007, 107(10):3900-3903.
    [17] Nocera D G. On the future of global energy[J]. D?dulus, 2006, 135(4): 112-115.
    [18] Eisenberg R, Nocera D G. Preface: Overview of the Forum on Solar and Renewable Energy[J]. Inorganic Chemistry, 2005, 44(22): 6799-6801.
    [19] Lewis N S, Nocera D G. Powering the planet: Chemical challenges in solar energy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(43): 15729-15735.
    [20]朱核光,史家梁.生物产氢技术研究进展[J].应用与环境生物学报. 2002, 8(1): 98-104.
    [21]赵吉寿,颜莉,戴建辉.水溶性稀土卟啉配合物光还原水放氢条件研究[J].云南民族学院学报(自然科学版). 1997, 6 (1): 31-35.
    [22] Esswein A J, Nocera D G. Hydrogen Production by Molecular Photocatalysis[J]. Chemical Reviews, 2007, 107: 4022-4047.
    [23] Fukuzumi S,“The Porphyrin Handbook”(Ed. by Kadish K. M, Smith K. M, Guilard R.), Vol 8, Electron Transfer, Chapter 56:“Electron Transfer Chemistry of Porphyrins and Metalloporphyrins”, Academic Press; 2000, p115.
    [24] Ogoshi H, Mizutani T, Hayashi T, Kurou Y,“The Porphyrin Handbook”(Ed. by Ogoshi H, Mizutani T, Hayashi T, Kurau Y), Vol 6, Applications: Past, Present and Future, Chapter 46:“Porphyrins and Metalloporphyrins as Receptors Models in Molecular Recognition”, p 279.
    [25]高福,李树本,陈英武.铁、铜金属卟啉络合物光助催化分解水产氢的研究[J].太阳能学报.1981, 2(4): 396-403.
    [26] Komatsu T, Wang R M, Zunszain P A, Curry S, Tsuchiu E. Photosensitized Reduction of Water to Hydrogen Using Human Serum Albumin Complexed with Zinc-Protoporphyrin IX[J]. Journal of the American Chemical Society, 2006, 128(50): 16297-16301.
    [27]李岩.白蛋白基金属卟啉配合物光敏剂的制备及其光解水性能[D].兰州:西北师范大学, 2008.
    [28]王荣民,许晓韡,李岩,何玉凤,何乃普,李刚.光敏性卟啉金属配合物与牛血清白蛋白的结合及性能研究[J].西北师范大学学报(自然科学版), 2010, 46(1): 62-65.
    [29] Saiki Y, Amao Y.Bio-mimetic hydrogen production from polysaccharide using the visible light sensitization of zinc porphyrin[J]. Biotechnol . Bioeng . 2003, 82(6): 710-714.
    [30]杨国昱,王清民,张杰,于连香,曹锡章,徐吉庆.水溶性金属卟啉光敏化还原甲基紫精动力学-金属卟啉化合物光催化反应研究I[J].吉林大学自然科学学报, 1995, (4): 102-106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700