用户名: 密码: 验证码:
纯电动汽车电动助力转向系统机理研究与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代控制理论和微电子技术的发展,电动助力转向系统(EPS)已经成为近年来车辆工程领域中的一个研究热点,越来越受到大专院校、科研机构和汽车厂家的关注。本论文以纯电动汽车的转向轴式电动助力转向系统为主要研究对象,采用理论分析、计算机系统仿真、台架和实车实验研究相结合的方法,对轴助力式EPS的工作机理进行了深入系统的研究,主要研究内容如下:
     1、详细分析了电动助力转向系统的工作原理及其特点,其后对系统的控制策略和算法进行了深入研究,通过分析车辆和驾驶员对转向控制的要求和特点,确定了对助力特性的基本要求。
     2、在电动助力转向控制中采用了助力控制、回正控制、阻尼控制和补偿控制等控制策略,同时分析和比较了三种助力特性曲线,提出了适用于纯电动汽车EPS的理想助力模型,由该模型得到的助力特性曲线为小转角时为直线型而大转角时为斜率变化较大的二次曲线,并给出了实现该特性曲线的基本算法,该算法在以后的计算机仿真和实际控制器设计及台架和实车实验中检验了其正确性。确定的该助力模型及由此得出的助力曲线,很好地兼顾了转向轻便性和路感的关系。
     3、将ADAMS动力学仿真软件引入到EPS系统中,进行纯电动汽车整车ADAMS建模,在ADAMS/car中建立了包括前/后悬架、转向系统、前后车轮及路面谱在内的整车多体动力学仿真模型,并进行了整车稳态转向仿真试验。同时还在Matlab/Simulink环境中建立了电动助力转向系统新型助力特性的曲线控制策略和控制器的控制模型,将ADAMS/car中所建立的整车模型通过软件接口导入到MATLAB/simulink中,与MATLAB中建立的EPS控制系统的仿真模型连接起来,将ADAMS/car与Matlab/Simulink相结合,进行复杂的联合仿真分析。仿真结果说明以ADAMS中建立的整车动力学模型与MATLAB中建立的控制系统的数学模型联合起来研究电动助力转向系统是有效的。同时,仿真结果也证明了本文提出的控制策略和算法的正确性和有效性。
     4、进行了EPS系统的软硬件设计,从硬件和软件上开发了基于纯电动汽车的电动助力转向系统,实现了EPS的主要功能。详细分析了EPS系统的关键零部件的选用及匹配原则,针对ECU输入和输出信号的不同特点进行了分析,设计了相应的处理控制电路。助力电机采用直流永磁有刷电机,由4个NMOS管构成的H桥驱动,其控制采用脉宽调制PWM和助力电机电流Fuzzy PID的反馈控制。系统软件分上下两层,上层完成控制策略与算法,下层完成助力电机电流的闭环控制,并给出主要软件模块流程图,为进一步模拟试验提供了实验基础。
     5、研究了电动助力系统台架实验方案。对实验需要的各种车辆运行工况的信号的模拟方法进行了分析和确定,电动机的转速、车速、直接由信号发生器输入ECU,转向扭矩信号和转角信号取自传感器,然后输入ECU,转向阻力矩采用弹簧模拟,完成了EPS实验台架的设计,并在该台架上进行了有无EPS助力的对比试验。实验结果表明加入EPS后转向轻便性大大提高,随后进行了相关的实车实验。
     6、提出了低速转向情况下的柔性电流过渡方法的算法并加以实现,可以大大减少因为电流大的波动导致的方向盘的抖动。
     7、进行了软硬件系统的抗干扰性和可靠性研究,并进行了与纯电动汽车上层控制器的通信实验研究。
     本文的理论分析、计算机仿真与台架、实车的实验结果吻合良好,对于电动助力转向系统的基础研究、设计开发及其应用具有重要的理论意义和现实意义。
With the development of modern control theory and the microelectronics technology, electric power steering system (EPS) has become a focal point of research in the vehicle engineering field in recent years, more and more universities, research institutions and auto manufacturers pay their attention to it. In this paper, we choose the column type electric power steering system of pure electric vehicle as the main object of study, and use the method such as theoretical analysis, computer system simulation, bench test and real vehicle test to study the column type EPS, the main research contents are as follows:
     The working principle and the characteristics of the electric power steering system of the pure electric vehicle have been analyzed in detail, followed by the system control strategies and algorithms study. By the way of analyzing of the steering control of vehicles and the requirements and characteristics of the drivers, we have determined the basic characteristics of the assist requirements.
     In the electric power steering system, we use the control strategies such as the assist control, the return control, the damp control and the compensate control. Meanwhile by analyzing and comparing three kinds of typical characteristic curves, we proposed to design a new ideal characteristic curve that applies to the EPS of pure electric vehicle. The characteristic curve should be straight when the steering angle is small, when the angle is larger than a special value, the quadratic curve that the slope of the tangent slope larger than before should be chosen, and this paper gives us the basic algorithm for the new characteristic curve, the computer simulation, controller design, bench test and the real vehicle experiments will prove its correctness. With the determinate assist model and the generated assist curve, we are enabled to give better consideration to steering portability and road feel.
     ADAMS dynamic simulation software is adopted in our EPS system research, the pure electric vehicle Multi-body vehicle dynamics ADAMS simulation model is built in the ADAMS/car module, including front / rear suspension, steering system, front and rear wheels and road spectrum, and the steady-state steering vehicle simulation is carried out. At the same time we also finish the control model of the control strategies and controller design based on a new electric power steering system assist characteristic curves in Matlab/Simulink environment. We introduce the entire vehicle model that is built in ADAMS/car module to MATLAB/simulink by the software interface, and then we connect the vehicle model with the simulation model of EPS control system in MATLAB. By combining ADAMS/car and Matlab/Simulink, we make a comprehensive joint simulation analysis. The co-simulation analysis and simulation results show that the way that we connect the entire vehicle dynamics model built in ADAMS with the mathematic model of the control system built in MATLAB by which we studied the electric power steering system study is effective. Furthermore, the simulation results demonstrate the validity and effectiveness of our control strategies and calculation methods.
     This paper has developed the EPS system hardware and software design based on pure electric vehicle and realized the basic functions of the EPS. We analyzed the selecting and matching principles of key vehicle parts and designed a corresponding control circuit based on our analysis of different characteristics of ECU's input and output signals. As for an assist motor we adopted a permanent-magmet direct current motor that is drived by an H-bridge comsisted of 4 NMOS tubes. This kind of assist motors are controlled by a feedback control system of PWM and assist motor current Fuzzy_PID. The system software is divided into two layers. The upper layer finishes control strategies and algorithms methods while the lower layer finishes the closed-loop control of assist motor current. This paper also provides the flow diagram of main soft module. This provides the experimental basis for further test.
     We also studied the bench test plan of the electric assist system. Based on our analysis we determinate the signals simulation method of the running states of various vehicles needed in our test. Both the rotating speed of the motor and vehicle speed are directly input to ECU by signals generator. By inputting the turning torque signals and turning signals derived from sensors to ECU and adopting spring imitation, we completed designing EPS test trestle and carried out comparative experiments on it. Our test results indicate that by adding EPS the turning portability is highly improved. And then we conducted related real vehicle tests.
     We proposed the algorithms method of flexible current transition under low speed and if we implement it in the future we would considerably reduce vibration of the steering wheel caused by great current fluctuation.
     We studied anti-interference performance and reliability of both software and hardware systems. Moreover we carried out communication test with the upper level controller of the electric vehicle.
     The results of the theoretical analysis, computer simulation, bench test, real vehicle test show that they coincide very well, which have important theoretical and practical values to the fundamental research, design, development and application of electric power steering system.
引文
[1]左建令,吴浩.汽车转向系统的发展及展望[J].上海汽车,2005.1
    [2]周淑辉,李幼德等.汽车电子控制转向技术的发展趋势[J].汽车电器.2006.11:p1-4.
    [3]Tohihide Satake,Masahiko Kurishige,Noriyuki moue.Evaluation of EPS Control Strategy Using Driving Simulator for EPS[J].SAE.2003-01-0582.
    [4]牟春燕.电动助力转向系统的控制策略[J].烟台师范学院学报(自然科学版).2006,22(2):158-160.
    [5]Electric Power Steering System Series,KOYO Engineering Journal English Edition No.165E(2002):72-78.
    [6]施国标.电动助力转向助力特性仿真与控制策略研究[D].博士学位论文.长春:吉林大学.2002.
    [7]Anthony J C.Correlation of electric power steering vibration to subjective ratings.SAE Paper 2000-01-0176,2000.
    [8]Anthony,W.Burton,Innovation Drivers for Electric Power-Assisted Steering[J].Control Systems Magazine,IEEE,Vol.23,Issue:6,Dec.2003(12):30-39.
    [9]陈家瑞.汽车构造(下册,第四版)[M].北京:人民交通出版社,2002.
    [10]王豪,许镇琳等.电动转向系统的发展及现状[J].汽车运用.2002.8:9-11.
    [11]Nakayama T,such E.The present and future of electric power steering.Int.J.Vehicle Design,vol.15 Nos.3/4/5 1994;243-254.
    [12]Ken Ropers,William Kinberley.Turning Steering to electric.Automotive Engineer 2000108(2):39-41.
    [13]Herkommer,R.Steering the right way-Steering the economic way:energy saving concepts in hydraulic steering(10)systems.FISITA Congress,Helsinki,June 2002.
    [14]W.IJIRI.Techincal Trend of Electric Power Steering Systems[J].KOYO Engineering Journal,2002,162:27-31.
    [15]Sugitani,N.;Fujuwara,Y.;Uchida,K.;Fujita,M.Electric Power Steering with H-infinity Control Designed to Obtain Road Information[C].Proceedings of the American Control Conference.Albuquerque,New Mexico.1997:2935-2939.
    [16]Rakan C.Chabaan,Le Yi Wang.Control of Electrical Power Assist Systems:H∞ Design Torque Estimation and Structural Stability[J].JSAE Review 22,2001:435-444.
    [17]Toshio Kohno et al.Development of Electric Power Steering(EPS) System with H∞ Control.SAE paper 2000-01-0813.
    [18]Takayuki Kifuku,Shun'ichi Wada.An Electric Power-Steering System[R].Mitsubishi Electric ADVANCE Technical reports,1997,78:20-i3.
    [19]Masahiko Kurishige et al.A Control Strategy to Reduce Steering Touque for Stationary Vehicle Equipped with EPS[J].SAE paper 1999-01-0403.
    [20] Chen J S. Control of Electric Power Steering Systems [J]. SAE Transactions, 1998 (1116):1702-1704.
    [21] J.E. Naranjo et. al. Adaptive Fuzzy Control for Inter-Vehicle Gap Keeping. IEEE Trans. ITS, Special Issue on ACC, Volume 4, No. 3, September 2003:132-142.
    [22] J.E. Naranjo et al. A Throttle & Brake Fuzzy Controller: Towards the Automatic Car. LNCS 2809, Springer-Verlag, July 2003: 291-301.
    [23] J.E. Naranjo, et al. Fine Tuning for Autonomous Vehicle Steering Fuzzy Control. FLINS 2004, Blakenberge, Belgium, 2004:450-455.
    
    [24] Tanaka et al. The Torque Controlled Active Steer for EPS. AVEC'2004:501-506.
    [25] Manu Parmar and John Y. Hung. Modeling and Sensorless Optimal Controller Design for an Electric Power Assist Steering System. Proc.of the IECON 02,Vol.3,2002:1784-1789.
    [26] Fujiwara,Y.;Adachi,S.Control design of steering assistance system for driver characteristics [J]. SICE 2002. Proceedings of the 41st SICE Annual Conference Volume 5, Issue,5-7 Aug. 2002: 2879-2882 vol.5.
    [27] Ji-Hoon Kim,Jae-Bok Song. Control logic for an electric power steering system using assist motor[J].Mechatronics. 12(2002):447-459.
    [28] Sanket Amberkar, Mark Kashion, Kirt Eschtruth and Farhad Bolourchi. Diagnostic Development for an electric Power Steering System[J].SAE technical paper series. 2000-01-0819:1134-1139.
    [29] Desai, Ali Emadi 2005. A novel digital control technique for brushless DC motor drives: Current control. IEEE Trans. 326-331.
    [30] Jun-Uk Chu, In-Hyuk Moon, Gi-Won Choi, Jei-Cheong Ryu, Mu-Seong Mun 2004 Design of BLDC motor controller for electric power wheelchair. IEEE Trans.94-95.
    [31] NamhunKim, Hamid A Toliyat, Issa M Panahi, Min-Huei Kim 2007 BLDC motor control algorithm for low-cost industrial applications. IEEE Trans. 1400.
    [32] Jeha Ryu, HeeSoo Kim.Virtual Environment for Developing Electronic Power Steering & Steer-by-Wire Systems. Proceedings of the 1999 IEEVRSJ International Conference on Intelligent Robots and Systems.
    [33] M. Kurishige, H. Tanka, N. moue, et al. An EPS control strategy to improve steering maneuverability on slippery roads. SAE paper No.2002-01-0618,2002:900-906.
    [34] Masahiko K, Shunichi W, Takayuki K, et al. A new EPS control strategy to improve steering wheel returnability.SAE Paper 2000-01-0815.
    [35] M. Kurishige, K. Fukusumi, N. moue, et al. A new current control strategy for EPS Motors. SAE paper No.2001 -01 -0484,2001,110: 200-205.
    [36] Rodriguez, F.; Uy, E.; Emadi, A.; Brushless DC motor drive for steer-by-wire and electric power steering applications. Electrical Insulation Conference and Electrical Manufacturing &Coil Winding Technology Conference, 2003. Proceedings,23-25 Sept. 2003:535-541.
    [37] Masaya Segawa,Shiro Nakano. Vehicle stability control strategy for steer by wire system [J]. JSAE Review, 2001,22(4):383-388.
    [38]R.Hayama,K.Nishizaki,S.Nakano,et al.The vehicle stabilty control responsibility improvement using steer-by-wire.Intelligent hehicles Symposium,Proc.of the IEEE,2000:596-601.
    [39]Y.Gene Liao,H.Isaac Du.Modeling and analysis of electric and its effect on vehicle dynamic behavior.Int.J.of Behicle(IJVAS),Vol.1,No.2,2003 power steering system Autonomous Systems.
    [40]Shigeru lga,Akihiko Sakazaki.Motor drivern power steering for the maximum steering sensation in every driving situation.SAE paper:880705.
    [41]Kimitoshi Tsuji,Kenji Kataoka,Yasushi Kusaka,Tatsuo Teratani,Takashi AbeEPS.System Analysis using Multi Domain Simulation for Power Network Design in a Vehicle.2007IEEE.
    [42]Aly Badawy,Jeff Zuraski.Modeling and Analysis of an Electric Power Steering System[C].SAE Paper 1999-01-0399.
    [43]Roy McCann.Variable Effort Steering for Vehicle Stability Enhancement Using an Electric Power Steering System.SAE paper 2000-01-0817.
    [44]Jin Hur.ECharacteristic Analysis of Interior Permanent-Magnet Synchronous Motor in Electrohydraulic Power Steering Systems.IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,VOL.55,NO.6,JUNE 2008.
    [45]Six-phase Brushless DC Motor for Fault Tolerant Electric Power Steering Systems.Claudiu Oprea,Claudia Martis,Biro Karoly.2007 IEEE.
    [46]Hirozumi Eki,Tatsuo Teratani,and Takashi Iwasaki.Power Consumption and Conversion of EPS Systems.2007 IEEE.
    [47]吴文江,杜彦良,季学武.电动转向控制系统跟随性研究[J].机械工程学报.2004(4):77-80.
    [48]吴文江,杜彦良,季学武,陈奎元.增强电动转向系统助力跟随性能的H-∞控制[J].汽车工程.2002(4):465-467.
    [49]吴文江,杜彦良,季学武,陈奎元.电动转向系统稳定性能与抗干扰性能的研究[J].振动工程学报.2004.No.6(2):196-200.
    [50]吴文江,杜彦良,季学武,陈奎元.汽车电动转向控制系统抗干扰策略的仿真[J].汽车工程.2003(4):364-366.
    [5I]刘照、杨家军、廖道训.基于混合灵敏度方法的电动助力转向系统控制[J].中国机械工程2003.5(10):874-876.
    [52]陈卫平、陈无畏、郁明.汽车电动助力转向系统的模糊自调整控制研究.合肥工业大学学报(自然科学版).2005.5:497-500.
    [53]林逸,施国标,邹常丰,王望予.电动助力转向系统转向性能的客观评价[J].农业机械学报第34卷.2003(4):4-7.
    [54]电动助力转向装置市场调研报告.五泰信息咨询有限公司.2008.06
    [55]李慧琪,李伟光,王元聪.汽车电动助力转向系统的现状与发展[J].电脑与电信.2007(02):83-87,92.
    [56]谢刚.汽车电动助力转向系统的设计与控制技术研究[D].博士学位论文.重庆:四川大学.2006.
    [57]容一鸣,崔九同.电动助力转向系统的补偿控制研究[J].液压与气动.2004(04):3-4.
    [58]季学武,陈奎元.电动转向系统的发展及其关键技术分析.2003年中国汽车工程学会转向器委员会年会论文集,2003:8-11.
    [59]杨树,唐新蓬.汽车电动助力转向系转向盘力特性的初步研究[J].汽车科技.2003.3:19-21.
    [60]丁礼灯,扬家军,刘照,廖道训.汽车动力转向器转向力矩的分析与计算[J].三峡大学学报(自然科学版).2001.5(3):243-246.
    [61]刘照,扬家军,廖道训.基于动态分析的电动助力转向系统设计与研究[J].华中科技大学.2001.12.2001.12(12):24-26.
    [62]冯樱,肖生发,李春茂.电子控制式电动助力转向系统的控制[J].汽车研究与开发.2001.6:34-36,40.
    [63]高明,倪长明,许南绍.电动助力转向系统转矩控制策略[J].重庆工学院学报(自然科学)2009年4月第23卷第4期:15-19.
    [64]牛继高,李伟,徐春华.电动助力转向系统的电流控制策略研究[J].河南科技2008.9上:52-54.
    [65]徐建平,何仁,苗立冬,徐勇刚.电动助力转向系统回正控制算法研究[J].汽车工程.2004 Vol26 No.5:557-559,541.
    [66]施国标,林逸,邹常丰,陈万忠,王望予.电动助力转向系统匹配设计的研究[J].公路交通科技2003,10:125-128.
    [67]陈丽.基于ADAMS的汽车电动助力转向系统仿真分析[D]:硕士学位论文.武汉:华中科技大学,2005.
    [68]施国标,申荣卫,林逸.电动助力转向系统的建模与仿真技术[J].吉林大学学报(工学版).2007.01:31-34.
    [69]谷娜,唐岚.基于AMEsim和Simulink的电动助力转向系统的联合仿真[J].客车技术与研究2008(4):36-39.
    [70]王国强,张进平,马若丁.虚拟样机技术及其在ADAMS上的实践[M].西安:西北工业大学出版社,2002.
    [71]余路.基于ADAMS的电动助力转向系统的建模与仿真[D]:硕士学位论文.武汉:武汉理工大学,2005.
    [72]蒋芬,钟绍华.汽车电动助力转向系统的仿真分析[J].北京汽车.2008.No.3:22-24
    [73]贾和平.基于ADAMS的电动助力转向系统仿真研究[D]:硕士学位论文.武汉:武汉理工大学,2007.
    [74]胡建军,李彤,秦大同.基于整车动力学的电动助力转向系统建模仿真[J].系统仿真学报2008第20卷第6期:1577-1581.
    [75]叶耿,杨家军,刘照,肖大友.汽车电动式动力转向系统转向路感研究[J].华中科技大学学报,2002(2):24-26.
    [76]K.Yoshida.Development of Custom IC for EPS Torque Sensor,KOYO Engineering Journal English Edition No.161E,2002:48-51.
    [77]Yuji Kouzaki,Goro Hirose,Shozo Sekiya,and Yasuhiko Miyaura.Electrical Power Steering (EPS)[J].NSK Motion & Control,No.6,1999:9-15.
    [78]DilgcrE,F ubrerT,Muller T.The x-by-wire concept:time triggered information exchange and fail silence support by new system service[J].SAE No.980555,1998,107:1037-1046.
    [79]Park,Y.and Jung,I.Semi-active steering wheel for steer-by-wire system.In Proceedings of the ATTCE Congress,volume 6,Barcelona,2001.
    [80]Oh Se Wooh,Park Tong-Jin and Han Chang Soo.The design of a controller for the steer-by -wire system.FISITACongress,Helsinki,2002.
    [81]Heathershaw A.Optimizing variable ratio steering for improve on-center,sensitivity and cornering control[J].SAE No.2000-01-0821,2000,109:1140-1151.
    [82]Shimizu Y,Kawai T,Yuzuriha J.Improvement in driver-vehicle system performance by varying steering gain with vehicle speed and steering angle:VGS(variable gear-ratio steering system)[J].SAE No.1999.01-0395,1999,108:630-639.
    [83]Diem W.The hands-off apporach[J].Automotive Engineer,2000,25(10):38-39.
    [84]姚胜华.电动助力转向系统的研制[D].杭州:浙江大学.2004.
    [85](德)M.米奇克著.陈荫三译.汽车动力学[M].人民交通出版社.1992.
    [86]张晶,曾宪云.基于MATLAB/SIMULlNK直流电机调速系统模糊控制的建模与仿真[J].大电机技术,2002,No.3:13-16.
    [87]王元聪,李伟光.汽车电动助力式转向系统(EPS)控制策略研究[J].交通与计算机.2005,6:75-76.
    [88]陈燕,刘晶郁,田忠民等.横摆角速度反馈对车辆操纵稳定性的影响[J].长安大学学报.2006,26(6):99-101.
    [89]陈奎元,马小平,季学武.电动助力转向系统控制技术的研究[J].江苏大学学报,2004(1):21-24.
    [90]贾和平,钟绍华.电动助力转向助力特性的仿真分析[J].客车技术与研究.2007(4):15-19.
    [91]Kifuku T,Wada S.An Electric Power- steering System[J].Mitsubishi Electric Advance:Automotive Electronics Edition,1997,78(3):20-23.
    [92]A.Osuka,Y.Matsuoka,T.Tsutshi,Y.Obata,A.Droulers.Development of Pinion Assist Type Electric Power Steering System[J].Koyo Engineering Journal(English Edition),2002,161:46-51.
    [93]王豪,许镇琳,张海华.电动转向系统助力特性研究[J].公路交通科技,2003,20(6):143-146.
    [94]肖生发,冯樱,刘洋.电动助力转向系统助力特性的研究[J].湖北汽车工业学院学报,2001,15(3):34-37.
    [95]张春花,李翔晟,肖朝明.电动助力转向系统控制策略研究[J].自动化技术研究.2007第26卷第2期:30-32.
    [96]Kurishige M,Kifuku T.Static Steering - control System for Electric - power Steering[J].Mitsubishi Electric Advance:Automobile - human Technology Edition,2001,94(6):18-20.
    [97]Kozaki Y,Hirose G,Sekiya S,et al.Electric Power Steering(EPS)[J].NSK Technical Journal Motion & Control,1999,6(1):9-15.
    [98]Patrick S.Numerical Simulation of Electric Power Steering(EPS) System[J].Koyo Engineering Journal:English Edition,2002,161(1):52-56.
    [99]薛立军.前轮定位角对汽车转向回正作用的影响[J].汽车工程.2005.Vol.25,No.2.p198-200.
    [100]景立群,季学武.电动助力转向的主动回正控制[J].汽车技术.2009(9):9-12.
    [101]程勇,王锋,罗石,苏清祖.电动助力转向系统回正控制策略研究[J].汽车技术.2007.03:8-10.
    [102]温立志,魏健,刘臣富.电动助力转向系统助力电机转速的估算方法[J].天津工程师范学院学报.2008(3):40-42
    [103]孟涛,陈慧,余卓平,李莉.电动助力转向系统的回正与主动阻尼控制策略研究[J].汽车工程.2006(12):1125-1128.
    [104]孟涛,余卓平,陈慧等.电动助力转向控制策略研究及试验验证[J].汽车技术.2005(5):26-28.
    [105]何仁,耿国庆,苗立东,王翠萍.电动助力转向系统的曲线型助力特性设计及分析[J].中国机械工程,2007,(20):2515-2518.23.
    [106]Jeonghoon Song,Kwangsuck Boo,Heung Seob Kim.et al.Model Development and Control Methodology of a New Electric Power Steering System[J].Proc.InstB Mech.Engrs Part D:J.Automobile Enginering.2004,218:967-975.
    [107]申荣卫,施国标,林逸.电动助力转向系统稳定性分析与研究[J].汽车技术.2006(4):9-12.
    [108]王建校.51系列单片机及C51程序设计[M].北京:科技出版社,2002.
    [109]李士勇.模糊控制、神经控制和智能控制理论与应用[M].哈尔滨工业大学,1999
    [110]Michael D.letherwood,David D.Gunter,David J.Gorsich,Thomas B.Udvare.Spatial Multibody Modeling and Vehicle Dynamics Analysis of Advanced Vehicle Technologies [J].Proceeding of SPIE,2004,Vol.5423:276-287.
    [111]王国权,杨文通等.汽车平顺性的虚拟试验研究[J].上海交通大学学报,2003,37(11):1172-1175.
    [112]王国权.虚拟试验技术[M].北京:电子工业出版社,2004.3
    [113]齐志鹏.汽车悬架和转向系统的结构原理与检修(第1版)[M].北京:人民邮电出版社,2002.5
    [114]余志生.汽车理论(第3版)[M].北京:机械工业出版社,2003.
    [115]耶尔森·赖姆帕尔(德)著,张洪欣、余卓平译.汽车底盘基础[M].北京:科学普及出版社,1992.9
    [116]Ronald A.Bixelet al.Development in Vehicle Center of Gravity and Inertial Parameter Estimation and Measurement[C]//SAE paper,950356.
    [117]汽车工程手册编辑委员会.汽车工程手册(试验篇)[M].北京:人民交通出版社,2001.4
    [118]吴亦君.汽车电动助力转向系统的建模与仿真[J].中国工程机械学报.2007.03:293-297,307.
    [119]陈无畏,时培成,高立新,王其东,陈黎卿.ADAMS和Matlab的EPS和整车系统的联合仿真[J].农业机械学报,2007(02):22-25,34.
    [120]陈丽,唐新蓬,钱留华.基于ADAMS的电动助力转向系统仿真分析[J].机械与电子,2004(10):17-19.
    [121]刘金现.先进PID控制及其MATLAB仿真[M].北京:电子工业出版社.2003.
    [122]Motorola Inc.MC9S12DT128B Device User Guide(V01.09).2002.10.http://www.qemicro.com.cn/TEMP/9S12DG128B/9S12DT128BDGV1.pdf
    [123]徐汉斌.电动转向器控制系统研究[D].武汉理工大学博士学位论文,2007.
    [124]刘仁,叶树亮,邓玉坤,焦国昌,郭旭光.转矩传感器发展现状[J].东北林业大学学报,1997(06):57-60.
    [125]季学武,刘学,孙凌玉等.电动助力转向系统电感式传感器的研究[J].传感器世界,2007.2:11-14.
    [126]季学武,马小平,周寒露,陈奎元.电动助力转向系统光电式转矩传感器的研究[J].仪表技术与传感器2004.10:4-6.
    [127]卢斌,胡树根,来明.电动助力转向传感器的选型与安装结构设计[J].机械制造.2006.01:39-41.
    [128]赵燕.C型电动助力向器动力学分析与研究[D].武汉理工大学博士学位论文,2006.
    [129]王齐刚,李万莉,徐呜谦,李康.电动汽车转向传感器设计理论研究[J].仪表技术与传感器.2008.01:6-8.
    [130]LEMING W J.Magnetostrictive torque sensors-comparison of branch,cross,and solenoidal designs.SAE:900264.
    [131]Y.Tokumoto,M.Shiba,N.Maeda,K.Kotaka.Development of Next-Generation Steering Sensor for Electric Power Steering[J].Koyo Engineering Journal(English Edition),2004,165:20-24.
    [132]HAMMOND JM,LEC RM.A non-contact piezoelectric torque sensor[J].IEEE International Frequency Control Symposium,1998:715 - 723.
    [133]王宗培,孔昌平等译.直流电动机及其控制系统[M].哈尔滨:哈尔滨工业大学出版社,1984.
    [134]余永权,汪明慧,黄英.单片机在控制系统中的应用[M].北京:电子工业出版社,2003.
    [135]王晓明等.电动机的DSP控制--Ti公司DSP应用[M].北京:北京航空航天大学出版社,2004.
    [136]王兆安,黄俊.电力电子技术[M].第四版.北京:机械工业出版社,2001
    [137]郑荣良,吴云峰.EPS系统H桥上管驱动电路的研究[J].拖拉机与农用运输车.2007(06):13-15.
    [138]逄海萍.IR2111和IR2130在PWM直流伺服系统中的应用[J].电气传动与自动化.2001.23(3):23-25.
    [139]罗石,商高高.电控助力转向系统电机驱动电路设计方案的研究.江苏大学学报,2004.25(5):488-491.
    [140]林敏,丁金华,田涛.计算机控制技术及工程应用[M].北京:国防工业出版社.2005.
    [141]谢刚,田大庆,殷国富.电动助力转向系统的传感器容错控制技术研究[J].中国机械工程,第17卷第14期2006年7月下半月:1532-1535.
    [142]王其东,杨孝剑,陈无畏,姜武华.电动助力转向系统控制的台架试验研究[J].汽车工程.2004(5):553-556.
    [143]毛务本,马谦.电动助力转向系统硬件设计及试验研究[J].微计算机信息.2008(24):238-240.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700