用户名: 密码: 验证码:
面向主动安全的汽车底盘集成控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车作为现代社会的主要交通工具,推动着社会经济的迅速发展和人民生活水平的快速进步,但是每年由于交通事故造成的死亡人数和经济损失触目惊心,汽车安全问题已成为世界性的社会问题。伴随着电子技术、传感器技术和车载网络技术的进步,以电子稳定性控制为代表的汽车底盘电控系统得到了高速发展,装车率也越来越高,无论是对汽车的行驶安全性还是乘坐舒适性都有显著提高。目前这些底盘电控系统大都是围绕提高某一项性能指标,由各个零部件厂商单独设计开发的,而没有考虑与其它电控系统的相互影响和耦合作用,只是简单叠加在一起非但不能充分体现出各自应有的性能,反而会降低整车的综合性能,因此进行集成控制成为汽车主动安全技术的未来发展方向。底盘集成控制能够充分考虑各子系统间的相互影响和耦合作用,在硬件或软件上对控制目标或控制动作进行优化处理,从根本上解决各子系统间的冲突,实现整车综合性能的最优。
     本文结合国家863计划项目“X121轿车集成开发先进技术”子课题“电子稳定系统(ESP)集成开发及电动转向系统(EPS)一体化控制技术”,总结国内外研究成果的基础上,以面向主动安全的汽车底盘集成控制策略研究为主题,以某国产轿车为研究对象,就高品质汽车动力学建模、电子稳定性控制策略及仿真、电子稳定性控制实车试验、底盘集成控制策略及仿真、底盘集成控制硬件在环试验等方面开展了一系列工作,主要内容如下:
     第一章为绪论。系统的介绍了汽车底盘主动安全系统的发展,引出了汽车底盘集成控制的优势和必要性,分析了汽车底盘集成控制的关键问题,然后总结了汽车底盘集成控制的国内外研究现状,由此阐述了本文选题的科学意义和应用背景,给出本文
     研究的主要内容。
     第二章为高品质汽车动力学模型研究。针对底盘集成控制研究的特点,采用模块化思想建立了满足精度和实时性要求的十六自由度非线性汽车动力学模型,其中整车模型以车体六自由度运动为基础,兼顾非簧载质量的垂向跳动,并且考虑了悬架K&C特性的修正,最后通过目标车的实车试验数据对建立的汽车动力学模型进行了验证。
     第三章为电子稳定性控制策略及仿真研究。基于差动制动方式的ESC系统在主动安全控制方面具有其它系统无法比拟的优势,本文底盘集成控制研究也是围绕ESC系统展开的。本章首先采用分层模块化思想设计了电子稳定性控制策略总体架构,然后以汽车侧向动力学为基础,分析了横摆角速度和质心侧偏角联合描述驾驶员驾驶意图的必要性。重点研究了横摆稳定性控制算法,分别设计了基于LQR的横摆力矩决策算法和基于GPC的横摆力矩决策算法,并对这两种算法的控制效果进行了仿真对比分析。
     第四章为电子稳定性控制策略试验研究。自主设计开发了电子稳定性控制ECU、车辆姿态传感器以及上位机监控系统,并以此为基础搭建了电子稳定性控制系统车载试验平台;然后考虑到实际产品的成本和环境依赖问题,设计了质心侧偏角和轮缸压力估计算法,并通过ESC系统车载试验平台验证了估计算法的有效性;最后通过典型试验工况初步验证了车辆姿态传感器的精确性以及横摆稳定性控制算法和ABS控制算法的有效性。
     第五章为底盘集成控制策略及仿真研究。采用分层模块化思想设计了底盘集成控制策略的总体架构,分两个层面对汽车底盘集成控制开展研究,首先针对差动制动和主动转向进行集成,设计了七自由度预测模型和基于MPC的集成控制算法,实现了ESC和AFS的集成控制;然后在此基础上加入主动悬架控制,设计了综合SMVSC算法和轮胎力最优分配算法的集成控制策略,实现了ESC、AFS和ASS的集成控制,也就是严格意义上的底盘一体化控制。最后应用自主开发的汽车动力学仿真平台对两种集成控制策略的控制效果进行了仿真分析。
     第六章为底盘集成控制策略硬件在环试验研究。为了在加入传感器、执行器和控制器等实际硬件的环境中进一步验证底盘集成控制算法的有效性,基于Matlab/xPCTarget技术自主设计开发了底盘集成控制硬件在环(HIL)试验台,该HIL试验台包括驾驶模拟系统、实时仿真系统和ESC液压制动系统。结合HIL试验台网络拓扑结构,基于SAE J1939协议自主设计制定了CAN通信协议,并开发了用于协议解析、控制系统在线调试和标定的上位机软件。最后针对ESC、AFS和ASS的集成控制开展了驾驶员在环的HIL试验,试验结果表明本文设计的底盘集成控制策略可以有效的提高汽车的行驶安全性。
     第七章对全文内容进行工作总结,并对未来的研究方向提出了展望。
     本文从实际问题出发,对面向主动安全的汽车底盘集成控制策略进行了研究,并在以下几个方面有所创新:
     (1)基于分层模块化思想设计了汽车电子稳定性控制策略,在进行横摆稳定性控制时,针对LQR算法对控制模型精度依赖性较高的问题,设计了基于GPC的横摆力矩决策算法,并应用自主开发的车载试验平台对GPC算法的有效性进行了试验验证;
     (2)针对差动制动和主动前轮转向的集成控制,设计了七自由度预测模型和基于MPC的集成控制算法,实现了ESC和AFS的集成,并应用自主开发的汽车动力学仿真平台对MPC算法的控制效果进行了仿真验证;
     (3)针对差动制动、主动前轮转向和主动悬架的集成控制,设计了综合SMVSC算法和轮胎力最优分配算法的集成控制策略,实现了ESC、AFS和ASS的集成,并应用自主开发的底盘集成控制硬件在环试验台对控制策略的有效性进行了试验验证。
As the major transportation in modern society, the vehicle industry promotessocio-economic development and people's living standard rapidly, but the annual death tolland economic loss caused by traffic accidents are shocking, and vehicle safety issues havebecome a worldwide social problem. With the rapid development of the electronictechnology, sensor technology and in-vehicle network technology, the chassis active safetytechnology has developed rapidly, and the applications used in vehicle have increased,,regardless of vehicle driving safety or riding comfort has been improved remarkably, butthese electronic control systems are designed and developed by various part-suppliermanufacturers independently, only focusing on improving its performance and withoutconsidering the interaction and coupling with the other electronic control systems, so thesimple superposition of electronic control systems are not only fail to fully reflect theirproper performance, but also will reduce the whole vehicle performance. Therefore,comprehensive consideration of all the electronic control systems, achieving vehicle optimalperformance by the way of integration and optimization, has become a hot research topic inthe field of automotive active safety. As the future development direction of active safetysystem, domestic research of vehicle chassis integrated control has just started, therefore,following the development trend of automotive technology closely is not only have a greatrealistic significance in shortening the gap between the technological levels of our countryand developed countries, but also greatly accelerates the progress of automotive industry and other related industry.
     This thesis is associated with the “Integrated Development of Electronic StabilityProgram(ESP) and Integrated Control Technology of Electronic Power Steering(EPS)”subject, supported by the project of National863Program “Integrated Development ofAdvanced Technology for X121Passenger Car”. Based on the summary of the domestic andforeign research achievements, this thesis focuses on the research of integrated chassiscontrol for vehicle active safety, and a domestic passenger car is chosen as benchmark. Asequence research work of the high-quality modeling of vehicle dynamics, electronicstability control strategy and simulation, vehicle test of electronic stability control strategy,integrated chassis control strategy and simulation and HIL test of integrated chassis controlare carried out in detail. The main contents are as follows:
     First chapter is the introduction. It systematically introduces the development of vehiclechassis active safety systems, leads to the advantage and necessity of vehicle chassisintegrated control, analyses the the key issues of the chassis integrated control, and thensummaries the domestic and foreign research achievements of chassis integrated control, theacademic and applying background of this thesis are described, and the main content of thispaper are given.
     The second chapter is the high-quality modeling of vehicle dynamics research. Based onthe characteristics of integrated chassis control, the16-DOF nonlinear vehicle dynamicsmodel is established using modularization method, which has high precision and strictreal-time. It is composed of engine model, powertrain model, brake system model,hydraulic regulator model, suspension model, tire model, vehicle body model and drivermodel. And the vehicle model is validated using the handling test data of the target vehicle.The results show that the vehicle model can describe the dynamical characteristics inlinear and nonlinear area correctly and accurately.
     The third chapter is electronic stability control strategy and simulation research. Theoverall architecture and content of sub-modules of electronic stability control algorithm aredesigned using the hierarchic method. Based on vehicle lateral dynamics, the necessity of combined control of the yaw rate and sideslip angle is illustrated. Focusing on the yawstability control strategy, yaw moment decision algorithm is designed based on LQR methodand GPC method, and the effectiveness of these two algorithms are validated by simulation.Finally, the effectiveness of the ABS control algorithm are validated by simulation.
     The fourth chapter is experimental study on the electronic stability control strategy. Theelectronic stability controllers, the vehicle attitude sensors, PC monitoring system and thevehicle test platform are designed and developed. Considering the dependence of the actualenvironment and the cost of the product, the sideslip angle and wheel cylinder pressure areestimated, and validated by electronic stability control test platform. The functionality of thevehicle attitude sensor, yaw stability control algorithm and the effectiveness of the ABScontrol algorithm validated by electronic stability control test platform.
     The fifth chapter is simulation study on integrated chassis control strategy. The overallarchitecture of integrated chassis control strategy is designed using the hierarchic method.Studying on integrated chassis control includes two levels, and the first level is theintegration of braking and steering control, electronic stability control and active frontsteering control are integrated, and the second level is the integration of braking, steering andactive suspension control, then the integrated chassis control is achieved in strict sense.Seven degrees of freedom predictive model and model predictive control algorithm areestablished for the integrated control of braking and steering, and the accuracy andeffectiveness of prediction model and model predictive control algorithm are validated bysimulation. The total yaw moment is designed based on the sliding mode variable structurecontrol algorithm for the integrated control of braking, steering and suspension, and the tireforce estimation and optimal tire force distribution algorithm are designed.
     The sixth chapter is the hardware in the loop test reaserch of integrated chassis controlstrategy. In order to further verify the effectiveness of the integrated control algorithm in theenvironment by adding sensors, actuators and controller, integrated chassis controlhardware-in-the-loop test rig is designed and developed based on Matlab/xPC Targettechnology, including a driving simulator system, real-time simulation system and ESC hydraulic braking system. According to the network topology of integrated chassis controlhardware-in-the-loop test rig, the CAN communication protocol is developed independentlybased on SAE J1939protocol, and the host software is developed, which is used to protocolanalysis and control system online debugging and calibration. The effectiveness of theintegrated control algorithm for braking, steering and suspension is validated by hardware inthe loop test.
     The seventh chapter concludes the whole content of this thesis, and it put forward thedirection and the keystone for the future.
     For resolving practical issues, this thesis studies the aspects related to developing vehicleintegrated chassis control system. And it has creative works following:
     (1) The overall architecture of integrated chassis control strategy is developed using thehierarchic method. Focusing on the yaw stability control strategy, yaw moment decisionalgorithm is developed based on GPC method, and the effectiveness of the algorithm isvalidated by the in-vehicle test platform of electronic stability control.
     (2) Focusing on integration of differential braking and active front steering, theintegrated control algorithm is designed based on MPC method, and the effectiveness of thealgorithm is validated by vehicle dynamics simulation platform.
     (3) Focusing on integration of differential braking, active front steering and activesuspension, the total yaw moment decision algorithm based on SMVSC method, the tireforce optimal allocation algorithm are designed, and the effectiveness of algorithms arevalidated by hardware in the loop test platform of integrated chassis control.
引文
[1] http://www.tranbbs.com/news/cnnews/parking/news_70044.shtml.
    [2]赵琢.我国高等级公路交通事故预测及对策研究[J].汽车运输研究,1997,16(2):71-77.
    [3]吴龙.近期我国道路交通事故分析[J].汽车运输研究,1997,16(2):82-86.
    [4]黄安华.现代汽车的主动安全技术[J].商用汽车,2002,24(4):23-24.
    [5]朱杰.现代汽车安全技术的发展趋势[J].公路与汽运,2003,(4):1-3.
    [6]陈祯福.汽车底盘控制技术的现状和发展趋势[J].汽车工程,2006,28(2):105-113.
    [7] Anton T.Van Zanten. Bosch ESP Systems:5Years of Experience[C]. SAE TechnicalPaper,2000-01-1633.
    [8] Anton T.Van Zanten. Evolution of Electronic Control Systems for Improving the VehicleDynamic Behavior[C]. Proceeding of the Advanced Vehicle Control (AVEC)2002.
    [9] Anton T.Van Zanten, Rainer Erhardt, Klaus Landesfeind, Georg Pfaff. VDC SystemDevelopment and Perspective[C]. SAE Technical Paper,980235.
    [10]宗长富,左建令,管欣,高振海.汽车电子转向技术的发展与展望[J],汽车技术,2003,1-7.
    [11]蒋励,余卓平,高晓杰.宝马主动转向技术概述[J],汽车技术,2006(4):1-4.
    [12]黄炳华,陈祯福.汽车主动转向系统的特性研究[J],武汉理工大学学报,2008(6):421-422.
    [13] J.Ackermann, T.Bunte, D.Odenthal. Advantages of Active Steering for VehicleDynamics Control,99ME013,1999.
    [14] Marzbanrad J, Ahmadi G, Zohoor H. Stochastic optimal preview control of a vehiclesuspension [J], Journal of Sound and Vibration,2004,275(3):973-990.
    [15] Chen H, Liu Z Y, Sun P Y. Application of Constrained H∞Control to Active SuspensionSystems on Half-Car Models [J]. Transactions of the ASME Journal of DynamicSystems, Measurement and Control,2005,127(3):245-254.
    [16] Chen P C, Huang A C. Adaptive sliding control of non-autonomous active suspensionsystems with time-varying loadings [J]. Journal of Sound and Vibration,2005,282(3):1119-1135.
    [17]黄炳华,陈祯福. ESC的最新动向和发展趋势[J].汽车工程,2008,30(1):1-9.
    [18] Gordon T, Howell M, and Brandao F. Integrated Control Methodologies for RoadVehicles [J]. Vehicle System Dynamics, Vol.40, No.1-3, pp.157-190,2003.
    [19] Hac A, Bodie M. Improvements in vehicle handling through integrated control [J]. Int. J.of Vehicle Design, Vol.29, No.1/2, pp.23-50,2002.
    [20] Pavel Kvasnicka, Günther Prokop. Comprehensive approach for the chassis controldevelopment[C]. SAE Paper,2006-01-1280.
    [21] Peter Lauer, Sascha J.Semmler. Simulation based development within global chassiscontrol[C]. IEEE Conference on Computer Aided Control Systems Design Munich,Germany,2006,2309-2314.
    [22]喻凡,李道飞.车辆动力学集成控制综述[J].农业机械学报,2008,39(6):1-7.
    [23] Yasuji Shibahata. Progress and Future Direction of Chassis Control Technology [J].Annual Reviews in Control,2005,29(1):151-158.
    [24]姜炜,余卓平,张立军.汽车底盘集成控制综述[J].汽车工程,2007,29(5):420-425.
    [25] Nagai Masao, ShinoMotoki, Gao Feng. Study on Integrated Control of Active FrontSteer Angle and Direct Yaw Moment [J]. JSAEReview,2002,23:309-315.
    [26] Masao Nagai, Yutaka Hirano, Sachiko Yamanaka. Integrated Robust Control of ActiveRear Wheel Steering and Direct Yaw Moment Control[C].15th Symposium onDynamics of Vehicles on Roadsand Tracks, IAVSD,1997.
    [27] Masao Nagai, Sachiko Yamanaka, Yutaka Hirano. Integrated Control of Active RearWheel Steering and Direct Yaw Moment Control Using Braking Force [J]. JSMEInternational Journal,1999,42(2):301-308.
    [28] Massanori Harada, Hiroshi Harada. Analysis of Lateral Stability with Integrated Controlof Suspension and Steering Systems [J]. JSAE Review,1999,20(4):465-470.
    [29] Shinichiro Horiuchi, Kazuyuki Okada, Shinya Nohtmi. Improvement of VehicleHandling by Nonlinear Integrated Control of Four Wheel Steering and Four WheelTorque [J]. JSAE Review,1999,20(4):459-464.
    [30] Mokhiamar O, Abe M. Active Wheel Steering and Yaw Moment Control Combination toMaximize Stability as Well as Vehicle Responsiveness During Quick Lane Change forActive Vehicle Safety[C]. Proceedings of the Institution of Mechanical Engineers,2002.
    [31] Jonas Fredriksson, Johan Andreasson, Leo Laine. Wheel Force Distribution forImproved Handling in a Hybrid Electric Vehicle Using Nonlinear Control[C].43rdIEEE Conference on Decision and Control,2004.
    [32] Tondel P, Johansen T. Control Allocation for Yaw Stabilization in Automotive VehiclesUsing Multiparametric Nonlinear Programming[C]. American Control Conference,2005.
    [33] Tokuda T. Cars in the90s as a Humanware[C]. SAE Paper,885049.
    [34] Kizu R, Harada H, Minabe H. Electronic control of car chassis present status and futureperspective[C]. Proeeedings of Intemational Congress on Transportation Electronies,USA,1988.
    [35] N.A. Schilke, R.D. Fruechte, N.M. Boustany. Integrated vehicle control[C]. IEEEVehicular Technology,1988.
    [36] Wallentowitz H. Integrated of Chassis and Traction Control Systems[C]. Proc. ofAVEC92,1992.
    [37] Mitamura R, Tani M, Tanaka T. System integration for new mobility[C]. SAE Paper,881773.
    [38] Burgio G, Zegelaar R. Integrated Vehicle Control Using Steering and Brakes [J].International Journal of Control,2006,79(5):534-541.
    [39] T.H.HWANG, K.PARK, S.-J.HEO. Design of integrated chassis control logics for AFSand ESP[J]. International Journal of Automotive Technology, Vol.9, No.1, pp.17-27,2008.
    [40] Nagai M, Shino M, GAO F. Study on integrated control of active front steer angle anddirect yaw moment [J]. JSAE Review,2002,23(3):309-315.
    [41] Masao Nagai, Yutaka Hirano, Sachiko Yamanaka. Integrated Control of Active RearWheel Steering and Direct Yaw Moment Control [J]. Vehicle System Dynamics,1997,27:357-370.
    [42] Shino M, Nagai M. Independent wheel torque control of small-scale electric vehicle forhandling and stability improvement [J]. JSAE Review,2003,24(4):449-456.
    [43] Motoki Shino, Pongsathorn Raksincharoensak, Masao Nagai. Vehicle Handling andStability Control by Integrated Control of Direct Yaw Moment and Active Steering[C].Proceeding of the Advanced Vehicle Control (AVEC),2002.
    [44] Cherouat H, LakehalAyat M, Diop S. An integrated braking and steering control for acornering vehicle[C]. Proc. of AVEC’04,2004.
    [45] Hattori Y, Koibuchi K, Yokoyama T. Force and moment control with nonlinear optimumdistribution for vehicle dynamics[C]. Proc. of AVEC’02, pp.595-600,2002.
    [46] Ono E, Hattori Y, Muragishi Y. Vehicle Dynamics Control Based On Tire GripMargin[C]. Proc. of AVEC’04, pp.531-536,2004.
    [47] Mokhiamar O, Abe M. Simultaneous optimal distribution of lateral and longitudinal tireforces for the model following control [J]. Journal of Dynamic Systems, Measurement,and Control,2004,126:753-763.
    [48] Abe M. Roll Moment Distribution Control in Active Suspension for Improvement ofLimit Performance of Vehicle Handling[C]. Proc. of AVEC’92, pp.378-383,1992.
    [49] Gillespie T.D. Fundamentals of Vehicle Dynamics[C]. SAE Inc.,1992.
    [50] Gordon T. Vehicle Dynamics Lecture Notes. University of Michigan,2004.
    [51] Cooke R, Crolla D, Abe M. Combined Ride and Handling Modelling of a Vehicle withActive Suspension[C]. Proc. of AVEC’96, pp.1037-1056,1996.
    [52] Cooke R, Crolla D. Modelling Combined Ride and Handling Manoeuvres for a Vehiclewith Slow-active Suspension [J]. Vehicle System Dynamics, Vol.27, No.5-6,pp.457-476,1997.
    [53] Cooper N, Manning W, Crolla D. Study of the Integration of Roll Control and TorqueDistribution[C]. Proc. of AVEC’04, pp.513-518,2004.
    [54] Manning W, Crolla D, Brown M. Co-ordination of chassis subsystems for vehiclemotion control[C]. Proc. of AVEC,2000.
    [55] Smakman H. Functional Integration of Active Suspension with Slip Control forImproved Lateral Vehicle Dynamics[C]. Proc. of AVEC,2000.
    [56] Duda H, Berkner S. Integrated Chassis Control Using Active Suspension andBraking[C]. Proc. of AVEC’04, pp.347-352,2004.
    [57] Harada, M., Harada, H., Analysis of Lateral Stability with Integrated Control ofSuspension and Steering Systems [J]. JSAE Review, Vol.20, pp.465-470,1999.
    [58] Harada M, Tobimatsu K. Improvement of Vehicle Stability in Cornering on UnevenRoads[C]. Proc. of AVEC’98, pp.117-122,1998.
    [59] Brennan S, Alleyne A. Integrated Vehicle Control via Coordinated Steering and WheelTorque Inputs[C]. Proc. of the American Control Conference, pp.7-12,2000.
    [60] Nouillant C, Assadian F, Moreau X. A Cooperative Control for Car Suspension andBrake Systems [J]. International Journal of Automotive Technology,2002,3(4):147-155.
    [61] March C, Shim T. Integrated control of suspension and front steering to enhance vehiclehandling[C]. Proc. IMech E,2007,221(4):377-391.
    [62] Y. Ghoneim, W. Lin. Integrated chassis control system to enhance vehicle stability [J].International Journal of Vehicle Design,2000,23(1/2):124-144.
    [63] M. Harada, Harada. Analysis of lateral stability with iniegrated control of suspensionand steering systerns [J]. SAERevie,1999,20:465-570.
    [64] Velardocchia M, Sorniotti A. Four-wheel-steering Control Strategy and Its Integrationwith Vehicle Dynamics Control and Active Roll Control[C]. SAE Paper,2004-01-1061.
    [65] Sascha J.Semmler, Peter E.Rieth. Global chassis control-the networked chassis[C]. SAEPaper,2006-01-1954.
    [66] Rieth P, Sehwarz R. ESC II-the first Electronic Stability Control with steeringintervention[C]. SAE Teehnieal Paper,2004-01-0260.
    [67] Werner Kober, Martin Ehmann. Model-based development of the integrated vehicledynamics control of Magna Steyr [J]. ATZ Automobiltechnische Zeitschrift,2007,10:1-8.
    [68] Gordon T, Howell M, Brandao F. Integrated Control Methodologies for Road Vehicles[J]. Vehicle System Dynamics, Vol.40, No.1-3, pp.157-190,2003.
    [69] Brandao V, Gordon T. A Layered Approach to the Integrated Control of LongitudinalWheel Slip and Vehicle Yaw Motion[C]. Proc. of AVEC’04, pp.507-512,2000.
    [70] Yasui Y, Kodama H, Momiyama M. Electronic Stability Control Coordinated withElectric Power Steering[C]. FISITA Congress,2006.
    [71] Tanaka H, Kurishige M. The Torque Controlled Active Steer for EPS[C]. Proceeding ofAVEC'04, pp.501-507,2004.
    [72] Edward J, Bedner Hslen, Chen H.A. Supervisory Control to Manage Brake andFourWheelSteer Systems[C]. SAE Paper,2004-01-1059.
    [73] Ansgar Trachtler. Integrated Vehicle Dynamics Control Using Active Brake, Steeringand Suspension Systems [J]. International Journal of Vehicle Design,2004,36(1).
    [74] Suzumura M, Kojo T. Development of the Active Front Steering Control System[C].Proceeding of AVEC'04, pp.53-58,2004.
    [75] Masanori Harada, Hiroshi Harada. Analysis of Lateral Stability with Integrated Controlof Suspension and Steering System [J]. JSAE Review,1999,20:465-470.
    [76] T. Yoshimura, Y. Emoto. Steering and suspension system of aufllear model using ufzzyreasoning based on single in Putrule modules[J]. Int.J.of Vehiele Autonomous Systems,2003,1(2):237-255.
    [77] Elim, J. Hedriek. Lateral and longitudinal vehicle control coupling for automatedvehicle operation[C]. Proeeedings of Ameriean Control Conefrenee,1999.
    [78] Shen Xiaoming, Yu Fan. Investigation on integrated vehicle chassis control based onvertical and lateral tire behavior correlativity [J]. Vehicle System Dynamics,2006,44(1):506-519.
    [79] Shen Xiaoming, Yu Fan. A novel integrated chassis controller design combining activesuspension and4WS[C]. SAE Paper,2005-01-3566.
    [80] Xiaoming Shen, Fan Yu. Study on vehicle chassis control integration based on amain-loop-inner-loop design approach [J]. Proc. ImechE,2006,220(7):1491-1502.
    [81]李道飞.基于轮胎力最优分配的车辆动力学集成控制研究[D].上海:上海交通大学,2008.
    [82]沈晓鸣.基于广义执行器-受控对象的车辆底盘集成控制的研究[D].上海:上海交通大学,2006.
    [83]李君,喻凡等.车辆转向制动防抱死系统仿真研究.系统仿真学报,Vol.13,No.6,2001.
    [84]冯金芝,喻凡,李君,张建武.车辆防抱制动系统与主动悬架联合控制[J].农业机械学报,2002,33(2):15-19.
    [85]高晓杰,余卓平,张立军.集成底盘控制系统的控制构架研究[J].汽车工程,2007,29(1):21-26.
    [86]高晓杰,余卓平,张立军.基于车辆状态识别的AFS与ESP协调控制研究[J].汽车工程,2007,29(4):283-291.
    [87]余卓平,高晓杰,张立军.用于车辆稳定性控制的直接横摆力矩及车轮变滑移率联合控制研究[J].汽车工程,2006.
    [88]陈无畏,周慧会,刘翔宇.汽车ESP与ASS分层协调控制研究[J].机械工程学报,2009,45(8):190-196.
    [89]陈无畏,王妍渂,王其东等.电动助力转向与主动悬架系统多变量自适应集成控制[J].振动工程学报,2005,18(3):360-365.
    [90]刘翔宇,陈无畏.基于DYC和ABS分层协调控制策略的ESP仿真[J].农业机械学报,200940(4):1-6.
    [91]初长宝,陈无畏.汽车底盘系统分层式协调控制[J].机械工程学报,2008,44(2):157-162.
    [92]杨柳青,陈无畏,初长宝.汽车主动悬架与ABS系统联合控制研究[J].合肥工业大学学报,2006,29(6):767-771.
    [93]王其东,吴勃夫,陈无畏.基于预测控制的主动悬架与电动助力转向集成控制[J].农业机械学报,2007,38(1):1-5.
    [94]王其东,姜武华,陈无畏等.主动悬架和电动助力转向系统机械与控制参数集成优化[J].机械工程学报,2008,44(8):67-72.
    [95]陈龙,聂佳梅,江浩斌等.预测步长自调整的ASS与EPS灰预测模糊集成控制[J].汽车工程,2009,31(2):104-107.
    [96]陈龙,袁传义,江浩斌等.汽车主动悬架与电动助力转向系统自适应模糊集成控制[J].汽车工程,2007,29(1):8-12.
    [97]郑玲,李以农,魏俊生,邵建.基于磁流变阻尼器的汽车半主动悬架和电动助力转向系统协调控制[J].振动工程学报,2009,22(5):503-510.
    [98]卢少波,李以农,赵树恩,冀杰.基于动态表面理论的车辆制动与悬架协调控制[J].系统仿真学报,2008,20(23):6461-6465.
    [99]陈平.基于线控技术的主动转向与差动制动集成控制研究[D].长春:吉林大学硕士论文,2007.
    [100]李刚,宗长富,姜立勇,梁赫奇,洪伟.主动前轮转向与直接横摆力矩集成控制算法[J].吉林大学学报(工学版),2011.
    [101]梁赫奇.基于模型预测控制的底盘分层集成控制算法研究[D].长春:吉林大学硕士论文,2011.
    [102]郭建华,李幼德,李静.汽车防抱死系统与主动悬架联合控制研究[J].中国机械工程,2007,18(24):3014-3018.
    [103]郭建华,李静,李幼德.汽车主动前轮转向与防抱死制动系统集成控制研究[J].汽车技术,2007.
    [104]朱冰,李幼德,赵健,李静.基于多变量频域控制方法的车辆底盘集成控制[J].农业机械学报,2010.
    [105]赵伟.汽车动力学稳定性横摆力矩和主动转向联合控制策略的仿真研究[D].长安大学,2008.
    [106]王金湘,陈南.监督控制下的车辆集成底盘控制策略与仿真[J].农业机械学报,2009,40(9):1-6.
    [107]邵建.汽车半主动悬架与防抱死制动系统集成控制研究[D].重庆:重庆大学,2008.
    [108]来飞,邓兆祥.含非线性轮胎模型的汽车四轮转向与主动悬架集成控制[J].中国公路学报.
    [109]晏蔚光,毋茂盛,余达太等.一种基于横摆力矩和主动前轮转向控制的制动稳定性控制方法[J].北京科技大学学报,2005,27(4):505-508.
    [110]武建勇.提高车辆操纵稳定性的底盘集成控制系统设计与方法研究[D].上海交通大学,2008.
    [111] Syed Nabi, Mahesh Balike, Jace Allen and Kevin Rzemien. An overview ofhardware-in-the-loop testing systems at Visteon[C]. SAE paper,2004-01-1240.
    [112] Quan-Zhong Yan, Frank C. Thompson, Russell E. Hardware in the Loop for DynamicChassis Control Algorithms Test Validation[C]. SAE paper,2004-01-2059.
    [113] Jooyoung Ma, Jeamyoung Youn, Minsuk Shin and Myoungho Sunwoo. A DesignApproach Using Seamless Development Environments, SILS/RCP, for Real-TimeControl Systems[C]. SAE paper,2006-01-0310.
    [114] Ganesh Babu M. Hardware-in-the-Loop Simulation (HIL) for Vehicle ElectronicsSystems Testing and Validation[C]. SAE paper,2005-26-304.
    [115]喻凡,林逸.汽车系统动力学[M].北京:机械工业出版社,2005.
    [116]管欣,郭孔辉,林柏忠.实时仿真的29自由度车辆动力学模型[R].汽车动态模拟国家重点实验室技术报告,2001.3.
    [117] Chinar Ghike, Taehyun Shim.14Degree-of-Freedom Vehicle Model for RollDynamics Study[C]. SAE paper,2006-01-1277.
    [118]郭孔辉.汽车操纵动力学原理[M].南京:江苏科学技术出版社,2011.
    [119] E.Silani, S.M.Savaresi, S.Bittanti, A.Visconti and F.Farachi. The Concept ofPerformance-Oriented Yaw-Control System: Vehicle Model and Analysis[C]. SAETechnical Paper,2002-01-1585.
    [120]余志生.汽车理论(第四版)[M].机械工业出版社,2007.
    [121] Thomas D.Gillespie.车辆动力学基础[M].清华大学出版社,2006.
    [122]谢剑辉.汽车ESP液压调节器建模与仿真策略分析[D].长春:吉林大学汽车工程学院,2008.
    [123]祁雪乐,宋健,王会义,李亮.基于AMESim的汽车ESP液压控制系统建模与分析[J].机床与液压,2005(8):115-116.
    [124] Guo K and Ren L. A non-steady and non-linear tire model under large lateral slipcondition[C]. SAE Technical Paper,2000-01-0358.
    [125] Guo K and Ren L. A unified semi-emipirical tire model with higher accuracy and lessparameter[C]. SAE Technical Paper,1999-01-0785.
    [126]郭孔辉.轮胎侧倾力学特性模型[J].汽车技术,1993,(10):1-4.
    [127]郭孔辉.用于汽车全工况动力学分析的非稳态轮胎六分力模型[R].汽车动态模拟国家重点实验室内部报告.长春:吉林工业大学,1997.
    [128] KONGHUI GUO, DANG LU, SHIN-KEN CHEN, WILLIAM C.LIN, XIAO-PEI LU.UniTire Model—non-linear and non-steady tire model for vehicle dynamicsimulation[C]. TMVDA,2004.
    [129]郭孔辉.各向摩擦系数不同条件下轮胎力学特性的统一理论模型[J].中国机械工程,1996,7(4).
    [130]袁忠诚. UniTire轮胎稳态模型研究[D].长春:吉林大学汽车工程学院,2006.
    [131]李宁.复杂工况下轮胎侧偏特性仿真模型研究[D].长春:吉林大学汽车工程学院,2007.
    [132] Pacejka H B and Besselink I J M. Magic Formula tyre model with transient properties[J]. Vehicle System Dynamics,1997,27:65-79.
    [133] Pacejka H B and Bakker E. The magic formula tyre model [J]. Vehicle SystemDynamics,1991,21.
    [134] Bakker E, Nyborg L, Pacejka H B. Tyre modeling for use in vehicle dynamicsstudies[C]. SAE Technical Paper,870421.
    [135] Bakker E, Pacejka H B, Linder L. A New Tire Model with an Application in VehicleDynamics Studies[C]. SAE Technical Paper,890087.
    [136] Pacejka H B. Tyre and Vehicle Dynamics [M]. Bodmin, Cornmall: MPG Books Ltd,2002:216-291.
    [137] Masato Abe. Vehicle Handling Dynamics Theory and Application [M].Butterworth-Heinemann,2009.
    [138]杨建森.悬架K&C特性对汽车操纵性的敏感性分析[D].长春:吉林大学汽车工程学院,2008.
    [139]金凌鸽.某C级车开发初期悬架KnC特性优化设计方法研究[D].长春:吉林大学汽车工程学院,2010.
    [140]王爽.某微车悬架KnC特性研究及其对整车操纵稳定性的影响[D].长春:吉林大学汽车工程学院,2008.
    [141] Yang Jiansen, Guo Konghui, Ding Haitao, Zhang Jianwei. Suspension K&CCharacteristics and the Effect on Vehicle Steering[C].2010International Conferenceon Computer, Mechatronics, Control and Electronic Engineering, CMCE2010, August2010.
    [142] Guo K, Ding H, Zhang J, Lu J and Wang R. Development of a longitudinal and lateraldriver model for autonomous vehicle control [J]. InternationalJournal of VehicleDesign,2004, Vol.36, No.1, pp.50-65.
    [143] Ding H, Guo K, Wan F, Cao J and Tian Y. An Analytical Driver Model for ArbitraryPath Followingat Varying Vehicle Speed [J]. Int. J. VehicleAutonomous System, Vol.5,Nos.3/4,2007, pp.204-218.
    [144]张永生.轿车稳定性控制系统的状态参数估算及控制算法研究[D].长春:吉林大学汽车工程学院,2010.
    [145]刘巍.轻型汽车转向稳定性控制算法及硬件在环试验台研究[D].长春:吉林大学汽车工程学院,2007.
    [146]郭建华.双轴汽车电子稳定性协调控制系统研究[D].长春:吉林大学汽车工程学院,2008.
    [147]付皓.汽车电子稳定性系统质心侧偏角估计与控制策略研究[D].长春:吉林大学汽车工程学院,2008.
    [148] Y. Shibahata, K. Shimada and T. Tomari. Improvement of Vehicle Maneuverability byDirect Yaw Moment Control [J]. Vehicle System Dynamics,1993,22:465-481.
    [149] Young Eun Ko, Jang Moo Lee. Estimation of the stability region of a vehicle in planemotion using a topological approach [J]. Int.J.of Vehicle Design, Vol.20, No.3,2002
    [150] Anton T.Van Zanten, Rainer Erhardt, Georg Pfaff, Friedrich Kost, Uwe Hartmann.Control Aspects of the Bosch-VDC[C]. Proceeding of the Advanced Vehicle Control(AVEC),1996.
    [151] Anton T.Van Zanten, Rainer Erhardt, Klaus Landesfeind, Georg Pfaff. VDC SystemDevelopment and Perspective[C]. SAE Technical Paper,980235.
    [152] Ding Hai-tao, Guo Kong-hui, and Chen Hong. LQR method for vehicle yaw momentdecision in vehicle stability control [J]. Journal of Jilin University (Engineering andTechnology Edition),2010,40(3):597-601.
    [153]丁海涛.轮胎附着极限下汽车稳定性控制的仿真研究[D].长春:吉林大学汽车工程学院,2003.
    [154]郭孔辉,丁海涛.轮胎附着极限下差动制动对汽车横摆力矩的影响[J].汽车工程,2002,24(2):101-104.
    [155]诸静等.智能预测控制及其应用[M].浙江大学出版社,2002.
    [156]杨建森,李飞,丁海涛,郭孔辉,郝宝青.基于广义预测控制的汽车横摆稳定性控制[J].农业机械学报,2012(1):1-5+36.
    [157] Yoshiki Fukada. Slip-Angle Estimation for Vehicle Stability Control[C]. VehicleSystem Dynamics,1999,32:.375-388.
    [158] Aleksander Hac, Melinda D.Simpson. Estimation of Vehicle Side Slip Angle and YawRate[C]. SAE Technical Paper,2000-01-0696.
    [159] Damrongrit Piyabongkarn, Rajesh Rajamani, John A.Grogg, Jae Y.Lew. Developmentand Experimental Evaluation of A Slip Angle Estimator for Vehicle StabilityControl[C]. Proceeding of the American Control Conference (ACC),2006.
    [160] Pei-shih Huang, Henk Smakman, Jurgen Guldner. Design of a Vehicle State Observerfor Vehicle Dynamics Control Systems[C]. Proceeding of the Advanced VehicleControl (AVEC),2000.
    [161] Pacejka H B and Bakker E. The magic formula tyre model [J]. Vehicle SystemDynamics,1991,21.
    [162]刘溧.汽车ABS仿真试验台的开发与液压系统动态特性的研究[D].长春:吉林工业大学,2000.
    [163]崔海峰.汽车ABS/ASR集成系统及轮缸压力精细调节研究[D].北京:北京理工大学,2006.
    [164] Felipe V. Brand o, Timothy J. Gordon, Mark N. Howell. A Layered Approach to theIntegrated Control of Longitudinal Wheel Slip and Vehicle Yaw Motion[C]. AVEC2004,507-512.
    [165] Sehyun Chang, Tim J. Gordon. Improvement of Vehicle Dynamics using Model-basedPredictive Control[C]. SAE Paper,2009-01-0427.
    [166] Paolo Falcone, H. Eric Tseng, Francesco Borrelli, et al. MPC-based yaw and lateralstabilisation via active front steering and braking [J]. Vehicle System Dynamics,2008,46:611-628.
    [167]杨建森,郭孔辉,丁海涛,郝宝青,李飞.基于模型预测控制的汽车底盘集成控制[J].吉林大学学报(工学版),2011(增刊2):1-5.
    [168] International Standard, ISO/FDIS3888-1,“Passenger cars–Test track for severelane-change manoeuvre–Part1: Double-lane change”.
    [169] Rajesh Rajamani. Vehicle Dynamics and Control [M]. Springer,2006.
    [170] Wanki Cho, Jangyeol Yoon, Jeongtae Kim. An investigation into unified chassiscontrol scheme for optimised vehicle stability and manoeuvrability [J]. Vehicle SystemDynamics,2008.
    [171] J. Ryu, N.K. Moshchuk, and S.-K. Chen. Vehicle state estimation for roll controlsystem[C]. Proceedings of the2007American Control Conference,2007.
    [172] L.R. Ray. Nonlinear state and tire force estimation for advanced vehicle control[C].IEEE Trans. Control Syst.Technol.3(1),1995.
    [173] M.A. Wilkin, W.J. Manning, D.A. Crolla, and M.C. Levesly, Estimation of non-linearfriction force between tyre and road applied to a performance vehicle[C]. Proceedingsof AVEC,2006.
    [174] D.K. Kwon, K. Yi, and S. Yi. Design of roll state estimator for vehicle rolloverprevention control[C]. KSAE06-S0147(2006), pp.992–997.
    [175] K. Yi, J. Yoon, and D. Kim. Model-based estimation of vehicle rolls state for detectionof impending vehicle rollover[C]. American Control Conference, NewYork, USA,2007.
    [176] R. Rajamani, D. Piyabingkarn, J.Y. Lew, and J.A. Grogg. Algorithms for real-timeestimation of individual wheel tire-road friction coefficients[C]. Proceedings of the2006American Control Conference,2006.
    [177] K.Yi, K. Hedrick, and S. Lee. Estimation of tire-road friction using observer basedidentifiers [J]. Veh. Syst. Dyn,1999,31:223–261.
    [178]丁海涛,郭孔辉,张建伟,付皓,吕济明.汽车ESP硬件与驾驶员在回路仿真试验台的开发与应用[J].汽车工程,2006(4):346-350.
    [179] Yang Jiansen, Guo Konghui, Ding Haitao, Zhang Jianwei. HIL Research of VehicleStability Control Algorithm Based on veDYNA[C].20103rd International Conferenceon Computer and Electrical Engineering, November2010.
    [180] Yang Jiansen, Guo Konghui, Ding Haitao, Zhang Jianwei. The Application of SAEJ1939Protocol in Automobile Smart and Integrated Control System[C].2010International Conference on Computer, Mechatronics, Control and ElectronicEngineering, CMCE2010, August2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700