用户名: 密码: 验证码:
小麦赤霉病菌麦角甾醇生物合成途径中关键基因的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
麦角甾醇是真菌细胞质膜的组分,在维持真菌细胞膜的流动性、完整性以及膜上的一些蛋白功能的正常行使等方面起到了非常重要的作用。麦角甾醇生物合成途径以乙酰辅酶A为原料,经过20多步的反应形成麦角甾醇。目前已成功开发出多种麦角甾醇生物合成抑制剂(以下简称为SBIs),在临床和农业生产上得到了广泛的应用。目前对于模式生物酿酒酵母中麦角甾醇生物合成途径的的研究报道较多,但是对丝状真菌中该合成途径的研究甚少。因此,研究小麦赤霉病菌中麦角甾醇途径各元件的功能对于进一步阐明SBIs的抗药机制以及发掘该途径上其它潜在的药剂靶标具有重要的理论和现实意义。
     本研究通过基因敲除和互补的方法研究了小麦赤霉病菌麦角甾醇生物合成途径上21个ERG基因的生物学功能,并对该菌中麦角甾醇合成途径的调控元件进行了初步探索,结果发现:
     1、编码甾醇14-α脱甲基酶(DMI类杀菌剂的作用靶标)的3个同源的cyp51基因都并非小麦赤霉病菌生长和麦角甾醇生物合成所必需。敲除突变体对7种DMI类杀菌剂敏感性水平与野生型菌株相比不一,cyp51A基因敲除突变体对7种DMI类杀菌剂都变敏感;cyp51B基因敲除突变体对7种DMI类杀菌剂的敏感性没有显著变化;cyp51C基因敲除突变体对部分DMI类杀菌剂变敏感。将戊唑醇和三唑酮进行复配对防治小麦赤霉病表现出明显的增效作用。
     2、编码甾醇C-14还原酶(胺类杀菌剂的作用靶标)的2个FgERG24基因和编码甾醇C-8异构酶(胺类杀菌剂的作用靶标)的FgERG2基因也都并非小麦赤霉病菌生长和麦角甾醇生物合成必需。FgERG24B基因介导小麦赤霉病菌对胺类杀菌剂的天然抗药性,该基因缺失后突变体对3种胺类杀菌剂的抗药性水平明显降低,FgERG24A和FgERG2基因敲除突变体对胺类杀菌剂的抗药性水平与野生型菌株相当。
     3、编码甾醇C-24还原酶的FgERG4基因缺失并不致死,但敲除突变体与野生型菌株相比会发生一系列的表型变化:不能正常合成麦角甾醇、菌丝生长缓慢、分生孢子产量降低、分生孢子畸形且分隔数减少、在麦穗上的致病性显著降低、DON毒素合成量降低、对金属离子和细胞渗透及氧化压力变得敏感和对SBIs抗药性水平上升。
     4、麦角甾醇生物合成途径中角鲨烯下游的其它的14个ERG基因有8个敲除可能致死,推测对小麦赤霉病菌的生长非常重要。还有6个ERG基因获得了敲除突变体,但表型测定结果显示与野生型菌株没有明显的差异。
     5、根据酿酒酵母、白色念珠菌和烟曲霉中关于麦角甾醇生物合成途径调控元件的相关研究报道,结合小麦赤霉赤霉病菌受DMI类药剂戊唑醇处理6h后的基因组表达谱数据,在小麦赤霉病菌基因组中找到了18个可能的麦角甾醇生物合成调控基因,其中仅有一个基因敲除可能致死,其他的17个基因都获得了敲除突变体。转录调控因子FgSTE12的敲除突变体在菌落形态、产孢等方面与野生型菌株相比没有显著差异,但是在麦穗上的致病力完全丧失;但是并未发现与DMI类杀菌剂的敏感性和cyp51基因或ERG基因的表达量水平相关的调控基因。
     本研究结果表明1)小麦赤霉病菌对SBIs的抗药性机制与其他真菌有明显差异:不同的DMI药剂作用于不同的CYP51; FgErg24B调控小麦赤霉病菌对胺类杀菌剂的天然抗药性。2)小麦赤霉病菌麦角甾醇生物合成相关基因FgERG4参与小麦赤霉病菌的致病性、DON毒素合成和产孢等多种重要生理活动;8个敲除可能致死的ERG基因推测为小麦赤霉病菌生长必需的重要基因,它们可能成为潜在的杀菌剂新药靶。
Ergosterol is the major sterol component in fungal membranes and is involved in a variety of cellular functions, including cell fluidity, cell integrity and membrane-bound enzyme function. The important biochemical characteristics of ergosterol make the enzymes involved in its biosynthesis pathway attractive inhibition sites for antifungal agents. In fungi, ergosterol is synthesized from acetyl CoA through a complex pathway. The biosynthetic steps of ergosterol and the related enzymes have been well characterized in Saccharomyces cerevisiae. To date, very little information is available about the ergosterol pathway in filamentous fungi. Thus, it would be interesting to investigate functions of ergosterol biosynthesis genes in the important wheat pathogen Fusarium graminearum, which will be helpful in exploring novel drugs against this fungus.
     In this study, we investigated functions of21ERG genes involved in the post-squalene pathway of ergosterol biosynthesis in F. graminearum using a gene deletion and complementation strategy. Results of our study included five major points:
     1. Disruption mutants of three paralogous cyp51genes (cyp51A,-B, and-C) encoding sterol14-a demethylases were morphologically indistinguishable from the parent isolate on potato dextrose agar medium, which indicates that none of these genes is essential for mycelial growth. The sensitivity of cyp51A deletion mutants to seven sterol demethylation inhibitor (DMI) fungicides increased significantly compared to the parent strain, while sensitivity of cyp51C deletion mutants increased to some but not all DMIs. No change in DMI sensitivity was observed for cyp51B deletion mutants. The sensitivity of F. graminearum and F. asiaticum isolates increased significantly when subjected in vitro to a mixture of DMI fungicides triadimefon and tebuconazole as compared to the individual components.
     2. Disruption mutants of two paralogous FgERG24genes (FgERG24A and FgERG24B) did not show recognizable phenotypic changes in mycelial growth on potato dextrose agar or in virulence on wheat heads. HPLC analysis showed that the amount of ergosterol in FgERG24A or FgERG24B deletion mutants was not significantly different from that in the wild-type strain. These results indicate that neither of the two genes is essential for growth, pathogenicity or ergosterol biosynthesis in F. graminearum. FgERG24B deletion mutants exhibited significantly increased sensitivity to amine fungicides, including tridemorph, fenpropidin and spiroxamine, but not to non-amine fungicides. In contrast, FgERG24A deletion mutants did not show changed sensitivity to any amine tested.
     3. FgERG4gene encoding sterol C-24reductase, which catalyzes for the conversion of ergosta-5,7,22,24(28)-tetraenol to ergosterol in the final step of ergosterol biosynthesis. The FgERG4deletion mutant failed to synthesize ergosterol and exhibited a significant decrease in mycelial growth and conidiation, and produced abnormal conidia. In addition, the mutant showed increased sensitivity to metal cations and to various cell stresses. Surprisingly, mycelia of the FgERG4deletion mutant exhibited increased resistance to cell wall degrading enzymes, also to various sterol biosynthesis inhibitors, which is consistent with the over-expression of several ERG genes in the mutant. The FgERG4deletion mutant was impaired dramatically in virulence and produced a significantly low level of DON.
     4. Single deletion of other8ERG genes including ERG9, ERG1, ERG7, ERG25, ERG26, ERG27, ERG5B and NCP1B was lethal, which indicated that these8ERG genes could be important to fungal growth in F. graminearum; Other6ERG genes including ERG6A, ERG6B, ERG3A, ERG3B, ERG5A and NCP1A can be deleted, but their deletion mutant showed no recognizable phenotypic changes compared to wild type strain.
     5. The regulatory mechanisms of ergosterol biosynthesis in F. graminearum were also investigated, functions of18possible regulatory genes including the sterol uptake control element (upc2) homologs, genes involved in sterol regulatory element binding protein (SREBP) pathway and tebuconazole responsive transcription factors from our DeepSAGE data were characterized. Deletion of only one of these18genes was lethal and other17genes were not required for fungal growth. Transciption factor FgSTE12was required for full virulence. Direct connection between deletion of the17genes and DMI resistance or ERG gene expression level change was not observed.
     Results of our study indicate that1) Action and resistant mechanism of F. graminearum to SBIs may be different from yeasts and other filamentous fungi. Different DMI fungicides target different CYP51proteins in F. graminearum and that a mixture of DMI fungicides can result in synergistic effects; FgERG24B controls the intrinsic resistance of F. graminearum to amine fungicides.2) Genes involved in ergosterol biosynthesis including FgERG4and other8deletion lethal ERG genes are important fungal growth determinants in F. graminearum, they could become potential targets for the development of new antifungal compounds.
引文
Aguilar, P. S., Heiman, M. G., Walther, T. C., Engel, A., Schwudke, D., Gushwa, N., et al. (2010) Structure of sterol aliphatic chains affects yeast cell shape and cell fusion during mating. Proc Natl Acad Sci USA,107,4170-4175.
    al Musallam, A. A. and Radwan, S. S. (1990) Wool-colonizing micro-organisms capable of utilizing wool-lipids and fatty acids as sole sources of carbon and energy. J Appl Bacteriol,69, 806-813.
    Albertini, C. and Leroux., P. (2004) ABotiytis cinerea putative 3-keto reductase gene(ERG27) that is homologous to the mammalian 17-beta-hydroxysteroid dehydrogenase type 7 gene. Eur. J. Plant Pathol.,110,723-733.
    Alcazar-Fuoli, L., Mellado, E., Garcia-Effron, G., Lopez, J. F., Grimalt, J. O., Cuenca-Estrella, J. M., et al. (2008) Ergosterol biosynthesis pathway in Aspergillus fumigatus. Steroids,73,339-347.
    Andreasen, A. A. and Stier, T. J. (1953) Anaerobic nutrition of Saccharomyces cerevisiae. Ⅰ. Ergosterol requirement for growth in a defined medium. J Cell Physiol,41,23-36.
    Andreasen, A. A. and Stier, T. J. (1954) Anaerobic nutrition of Saccharomyces cerevisiae. Ⅱ. Unsaturated fatty acid requirement for growth in a defined medium. J Cell Physiol,43, 271-281.
    Angioni, A., Porcu, L. and Dedola, F. (2011) Determination of famoxadone, fenamidone, fenhexamid and iprodione residues in greenhouse tomatoes. Pest Management Science, n/a-n/a.
    Aoyama, Y., Noshiro, M., Gotoh, O., Imaoka, S., Funae, Y., Kurosawa, N., et al. (1996) Sterol 14-demethylase P450 (P45014DM*) is one of the most ancient and conserved P450 species. J Biochem,119,926-933.
    Arthington-Skaggs, B. A., Crowell, D. N., Yang, H., Sturley, S. L. and Bard, M. (1996) Positive and negative regulation of a sterol biosynthetic gene (ERG3) in the post-squalene portion of the yeast ergosterol pathway. FEBSLett,392,161-165.
    Arthington, B. A., Bennett, L. G., Skatrud, P. L., Guynn, C. J., Barbuch, R. J., Ulbright, C. E., et al. (1991) Cloning, disruption and sequence of the gene encoding yeast C-5 sterol desaturase. Gene,102,39-44.
    Asuncion Garcia-Sanchez, M., Martin-Rodrigues, N., Ramos, B., de Vega-Bartol, J. J., Perlin, M. H. and Diaz-Minguez, J. M. (2010) fostl2, the Fusarium oxysporum homolog of the transcription factor Stel2, is upregulated during plant infection and required for virulence. Fungal Genet Biol,47,216-225.
    Audic, S. and Claverie, J. M. (1997) The significance of digital gene expression profiles. Genome Res, 7,986-995.
    Bai, G. H. and Shaner, G (1994) Scab of Wheat-Prospects for Control. Plant Dis,78,760-766.
    Baldwin, T. K., Urban, M., Brown, N. and Hammond-Kosack, K. E. (2010) A role for topoisomerase I in Fusarium graminearum and F. culmorum pathogenesis and sporulation. Mol Plant Microbe Interact,23,566-577.
    Baloch, R. I. and Mercer, E. I. (1987) Inhibition of sterol Δ 8-Δ 7 isomerase and Δ14-reductase by fenpropimorph, tridemorph, and fenpropidin in cell-free enzyme systems from Saccharomyces cerevisiae. Phytochemistry,26,663-668.
    Bammert, G. F. and Fostel, J. M. (2000) Genome-wide expression patterns in Saccharomyces cerevisiae: comparison of drug treatments and genetic alterations affecting biosynthesis of ergosterol. Antimicrob Agents Chemother; 44,1255-1265.
    Baraldi, E., Mari, M., Chierici, E., Pondrelli, M., Bertolini, P. and Pratella, G. C. (2003) Studies on thiabendazole resistance of Penicillium expansum. Plant Pathol,52,362-370.
    Bard, M., Bruner, D. A., Pierson, C. A., Lees, N. D., Biermann, B., Frye, L., et al. (1996) Cloning and characterization of ERG25, the Saccharomyces cerevisiae gene encoding C-4 sterol methyl oxidase. Proc Natl Acad Sci USA,93,186-190.
    Bard, M. and Downing, J. F. (1981) Genetic and biochemical aspects of yeast sterol regulation involving 3-hydroxy-3-methylglutaryl coenzyme A reductase. J Gen Microbiol,125,415-420.
    Bard, M., Lees, N. D., Turi, T., Craft, D., Cofrin, L., Barbuch, R., et al. (1993) Sterol synthesis and viability of ergll (cytochrome P450 lanosterol demethylase) mutations in Saccharomyces cerevisiae and Candida albicans. Lipids,28,963-967.
    Basson, M. E., Thorsness, M. and Rine, J. (1986) Saccharomyces cerevisiae contains two functional genes encoding 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Proc Natl Acad Sci USA, 83,5563-5567.
    Bennett, J. W. and Klich, M. (2003) Mycotoxins. Clinical Microbiology Reviews,16,497-516.
    Berges, T., Guyonnet, D. and Karst, F. (1997) The Saccharomyces cerevisiae mevalonate diphosphate decarboxylase is essential for viability, and a single Leu-to-Pro mutation in a conserved sequence leads to thermosensitivity. J Bacteriol,179,4664-4670.
    Berndt, J., Boll, M., Lowel, M. and Gaumert, R. (1973) Regulation of sterol biosynthesis in yeast: induction of 3-hydroxy-3-methylglutaryl-CoA reductase by glucose. Biochem Biophys Res Commun,51,843-848.
    Binder, E. M., Tan, L. M., Chin, L. J., Handl, J. and Richard, J. (2007) Worldwide occurrence of mycotoxins in commodities, feeds and feed ingredients. Anim Feed Sci Tech,137,265-282.
    Boll, M., Lowel, M. and Berndt, J. (1980) Effect of unsaturated fatty acids on sterol biosynthesis in yeast. Biochim Biophys Acta,620,429-439.
    Brajtburg, J., Powderly, W. G., Kobayashi, G. S. and Medoff, G. (1990) Amphotericin B:current understanding of mechanisms of action. Antimicrob Agents Chemother, 34,183-188.
    Breakspear, A., Pasquali, M., Broz, K., Dong, Y. and Kistler, H. C. (2011) Npcl is involved in sterol trafficking in the filamentous fungus Fusarium graminearum. Fungal Genet Biol,48, 725-730.
    Brown, D. W., Butchko, R. A. and Proctor, R. H. (2006) Fusarium genomic resources:tools to limit crop diseases and mycotoxin contamination. Mycopathologia,162,191-199.
    Brown, M. S. and Goldstein, J. L. (1986) A receptor-mediated pathway for cholesterol homeostasis. Science,232,34-47.
    Brown, M. S. and Goldstein, J. L. (1997) The SREBP pathway:regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell,89,331-340.
    Bundock, P., den Dulk-Ras, A., Beijersbergen, A. and Hooykaas, P. J. (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J,14, 3206-3214.
    Canas-Gutierrez, G. P., Angarita-Velasquez, M. J., Restrepo-Florez, J. M., Rodriguez, P., Moreno, C. X. and Arango, R. (2009) Analysis of the CYP51 gene and encoded protein in propiconazole-resistant isolates of Mycosphaerella fijiensis. Pest Manag Sci,65,892-899.
    Cangelosi, G. A., Ankenbauer, R. G. and Nester, E. W. (1990) Sugars induce the Agrobacterium virulence genes through a periplasmic binding protein and a transmembrane signal protein. Proc Natl Acad Sci USA,87,6708-6712.
    Catty, P., de Kerchove d'Exaerde, A. and Goffeau, A. (1997) The complete inventory of the yeast Saccharomyces cerevisiae P-type transport ATPases. FEBSLett,409,325-332.
    Chang, Y. C., Bien, C. M., Lee, H., Espenshade, P. J. and Kwon-Chung, K.. J. (2007) Sre1p, a regulator of oxygen sensing and sterol homeostasis, is required for virulence in Cryptococcus neoformans. Mol Microbiol,64,614-629.
    Chen, Y., Chen, C., Wang, J., Jin, L. and Zhou, M. (2007) Genetic study on JS399-19 resistance in hyphal fusion of Fusarium graminearum by using nitrate nonutilizing mutants as genetic markers. J Genet Genomics,34,469-476.
    Chen, Y. and Zhou, M. G. (2009) Characterization of Fusarium graminearum isolates resistant to both carbendazim and a new fungicide JS399-19. Phytopathology,99,441-446.
    Chiew, Y. Y., Sullivan, P. A. and Shepherd, M. G. (1982) The effects of ergosterol and alcohols on germ-tube formation and chitin synthase in Candida albicans. Can JBiochem,60,15-20.
    Chowdhury, B., Das, S. K. and Bose, S. K. (1998) Use of resistant mutants to characterize the target of mycobacillin in Aspergillus niger membranes. Microbiology,144 (Pt 4),1123-1130.
    Chun, C. D., Liu, O. W. and Madhani, H. D. (2007) A link between virulence and homeostatic responses to hypoxia during infection by the human fungal pathogen Cryptococcus neoformans. PLoS Pathog,3, e22.
    Cools, H. J., Fraaije, B. A., Bean, T. P., Antoniw, J. and Lucas, J. A. (2007) Transcriptome profiling of the response of Mycosphaerella graminicola isolates to an azole fungicide using cDNA microarrays. Mol Plant Pathol,8,639-651.
    Crowley, J. H., Smith, S. J., Leak, F. W. and Parks, L. W. (1996) Aerobic isolation of an ERG24 null mutant of Saccharomyces cerevisiae. JBacteriol,178,2991-2993.
    Crowley, J. H., Tove, S. and Parks, L. W. (1998) A calcium-dependent ergosterol mutant of Saccharomyces cerevisiae. Curr Genet,34,93-99.
    Cuomo, C. A., Guldener, U., Xu, J. R., Trail, F., Turgeon, B. G., Di Pietro, A., et al. (2007) The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science,317,1400-1402.
    da Silva Ferreira, M. E., Malavazi, I., Savoldi, M., Brakhage, A. A., Goldman, M. H., Kim, H. S., et al. (2006) Transcriptome analysis of Aspergillus fumigatus exposed to voriconazole. Curr Genet, 50,32-44.
    Daboussi, M. J. and Capy, P. (2003) Transposable elements in filamentous fungi. Annu Rev Microbiol, 57,275-299.
    Daum, G., Lees, N. D., Bard, M. and Dickson, R. (1998) Biochemistry, cell biology and molecular biology of lipids in Saccharomyces cerevisiae. Yeast,14,1471-1510.
    Davies, B. S. and Rine, J. (2006) A role for sterol levels in oxygen sensing in Saccharomyces cerevisiae. Genetics,174,191-201.
    Davies, B. S., Wang, H. S. and Rine, J. (2005) Dual activators of the sterol biosynthetic pathway of Saccharomyces cerevisiae:similar activation/regulatory domains but different response mechanisms. Mol Cell Biol,25,7375-7385.
    De Backer, M. D., Ilyina, T., Ma, X. J., Vandoninck, S., Luyten, W. H. and Vanden Bossche, H. (2001) Genomic profiling of the response of Candida albicans to itraconazole treatment using a DNA microarray. Antimicrob Agents Chemother, 45,1660-1670.
    de Groot, M. J., Bundock, P., Hooykaas, P. J. and Beijersbergen, A. G (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol,16,839-842.
    de Waard, M. A., Andrade, A. C., Hayashi, K., Schoonbeek, H. J., Stergiopoulos, I. and Zwiers, L. H. (2006) Impact of fungal drug transporters on fungicide sensitivity, multidrug resistance and virulence. Pest Manag Sci,62,195-207.
    Debieu, D., Bach, J., Hugon, M., Malosse, C. and Leroux, P. (2001) The hydroxyanilide fenhexamid, a new sterol biosynthesis inhibitor fungicide efficient against the plant pathogenic fungus Botryotinia fuckeliana (Botrytis cinerea). Pest Manag Sci,57,1060-1067.
    Delye, C., Bousset, L. and Corio-Costet, M. F. (1998) PCR cloning and detection of point mutations in the eburicol 14alpha-demethylase (CYP51) gene from Erysiphe graminis f. sp. hordei, a "recalcitrant" fungus. Curr Genet,34,399-403.
    Delye, C., Laigret, F. and Corio-Costet, M. F. (1997) Cloning and sequence analysis of the eburicol 14alpha-demethylase gene of the obligate biotrophic grape powdery mildew fungus. Gene, 195,29-33.
    Deng, F., Allen, T. D. and Nuss, D. L. (2007) Ste 12 transcription factor homologue CpST12 is down-regulated by hypovirus infection and required for virulence and female fertility of the chestnut blight fungus Cryphonectria parasitica. Eukaryot Cell,6,235-244.
    Dimster-Denk, D. and Rine, J. (1996) Transcriptional regulation of a sterol-biosynthetic enzyme by sterol levels in Saccharomyces cerevisiae. Mol Cell Biol,16,3981-3989.
    Dixon, G., Scanlon, D., Cooper, S. and Broad, P. (1997) A reporter gene assay for fungal sterol biosynthesis inhibitors. J Steroid Biochem Mol Biol,62,165-171.
    Elion, E. A., Satterberg, B. and Kranz, J. E.(1993) FUS3 phosphorylates multiple components of the mating signal transduction cascade:evidence for STE12 and FAR1. Mol Biol Cell,4,495-510.
    Espenshade, P. J. (2006) SREBPs:sterol-regulated transcription factors. J Cell Sci,119,973-976.
    Espenshade, P. J. and Hughes, A. L. (2007) Regulation of sterol synthesis in eukaryotes. Annu Rev Genet,41,401-427.
    Ferreira, M. E., Colombo, A. L., Paulsen, I., Ren, Q., Wortman, J., Huang, J., et al. (2005) The ergosterol biosynthesis pathway, transporter genes, and azole resistance in Aspergillus fumigatus. Med Mycol,43 Suppl 1, S313-319.
    Fournier, E., Giraud, T., Albertini, C. and Brygoo, Y. (2005) Partition of the Botrytis cinerea complex in France using multiple gene genealogies. Mycologia,97,1251-1267.
    Fournier, E., Levis, C., Fortini, D., Leroux, P., Giraud, T. and Brygoo, Y. (2003) Characterization of Bc-hch, the Botiytis cinerea homolog of the Neurospora crassahet-c vegetative incompatibility locus, and its use as a population marker. Mycologia,95,251-261.
    Gaber, R. F., Copple, D. M., Kennedy, B. K., Vidal, M. and Bard, M. (1989) The yeast gene ERG6 is required for normal membrane function but is not essential for biosynthesis of the cell-cycle-sparking sterol. Mol Cell Biol,9,3447-3456.
    Gachotte, D., Barbuch, R., Gaylor, J., Nickel, E. and Bard, M. (1998) Characterization of the Saccharomyces cerevisiae ERG26 gene encoding the C-3 sterol dehydrogenase (C-4 decarboxylase) involved in sterol biosynthesis. Proc Natl Acad Sci USA,95,13794-13799.
    Gachotte, D., Sen, S. E., Eckstein, J., Barbuch, R., Krieger, M., Ray, B. D., et al. (1999) Characterization of the Saccharomyces cerevisiae ERG27 gene encoding the 3-keto reductase involved in C-4 sterol demethylation. Proc Natl Acad Sci USA,96,12655-12660.
    Geber, A., Hitchcock, C. A., Swartz, J. E., Pullen, F. S., Marsden, K. E., Kwon-Chung, K. J., et al. (1995) Deletion of the Candida glabrata ERG3 and ERG11 genes:effect on cell viability, cell growth, sterol composition, and antifungal susceptibility. Antimicrob Agents Chemother, 39, 2708-2717.
    Germann, M., Gallo, C., Donahue, T., Shirzadi, R., Stukey, J., Lang, S., et al. (2005) Characterizing sterol defect suppressors uncovers a novel transcriptional signaling pathway regulating zymosterol biosynthesis. JBiol Chem,280,35904-35913.
    Goldstein, J. L. and Brown, M. S. (1990) Regulation of the mevalonate pathway. Nature,343,425-430.
    Goldstein, J. L., DeBose-Boyd, R. A. and Brown, M. S. (2006) Protein sensors for membrane sterols. Cell,124,35-46.
    Gotoh, O. (1992) Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J Biol Chem,267, 83-90.
    Graham, T. R., Scott, P. A. and Emr, S. D. (1993) Brefeldin A reversibly blocks early but not late protein transport steps in the yeast secretory pathway. EMBO J,12,869-877.
    Guldener, U. (2006) FGDB:a comprehensive fungal genome resource on the plant pathogen Fusarium graminearum. Nucleic Acids Research,34, D456-D458.
    Hamamoto, H., Hasegawa, K., Nakaune, R., Lee, Y. J., Makizumi, Y., Akutsu, K., et al. (2000) Tandem repeat of a transcriptional enhancer upstream of the sterol 14alpha-demethylase gene (CYP51) in Penicillium digitatum. Appl Environ Microbiol,66,3421-3426.
    Hampsey, M. (1997) A review of phenotypes in Saccharomyces cerevisiae. Yeast,13,1099-1133.
    Hannon, G. J. (2002) RNA interference. Nature,418,244-251.
    Hanriot, L., Keime, C., Gay, N., Faure, C., Dossat, C., Wincker, P., et al. (2008) A combination of LongSAGE with Solexa sequencing is well suited to explore the depth and the complexity of transcriptome. BMC Genomics,9,418.
    Harding, H. P., Zhang, Y., Khersonsky, S., Marciniak, S., Scheuner, D., Kaufman, R.J., et al. (2005) Bioactive small molecules reveal antagonism between the integrated stress response and sterol-regulated gene expression. Cell Metab,2,361-371.
    Hayashi, K., Schoonbeek, H. J. and De Waard, M. A. (2003) Modulators of membrane drug transporters potentiate the activity of the DMI fungicide oxpoconazole against Botrytis cinerea. Pest Manag Sci,59,294-302.
    He, X., Zhang, B. and Tan, H. (2003) Overexpression of a sterol C-24(28) reductase increases ergosterol production in Saccharomyces cerevisiae. Biotechnol Lett,25,773-778.
    Hemmi, K., Julmanop, C., Hirata, D., Tsuchiya, E., Takemoto, J. Y. and Miyakawa, T. (1995) The physiological roles of membrane ergosterol as revealed by the phenotypes of syr1/erg3 null mutant of Saccharomyces cerevisiae. Biosci Biotechnol Biochem,59,482-486.
    Henkes, G. J., Jousset, A., Bonkowski, M., Thorpe, M. R., Scheu, S., Lanoue, A., et al. (2011) Pseudomonas fluorescens CHA0 maintains carbon delivery to Fusarium graminearum-infected roots and prevents reduction in biomass of barley shoots through systemic interactions. JExp Bot,62,4337-4344.
    Hepworth, S. R., Friesen, H. and Segall, J. (1998) NDT80 and the meiotic recombination checkpoint regulate expression of middle sporulation-specific genes in Saccharomyces cerevisiae. Mol Cell Biol,18,5750-5761.
    Hongay, C., Jia, N., Bard, M. and Winston, F. (2002) Mot3 is a transcriptional repressor of ergosterol biosynthetic genes and is required for normal vacuolar function in Saccharomyces cerevisiae. EMBO J,21,4114-4124.
    Horton, J. D., Goldstein, J. L. and Brown, M. S. (2002) SREBPs:activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest,109,1125-1131.
    Horton, J. D., Shah, N. A., Warrington, J. A., Anderson, N. N., Park, S. W., Brown, M. S., et al. (2003) Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc Natl Acad Sci USA,100,12027-12032.
    Hou, Z., Xue, C., Peng, Y., Katan, T., Kistler, H. C. and Xu, J. R. (2002) A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection. Mol Plant Microbe Interact,15,1119-1127.
    Houten, S. M. and Waterham, H. R. (2001) Nonorthologous gene displacement of phosphomevalonate kinase. Mol Genet Metab,72,273-276.
    Hughes, A. L., Lee, C. Y., Bien, C. M. and Espenshade, P. J. (2007) 4-Methyl sterols regulate fission yeast SREBP-Scap under low oxygen and cell stress. JBiol Chem,282,24388-24396.
    Hughes, A. L., Todd, B. L. and Espenshade, P. J. (2005) SREBP pathway responds to sterols and functions as an oxygen sensor in fission yeast. Cell,120,831-842.
    Jackson, C. J., Lamb, D. C., Manning, N. J., Kelly, D. E. and Kelly, S. L. (2003) Mutations in Saccharomyces cerevisiae sterol C5-desaturase conferring resistance to the CYP51 inhibitor fluconazole. Biochem Biophys Res Commun,309,999-1004.
    Jandrositz, A., Turnowsky, F. and Hogenauer, G. (1991) The gene encoding squalene epoxidase from Saccharomyces cerevisiae:cloning and characterization. Gene,107,155-160.
    Jenczmionka, N. J., Maier, F. J., Losch, A. P. and Schafer, W. (2003) Mating, conidiation and pathogenicity of Fusarium graminearum, the main causal agent of the head-blight disease of wheat, are regulated by the MAP kinase gpmkl. Curr Genet,43,87-95.
    Jensen-Pergakes, K. L., Kennedy, M. A., Lees, N. D., Barbuch, R., Koegel, C. and Bard, M. (1998) Sequencing, disruption, and characterization of the Candida albicans sterol methyltransferase (ERG6) gene:drug susceptibility studies in erg6 mutants. Antimicrob Agents Chemother,42, 1160-1167.
    Jiang, J., Yun, Y., Fu, J., Shim, W.-B. and Ma, Z. (2011) Involvement of a putative response regulator FgRrg-1 in osmotic stress response, fungicide resistance and virulence in Fusarium graminearum. Molecular Plant Pathology,12,425-436.
    Jiang, L., Yang, J., Fan, F., Zhang, D. and Wang, X. (2010) The type 2C protein phosphatase FgPtcl p of the plant fungal pathogen Fusarium graminearum is involved in lithium toxicity and virulence. Mol Plant Pathol,11,277-282.
    Jongeneel, C. V., Iseli, C., Stevenson, B. J., Riggins, G. J., Lal, A., Mackay, A., et al. (2003) Comprehensive sampling of gene expression in human cell lines with massively parallel signature sequencing. Proc Natl Acad Sci U S A,100,4702-4705.
    Kagan, I. A., Michel, A., Prause, A., Scheffler, B. E., Pace, P. and Duke, S. O. (2005) Gene transcription profiles of Saccharomyces cerevisiae after treatment with plant protection fungicides that inhibit ergosterol biosynthesis. Pesticide Biochemistry and Physiology,82, 133-153.
    Kalb, V. F., Woods, C. W., Turi, T. G., Dey, C. R., Sutter, T. R. and Loper, J. C. (1987) Primary structure of the P450 lanosterol demethylase gene from Saccharomyces cerevisiae. DNA,6,529-537.
    Kang, Z. and Buchenauer, H. (2002) Studies on the infection process of Fusarium culmorum in wheat spikes:Degradation of host cell wall components and localization of trichothecene toxins in infected tissue. Eur JPlant Pathol,108,653-660.
    Kelly, R., Miller, S. M., Lai, M. H. and Kirsch, D. R. (1990) Cloning and characterization of the 2,3-oxidosqualene cyclase-coding gene of Candida albicans. Gene,87,177-183.
    Kelly, S. L., Lamb, D. C., Corran, A. J., Baldwin, B. C. and Kelly, D. E. (1995) Mode of action and resistance to azole antifungals associated with the formation of 14 alpha-methylergosta-8,24(28)-dien-3 beta,6 alpha-diol. Biochem Biophys Res Commun,207, 910-915.
    Kennedy, M. A., Barbuch, R. and Bard, M. (1999) Transcriptional regulation of the squalene synthase gene (ERG9) in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta,1445,110-122.
    Kennedy, M. A., Johnson, T. A., Lees, N. D., Barbuch, R., Eckstein, J. A. and Bard, M. (2000) Cloning and sequencing of the Candida albicans C-4 sterol methyl oxidase gene (ERG25) and expression of an ERG25 conditional lethal mutation in Saccharomyces cerevisiae. Lipids,35, 257-262.
    Khan, R., Tan, R., Mariscal, A. G. and Straney, D. (2003) A binuclear zinc transcription factor binds the host isoflavonoid-responsive element in a fungal cytochrome p450 gene responsible for detoxification. Mol Microbiol,49,117-130.
    Kim, H. B., Schaller, H., Goh, C. H., Kwon, M., Choe, S., An, C. S., et al. (2005) Arabidopsis cyp51 mutant shows postembryonic seedling lethality associated with lack of membrane integrity. Plant Physiol,138,2033-2047.
    Kim, J.-H., Kim, H.-W., Heo, D.-H., Chang, M., Baek, I.-J. and Yun, C.-W. (2009) FgEnd1 is a putative component of the endocytic machinery and mediates ferrichrome uptake in F. graminearum. Current Genetics,55,593-600.
    Koenraadt, H., Somerville, S. C. and Jones, A. L. (1992) Characterization of mutations in the beta-tubulin gene of benomyl-resistant field strains of Venturia inaequalis and other plant pathogenic fungi. Phytopathology,82,1348-1354.
    Kornblatt, J. A. and Rudney, H. (1971a) Two forms of acetoacetyl coenzyme A thiolase in yeast. Ⅰ. Separation and properties. JBiol Chem,246,4417-4423.
    Kornblatt, J. A. and Rudney, H. (1971b) Two forms of acetoacetyl coenzyme A thiolase in yeast. Ⅱ. Intracellular location and relationship to growth. J Biol Chem,246,4424-4430.
    Kumar, S., Nei, M., Dudley, J. and Tamura, K. (2008) MEGA:a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform,9,299-306.
    Lai, M. H., Bard, M., Pierson, C. A., Alexander, J. F., Goebl, M., Carter, G. T., et al. (1994) The identification of a gene family in the Saccharomyces cerevisiae ergosterol biosynthesis pathway. Gene,140,41-49.
    Landl, K. M., Klosch, B. and Turnowsky, F. (1996) ERG1, encoding squalene epoxidase, is located on the right arm of chromosome Ⅶ of Saccharomyces cerevisiae. Yeast,12,609-613.
    Lanoue, A., Burlat, V., Henkes, G. J., Koch, I., Schurr, U. and Rose, U. S. (2010) De novo biosynthesis of defense root exudates in response to Fusarium attack in barley. New Phytol,185,577-588.
    Leber, R., Landl, K., Zinser, E., Ahorn, H., Spok, A., Kohlwein, S. D., et al. (1998) Dual localization of squalene epoxidase, Erglp, in yeast reflects a relationship between the endoplasmic reticulum and lipid particles. Mol Biol Cell,9,375-386.
    Lees, N. D., Bard, M. and Kirsch, D. R. (1999) Biochemistry and molecular biology of sterol synthesis in Saccharomyces cerevisiae. Crit Rev Biochem Mol Biol,34,33-47.
    Lees, N. D., Skaggs, B., Kirsch, D. R. and Bard, M. (1995) Cloning of the late genes in the ergosterol biosynthetic pathway of Saccharomyces cerevisiae--a review. Lipids,30,221-226.
    Leroux, P., Albertini, C., Gautier, A., Gredt, M. and Walker, A. S. (2007) Mutations in the CYP51 gene correlated with changes in sensitivity to sterol 14 alpha-demethylation inhibitors in field isolates of Mycosphaerella graminicola. Pest Manag Sci,63,688-698.
    Li, Y., Wang, C., Liu, W., Wang, G., Kang, Z., Kistler, H. C., et al. (2011) The HDF1 histone deacetylase gene is important for conidiation, sexual reproduction, and pathogenesis in Fusarium graminearum. Mol Plant Microbe Interact,24,487-496.
    Liu, S. M., Chen, Y., Yu, J. J., Chen, C. J., Wang, J. X. and Zhou, M. G. (2010a) Transfer of the beta-tubulin gene of Botrytis cinerea with resistance to carbendazim into Fusarium graminearum. Pest Manag Sci,66,482-489.
    Liu, X., Tang, W. H., Zhao, X. M. and Chen, L. (2010b) A network approach to predict pathogenic genes for Fusarium graminearum. PLoS One,5.
    Liu, X., Yin, Y., Wu, J., Jiang, J. and Ma, Z. (2010c) Identification and Characterization of Carbendazim-Resistant Isolates of Gibberella zeae. Plant Dis,94,1137-1142.
    Liu, X., Yu, F., Schnabel, G., Wu, J., Wang, Z. and Ma, Z. (2011) Paralogous cyp51 genes in Fusarium graminearum mediate differential sensitivity to sterol demethylation inhibitors. Fungal Genetics and Biology,48,113-123.
    Liu, X. H., Lu, J. P., Zhang, L., Dong, B., Min, H. and Lin, F. C. (2007) Involvement of a Magnaporthe grisea serine/threonine kinase gene, MgATG1, in appressorium turgor and pathogenesis. Eukaiyot Cell,6,997-1005.
    Livak, K. J. and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods,25,402-408.
    Lorenz, R. T. and Parks, L. W. (1991) Physiological effects of fenpropimorph on wild-type Saccharomyces cerevisiae and fenpropimorph-resistant mutants. Antimicrob Agents Chemothei; 35,1532-1537.
    Lu, S. W., Kroken, S., Lee, B. N., Robbertse, B., Churchill, A. C., Yoder, O. C., et al. (2003) A novel class of gene controlling virulence in plant pathogenic ascomycete fungi. Proc Natl Acad Sci USA,100,5980-5985.
    Luo, C. X. and Schnabel, G. (2008) The cytochrome P450 lanosterol 14alpha-demethylase gene is a demethylation inhibitor fungicide resistance determinant in Monilinia fructicola field isolates from Georgia. Appl Environ Microbiol,74,359-366.
    Lupetti, A., Danesi, R., Campa, M., Del Tacca, M. and Kelly, S. (2002) Molecular basis of resistance to azole antifungals. Trends Mol Med,8,76-81.
    Lysoe, E., Pasquali. M., Breakspear. A. and Kistler, H. C. (2011) The Transcription Factor FgStuAp Influences Spore Development, Pathogenicity, and Secondary Metabolism in Fusarium graminearum. Molecular Plant-Microbe Interactions,24,54-67.
    M'Baya, B., Fegueur, M., Servouse, M. and Karst, F. (1989) Regulation of squalene synthetase and squalene epoxidase activities in Saccharomyces cerevisiae. Lipids,24,1020-1023.
    Ma, Z., Proffer, T. J., Jacobs, J. L. and Sundin, G. W. (2006) Overexpression of the 14alpha-demethylase target gene (CYP51) mediates fungicide resistance in Blumeriella jaapii. Appl Environ Microbiol,72,2581-2585.
    Ma, Z., Yoshimura, M. A. and Michailides, T. J. (2003) Identification and characterization of benzimidazole resistance in Monilinia fructicola from stone fruit orchards in California. Appl Environ Microbiol,69,7145-7152.
    MacPherson, S., Akache, B., Weber, S., De Deken, X., Raymond, M. and Turcotte, B. (2005) Candida albicans zinc cluster protein Upc2p confers resistance to antifungal drugs and is an activator of ergosterol biosynthetic genes. Antimicrob Agents Chemother, 49,1745-1752.
    MacPherson, S., Larochelle, M. and Turcotte, B. (2006) A fungal family of transcriptional regulators: the zinc cluster proteins. Microbiol Mol Biol Rev,70,583-604.
    MacRae, W. D., Buxton, F. P., Sibley, S., Garven, S., Gwynne, D. I., Arst, H. N., Jr., et al. (1993) Characterization of an Aspergillus nidulans genomic DNA fragment conferring phosphate-non-repressible acid-phosphatase activity. Gene,130,247-251.
    Marcireau, C., Guilloton, M. and Karst, F. (1990) In vivo effects of fenpropimorph on the yeast Saccharomyces cerevisiae and determination of the molecular basis of the antifungal property. Antimicrob Agents Chemother,34,989-993.
    Marcireau, C., Guyonnet, D. and Karst, F. (1992) Construction and growth properties of a yeast strain defective in sterol 14-reductase. Curr Genet,22,267-272.
    Marisco, G., Saito, S. T., Ganda, I. S., Brendel, M. and Pungartnik, C. (2011) Low ergosterol content in yeast adhl mutant enhances chitin maldistribution and sensitivity to paraquat-induced oxidative stress. Yeast,28,363-373.
    Matsuda, M., Korn, B. S., Hammer, R. E., Moon, Y. A., Komuro, R., Horton, J. D., et al. (2001) SREBP cleavage-activating protein (SCAP) is required for increased lipid synthesis in liver induced by cholesterol deprivation and insulin elevation. Genes Dev,15,1206-1216.
    Matsuoka, S., Sagami, H., Kurisaki, A. and Ogura, K. (1991) Variable product specificity of microsomal dehydrodolichyl diphosphate synthase from rat liver. J Biol Chem,266, 3464-3468.
    McDonald, T., Brown, D., Keller, N. P. and Hammond, T. M. (2005) RNA silencing of mycotoxin production in Aspergillus and Fusarium species. Mol Plant Microbe Interact,18,539-545.
    McGrath, M. T., Shishkoff, N. (2001) Resistance to triadimefon and benomyl:Dynamics and impact on managing cucurbit powdery mildew. Plant Dis,85,147-154.
    McMullen, M., Jones, R. and Gallenberg, D. (1997) Scab of wheat and barley:A re-emerging disease of devastating impact. Plant Dis,81,1340-1348.
    Mellado, E., Diaz-Guerra, T. M., Cuenca-Estrella, M. and Rodriguez-Tudela, J. L. (2001) Identification of two different 14-alpha sterol demethylase-related genes (cyp51 A and cyp51B) in Aspergillus fumigatus and other Aspergillus species. J Clin Microbiol,39,2431-2438.
    Mellado, E., Garcia-Effron, G., Buitrago, M. J., Alcazar-Fuoli, L., Cuenca-Estrella, M. and Rodriguez-Tudela, J. L. (2005) Targeted gene disruption of the 14-alpha sterol demethylase (cyp51 A) in Aspergillus fumigatus and its role in azole drug susceptibility. Antimicrob Agents Chemother,49,2536-2538.
    Mercer, E. I. (1991) Sterol biosynthesis inhibitors:their current status and modes of action. Lipids,26, 584-597.
    Merhej, J., Richard-Forget, F. and Barreau, C. (2011a) The pH regulatory factor Pacl regulates Tri gene expression and trichothecene production in Fusarium graminearum. Fungal Genet Biol,48, 275-284.
    Merhej, J., Urban, M., Dufresne, M., Hammond-Kosack, K. E., Richard-Forget, F. and Barreau, C. (2011b) The velvet gene, FgVe1, affects fungal development and positively regulates trichothecene biosynthesis and pathogenicity in Fusarium graminearum. Molecular Plant Pathology,112-117.
    Michielse, C. B., Hooykaas, P. J., van den Hondel, C. A. and Ram, A. F. (2005) Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Current Genetics,48,1-17.
    Mishra, N. C. (1977) Characterization of the new osmotic mutants (os) which originated during genetic transformation in Neurospora crassa. Genet Res,29,9-19.
    Montanes, F. M., Pascual-Ahuir, A. and Proft, M. (2011) Repression of ergosterol biosynthesis is essential for stress resistance and is mediated by the Hog1 MAP kinase and the Mot3 and Roxl transcription factors. Molecular Microbiology,79,1008-1023.
    Mullins, E. D., Chen, X., Romaine, P., Raina, R., Geiser, D. M. and Kang, S. (2001) Agrobacterium-Mediated Transformation of Fusarium oxysporum:An Efficient Tool for Insertional Mutagenesis and Gene Transfer. Phytopathology,91,173-180.
    Nakaune, R., Adachi, K., Nawata, O., Tomiyama, M., Akutsu, K. and Hibi, T. (1998) A novel ATP-binding cassette transporter involved in multidrug resistance in the phytopathogenic fungus Penicillium digitatum. Appl Environ Microbiol,64,3983-3988.
    Nemec, T. and Jernejc, K. (2002) Influence of Tween 80 on lipid metabolism of an Aspergillus niger strain. Appl Biochem Biotechnol,101,229-238.
    Nganje. W. E. K. S., Wilson WW, Leistritz FL, Bangsund DA. and North Dakota State University. Dept. of Agribusiness and Applied Economics. (2004) Economic impacts of fusarium head blight in wheat and barley:1993-2001. Fargo, ND:Dept. of Agribusiness and Applied Economics, Agricultural Experiment Station, North Dakota State University.
    Nguyen, L. N., Bormann, J., Le, G. T., Starkel, C., Olsson, S., Nosanchuk, J. D., et al. (2011) Autophagy-related lipase FgATG15 of Fusarium graminearum is important for lipid turnover and plant infection. Fungal Genet Biol,48,217-224.
    Nielsen, K. L., Hogh, A. L. and Emmersen, J. (2006) DeepSAGE--digital transcriptomics with high sensitivity, simple experimental protocol and multiplexing of samples. Nucleic Acids Res,34, e133.
    Nohturfft, A., Yabe, D., Goldstein, J. L., Brown, M. S. and Espenshade, P. J. (2000) Regulated step in cholesterol feedback localized to budding of SCAP from ER membranes. Cell,102,315-323.
    O'Donnell, K., Ward, T. J., Geiser, D. M., Corby Kistler, H. and Aoki, T. (2004) Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genet Biol,41,600-623.
    Oliver, B. G., Song, J. L., Choiniere, J. H. and White, T. C. (2007) cis-Acting elements within the Candida albicans ERG11 promoter mediate the azole response through transcription factor Upc2p. Eukaryot Cell,6,2231-2239.
    Olson, R. E. and Rudney, H. (1983) Biosynthesis of ubiquinone. Vitam Horm,40,1-43.
    Palani, P. V. and Lalithakumari, D. (1999) Resistance of Venturia inaequalis to the sterol biosynthesis-inhibiting fungicide, penconazole[1-(2-(2,4-dichlorophenyl) pentyl)-1H-1,2,4-triazole]. Mycol. Res.,9,1157-1164.
    Palermo, L. M., Leak, F. W., Tove, S. and Parks, L. W. (1997) Assessment of the essentiality of ERG genes late in ergosterol biosynthesis in Saccharomyces cerevisiae. Curr Genet,32,93-99.
    Park, G., Bruno, K. S., Staiger, C. J., Talbot, N. J. and Xu, J. R. (2004) Independent genetic mechanisms mediate turgor generation and penetration peg formation during plant infection in the rice blast fungus. Mol Microbiol,53,1695-1707.
    Parks, L. W. (1978) Metabolism of sterols in yeast. CRC Crit Rev Microbiol,6,301-341.
    Parry, D. W., Jenkinson, P. and Mcleod, L. (1995) Fusarium Ear Blight (Scab) in Small-Grain Cereals-a Review. Plant Pathol,44,207-238.
    Pierce, M., Benjamin, K. R., Montano, S. P., Georgiadis, M. M., Winter, E. and Vershon, A. K. (2003) Sum1 and Ndt80 proteins compete for binding to middle sporulation element sequences that control meiotic gene expression. Mol Cell Biol,23,4814-4825.
    Prendergast, J. A., Singer, R. A., Rowley, N., Rowley, A., Johnston, G. C., Danos, M., et al. (1995) Mutations sensitizing yeast cells to the start inhibitor nalidixic acid. Yeast,11,537-547.
    Proctor, R. H., Hohn, T. M. and McCormick, S. P. (1995) Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Mol Plant Microbe Interact,8, 593-601.
    Radhakrishnan, A., Sun, L. P., Kwon, H. J., Brown, M. S. and Goldstein, J. L. (2004) Direct binding of cholesterol to the purified membrane region of SCAP:mechanism for a sterol-sensing domain. Mol Cell,15,259-268.
    Ramamoorthy, V., Zhao, X., Snyder, A. K., Xu, J. R. and Shah, D. M. (2007) Two mitogen-activated protein kinase signalling cascades mediate basal resistance to antifungal plant defensins in Fusarium graminearum. Cell Microbiol,9,1491-1506.
    Rawson, R. B., DeBose-Boyd, R., Goldstein, J. L. and Brown, M. S. (1999) Failure to cleave sterol regulatory element-binding proteins (SREBPs) causes cholesterol auxotrophy in Chinese hamster ovary cells with genetic absence of SREBP cleavage-activating protein. J Biol Chem, 274,28549-28556.
    Raychaudhuri, S. and Prinz, W. A. (2006) Uptake and trafficking of exogenous sterols in Saccharomyces cerevisiae. Biochem Soc Trans,34,359-362.
    Reimann, S. and Deising, H. B. (2005) Inhibition of efflux transporter-mediated fungicide resistance in Pyrenophora tritici-repentis by a derivative of 4'-hydroxyflavone and enhancement of fungicide activity. Appl Environ Microbiol,71,3269-3275.
    Robinson, G. W., Tsay, Y. H., Kienzle, B. K., Smith-Monroy, C. A. and Bishop, R. W. (1993) Conservation between human and fungal squalene synthetases:similarities in structure, function, and regulation. Mol Cell Biol,13,2706-2717.
    Rodriguez, R. J., Low, C., Bottema, C. D. and Parks, L. W. (1985) Multiple functions for sterols in Saccharomyces cerevisiae. Biochim Biophys Acta,837,336-343.
    Romualdi, C., Bortoluzzi, S., D'Alessi, F. and Danieli, G. A. (2003) IDEG6:a web tool for detection of differentially expressed genes in multiple tag sampling experiments. Physiol Genomics,12, 159-162.
    Rosenfeld, E. and Beauvoit, B. (2003) Role of the non-respiratory pathways in the utilization of molecular oxygen by Saccharomyces cerevisiae. Yeast,20,1115-1144.
    Ryder, N. S. (1991) Squalene epoxidase as a target for the allylamines. Biochem Soc Trans,19, 774-777.
    Sanglard, D., Ischer, F., Parkinson, T., Falconer, D. and Bille, J. (2003) Candida albicans mutations in the ergosterol biosynthetic pathway and resistance to several antifungal agents. Antimicrob Agents Chemother,47,2404-2412.
    Schmidt, C. L., Grey, M., Schmidt, M., Brendel, M. and Henriques, J. A. (1999) Allelism of Saccharomyces cerevisiae genes PSO6, involved in survival after 3-CPs+UVA induced damage, and ERG3, encoding the enzyme sterol C-5 desaturase. Yeast,15,1503-1510.
    Schnabel, G. and Jones, A. L. (2001) The 14a-demethylase (CYP51 A) gene is overexpressed in Venturia inaequalis strains resistant to myclobutanil. Phytopathology,91,102-110.
    Schrick, K., Mayer, U., Horrichs, A., Kuhnt, C., Bellini, C., Dangl, J., et al. (2000) FACKEL is a sterol C-14 reductase required for organized cell division and expansion in Arabidopsis embryogenesis. Genes Dev,14,1471-1484.
    Sellam, A., Askew, C., Epp, E., Tebbji, F., Mullick, A., Whiteway, M., et al. (2010) Role of transcription factor CaNdt80p in cell separation, hyphal growth, and virulence in Candida albicans. Eukaiyot Cell,9,634-644.
    Sellam, A., Tebbji, F. and Nantel, A. (2009) Role of Ndt80p in sterol metabolism regulation and azole resistance in Candida albicans. Eukaryot Cell,8,1174-1183.
    Seong, K. Y., Pasquali, M., Zhou, X., Song, J., Hilburn, K., McCormick, S., et al. (2009) Global gene regulation by Fusarium transcription factors Tri6 and Tri10 reveals adaptations for toxin biosynthesis. Mol Microbiol,72,354-367.
    Servouse, M. and Karst, F. (1986) Regulation of early enzymes of ergosterol biosynthesis in Saccharomyces cerevisiae. Biochem J,240,541-547.
    Shah Alam Bhuiyan, M., Eckstein, J., Barbuch, R. and Bard, M. (2007) Synthetically lethal interactions involving loss of the yeast ERG24:the sterol C-14 reductase gene. Lipids,42,69-76.
    Shianna, K. V., Dotson, W. D., Tove, S. and Parks, L. W. (2001) Identification of a UPC2 homolog in Saccharomyces cerevisiae and its involvement in aerobic sterol uptake. JBacteriol,183, 830-834.
    Shim, W. B., Sagaram, U. S., Choi, Y. E., So, J., Wilkinson, H. H. and Lee, Y. W. (2006) FSR1 is essential for virulence and female fertility in Fusarium verticillioides and F. graminearum. Mol Plant Microbe Interact,19,725-733.
    Silve, S., Leplatois, P., Josse,A., Dupuy, P. H., Lanau, C., Kaghad, M., et al. (1996) The immunosuppressant SR 31747 blocks cell proliferation by inhibiting a steroid isomerase in Saccharomyces cerevisiae. Mol Cell Biol,16,2119-2121.
    Silver, P. M., Oliver, B. G. and White, T. C. (2004) Role of Candida albicans transcription factor Upc2p in drug resistance and sterol metabolism. Eukaryot Cell,3,1391-1397.
    Skaggs, B. A., Alexander, J. F., Pierson, C. A., Schweitzer, K. S., Chun, K. T., Koegel, C., et al. (1996) Cloning and characterization of the Saccharomyces cerevisiae C-22 sterol desaturase gene, encoding a second cytochrome P-450 involved in ergosterol biosynthesis. Gene,169,105-109.
    Slaven, J. W., Anderson, M. J., Sanglard, D., Dixon, G. K., Bille, J., Roberts,I. S., et al. (2002) Increased expression of a novel Aspergillus fumigatus ABC transporter gene, atrF, in the presence of itraconazole in an itraconazole resistant clinical isolate. Fungal Genet Biol,36, 199-206.
    Smith, S. J., Crowley, J. H. and Parks, L. W. (1996) Transcriptional regulation by ergosterol in the yeast Saccharomyces cerevisiae. Mol Cell Biol,16,5427-5432.
    Smith, S. J. and Parks, L. W. (1993) The ERGS gene in Saccharomyces cerevisiae is required for the utilization of respiratory substrates and in heme-deficient cells. Yeast,9,1177-1187.
    Son, H., Seo, Y. S., Min, K., Park, A. R., Lee, J., Jin, J. M., et al. (2011) A phenome-based functional analysis of transcription factors in the cereal head blight fungus, Fusarium graminearum. PLoS Pathog,7, e1002310.
    Speijers, G. J. and Speijers, M. H. (2004) Combined toxic effects of mycotoxins. Toxicol Lett,153, 91-98.
    Stephens, A. E., Gardiner, D. M., White, R. G., Munn, A. L. and Manners, J. M. (2008) Phases of infection and gene expression of Fusarium graminearum during crown rot disease of wheat. Mol Plant Microbe Interact,21,1571-1581.
    Sun, C., Zhao, X. M., Tang, W. and Chen, L. (2010) FGsub:Fusarium graminearum protein subcellular localizations predicted from primary structures. BMC Syst Biol,4 Suppl 2, S12.
    t Hoen, P. A., Ariyurek, Y., Thygesen, H. H., Vreugdenhil, E., Vossen, R. H., de Menezes, R. X., et al. (2008) Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms. Nucleic Acids Res,36, e141.
    Taguchi, N., Takano, Y., Julmanop, C., Wang, Y., Stock, S., Takemoto, J., et al. (1994) Identification and analysis of the Saccharomyces cerevisiae SYR1 gene reveals that ergosterol is involved in the action of syringomycin. Microbiology,140 (Pt 2),353-359.
    Tedford, K., Kim, S., Sa, D., Stevens, K. and Tyers, M. (1997) Regulation of the mating pheromone and invasive growth responses in yeast by two MAP kinase substrates. Curr Biol,7,228-238.
    Tiedje, C., Holland, D. G., Just, U. and Hofken, T. (2007) Proteins involved in sterol synthesis interact with Ste20 and regulate cell polarity. J Cell Sci,120,3613-3624.
    Todd, B. L., Stewart, E. V., Burg, J. S., Hughes, A. L. and Espenshade, P. J. (2006) Sterol regulatory element binding protein is a principal regulator of anaerobic gene expression in fission yeast. Mol Cell Biol,26,2817-2831.
    Todd, R. B. and Andrianopoulos, A. (1997) Evolution of a fungal regulatory gene family:the Zn(Ⅱ)2Cys6 binuclear cluster DNA binding motif. Fungal Genet Biol,21,388-405.
    Tokai, T., Koshino, H., Takahashi-Ando, N., Sato, M., Fujimura, M. and Kimura, M. (2007) Fusarium Tri4 encodes a key multifunctional cytochrome P450 monooxygenase for four consecutive oxygenation steps in trichothecene biosynthesis. Biochem Biophys Res Commun,353, 412-417.
    Tontonoz, P., Kim, J. B., Graves, R. A. and Spiegelman, B. M. (1993) ADD1:a novel helix-loop-helix transcription factor associated with adipocyte determination and differentiation. Mol Cell Biol, 13,4753-4759.
    Trail, F. (2009) For blighted waves of grain:Fusarium graminearum in the postgenomics era. Plant Physiol,149,103-110.
    Trail, F., Xu, J. R., San Miguel, P., Halgren, R. G. and Kistler, H. C. (2003) Analysis of expressed sequence tags from Gibberella zeae (anamorph Fusarium graminearum). Fungal Genet Biol, 38,187-197.
    Trocha, P. J. and Sprinson, D. B. (1976) Location and regulation of early enzymes of sterol biosynthesis in yeast. Arch Biochem Biophys,174,45-51.
    Tsay, Y. H. and Robinson, G. W. (1991) Cloning and characterization of ERG8, an essential gene of Saccharomyces cerevisiae that encodes phosphomevalonate kinase. Mol Cell Biol,11, 620-631.
    Tsuji, G., Fujii, S., Tsuge, S., Shiraishi, T. and Kubo, Y. (2003) The Colletotrichum lagenariu Stel2-like gene CST1 is essential for appressorium penetration. Mol Plant Microbe Interact,16,315-325.
    Valachovic, M., Bareither, B. M., Shah Alam Bhuiyan, M., Eckstein, J., Barbuch, R., Balderes, D., et al. (2006) Cumulative mutations affecting sterol biosynthesis in the yeast Saccharomyces cerevisiae result in synthetic lethality that is suppressed by alterations in sphingolipid profiles. Genetics,173,1893-1908.
    Vik, A. and Rine, J. (2001) Upc2p and Ecm22p, dual regulators of sterol biosynthesis in Saccharomyces cerevisiae. Mol Cell Biol,21,6395-6405.
    Voigt, C. A., Schafer, W. and Salomon, S. (2005) A secreted lipase of Fusarium graminearum is a virulence factor required for infection of cereals. Plant J,42,364-375.
    Wang, C, Zhang, S., Hou, R., Zhao, Z., Zheng, Q., Xu, Q., et al. (2011) Functional analysis of the kinome of the wheat scab fungus Fusarium graminearum. PLoS Pathog,7, e1002460.
    Watson, P. F., Rose, M. E., Ellis, S. W., England, H. and Kelly, S. L. (1989) Defective sterol C5-6 desaturation and azole resistance:a new hypothesis for the mode of action of azole antifungals. Biochem Biophys Res Commun,164,1170-1175.
    Watson, P. F., Rose, M. E. and Kelly, S. L. (1988) Isolation and analysis of ketoconazole resistant mutants of Saccharomyces cerevisiae. JMed Vet Mycol,26,153-162.
    Weinstein, J. D., Branchaud, R., Beale, S. I., Bement, W. J. and Sinclair, P. R. (1986) Biosynthesis of the farnesyl moiety of heme a from exogenous mevalonic acid by cultured chick liver cells. Arch Biochem Biophys,245,44-50.
    Welihinda, A. A., Beavis, A. D. and Trumbly, R. J. (1994) Mutations in LIS1 (ERG6) gene confer increased sodium and lithium uptake in Saccharomyces cerevisiae. Biochim Biophys Acta, 1193,107-117.
    Wendland, J. (2003) PCR-based methods facilitate targeted gene manipulations and cloning procedures. Curr Genet,44,115-123.
    White, T. C. and Silver, P. M. (2005) Regulation of sterol metabolism in Candida albicans by the UPC2 gene. Biochem Soc Trans,33,1215-1218.
    Wilcox, L. J., Balderes, D. A., Wharton, B., Tinkelenberg, A. H., Rao, G. and Sturley, S. L. (2002) Transcriptional profiling identifies two members of the ATP-binding cassette transporter superfamily required for sterol uptake in yeast. J Biol Chem,277,32466-32472.
    Willger, S. D., Puttikamonkul, S., Kim, K. H., Burritt, J. B., Grahl, N., Metzler, L. J., et al. (2008) A sterol-regulatory element binding protein is required for cell polarity, hypoxia adaptation, azole drug resistance, and virulence in Aspergillus fumigatus. PLoS Pathog,4, e1000200.
    Wodicka, L., Dong, H., Mittmann, M., Ho, M. H. and Lockhart, D. J. (1997) Genome-wide expression monitoring in Saccharomyces cerevisiae. Nat Biotechnol,15,1359-1367.
    Wong, P., Walter, M., Lee, W., Mannhaupt, G., Munsterkotter, M., Mewes, H. W., et al. (2010) FGDB: revisiting the genome annotation of the plant pathogen Fusarium graminearum. Nucleic Acids Research,39, D637-D639.
    Xiang, Q. and Glass, N. L. (2002) Identification of vib-1, a locus involved in vegetative incompatibility mediated by het-c in Neurospora crassa. Genetics,162,89-101.
    Xiong, Q., Hassan, S. A., Wilson, W. K., Han, X. Y., May, G. S., Tarrand, J. J., et al. (2005) Cholesterol import by Aspergillus fumigatus and its influence on antifungal potency of sterol biosynthesis inhibitors. Antimicrob Agents Chemother,49,518-524.
    Xu, X. and Nicholson, P. (2009) Community ecology of fungal pathogens causing wheat head blight. Annu Rev Phytopathol,47,83-103.
    Yan, L., Chen, J., Zhang, C. and Ma, Z. (2008a) Molecular characterization of benzimidazole-resistant isolates of Cladosporium fulvum. FEMS Microbiol Lett,278,242-248.
    Yan, L., Yang, Q., Zhou, Y., Duan, X. and Ma, Z. (2009) A real-time PCR assay for quantification of the Y136F allele in the CYP51 gene associated with Blumeria graminis f.sp. tritici resistance to sterol demethylase inhibitors. Crop Prot,28,376-380.
    Yan, L., Zhang, J., Li, M., Cao, Y., Xu, Z., Gao, P., et al. (2008b) DNA microarray analysis of fluconazole resistance in a laboratory Candida albicans strain. Acta Biochim Biophys Sin (Shanghai),40,1048-1060.
    Yang, T., Espenshade, P. J., Wright, M. E., Yabe, D., Gong, Y., Aebersold, R., et al. (2002) Crucial step in cholesterol homeostasis:sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell,110,489-500.
    Yin, Y., Liu, X., Li, B. and Ma, Z. (2009) Characterization of Sterol Demethylation Inhibitor-Resistant Isolates of Fusarium asiaticum and F. graminearum Collected from Wheat in China. Phytopathology,99,487-497.
    Yin, Y., Liu, X., Shi, Z. and Ma, Z. (2010) A multiplex allele-specific PCR method for the detection of carbendazim-resistant Sclerotinia sclerotiorum. Pesticide Biochemistry and Physiology,97, 36-42.
    Yoshida, Y. and Aoyama, Y. (1984) Yeast cytochrome P-450 catalyzing lanosterol 14 alpha-demethylation. I. Purification and spectral properties. JBiol Chem,259,1655-1660.
    Yu, J.-H., Rittenour, W. R., Chen, M., Cahoon, E. B. and Harris, S. D. (2011) Control of Glucosylceramide Production and Morphogenesis by the Bar1 Ceramide Synthase in Fusarium graminearum. PLoS One,6, e19385.
    Yu, L., Zhang, W., Wang, L., Yang, J., Liu, T., Peng, J., et al. (2007) Transcriptional profiles of the response to ketoconazole and amphotericin B in Trichophyton rubrum. Antimicrob Agents Chemother,51,144-153.
    Zhang, D., Fan, F., Yang, J., Wang, X., Qiu, D. and Jiang, L. (2010a) FgTeplp is linked to the phosphatidylinositol-3 kinase signalling pathway and plays a role in the virulence of Fusarium graminearum on wheat. Mol Plant Pathol,11,495-502.
    Zhang, J. B., Li, H. P., Dang, F. J., Qu, B., Xu, Y. B., Zhao, C. S., et al. (2007) Determination of the trichothecene mycotoxin chemotypes and associated geographical distribution and phylogenetic species of the Fusarium graminearum clade from China. My col Res,111, 967-975.
    Zhang, Y. Q., Gamarra, S., Garcia-Effron, G., Park, S., Perlin, D. S. and Rao, R. (2010b) Requirement for ergosterol in V-ATPase function underlies antifungal activity of azole drugs. PLoS Pathog, 6,e1000939.
    Zhao, C., Waalwijk, C., de Wit, P. J., van der Lee, T. and Tang, D. (2011) EBR1, a novel Zn(2)Cys(6) transcription factor, affects virulence and apical dominance of the hyphal tip in Fusarium graminearum. Mol Plant Microbe Interact,24,1407-1418.
    Zhao, X. M., Zhang, X. W., Tang, W. H. and Chen, L. (2009) FPPI:Fusarium graminearum protein-protein interaction database. J Proteome Res,8,4714-4721.
    Zheng, W., Zhao, H., Mancera, E., Steinmetz, L. M. and Snyder, M. (2010) Genetic analysis of variation in transcription factor binding in yeast. Nature,464,1187-1191.
    Zhou, X., Heyer, C., Choi, Y. E., Mehrabi, R. and Xu, J. R. (2010) The CID1 cyclin C-like gene is important for plant infection in Fusarium graminearum. Fungal Genet Biol,47,143-151.
    Zhu, Y. Q., Yang, R. M., Diao, C. Y. and Zhu, X. M. (2003) Analysis of causes of disaster of Gibberella zeae in Jiangsu Province in 2003. Plant Prot. Technol. Ext.,23,9-11.
    Zocco, D., Fontaine, J., Lozanova, E., Renard, L., Bivort, C., Durand, R., et al. (2008) Effects of two sterol biosynthesis inhibitor fungicides (fenpropimorph and fenhexamid) on the development of an arbuscular mycorrhizal fungus. Mycol Res,112,592-601.
    Zweytick, D., Hrastnik, C., Kohlwein, S. D. and Daum, G. (2000) Biochemical characterization and subcellular localization of the sterol C-24(28) reductase, erg4p, from the yeast Saccharomyces cerevisiae. FEBSLett,470,83-87.
    于钦亮,马莉,刘林,杨静,苏源,王云月.(2008)禾谷镰刀菌基因组中含寄主靶向模体分泌蛋白功能的初步分析.生物技术通报,1,160-180.
    周明国,叶钟音,刘经芬(1994)杀菌剂抗药性研究进展.南京农业大学学报,17,33-41.
    康振生,黄丽丽,Buchenauer, H.,韩青梅,蒋选利(2004)禾谷镰刀菌在小麦穗部侵染过程的细胞学研究.植物病理学报,34,329-335.
    樊平声(2010)小麦赤霉病和DON毒素研究进展.江苏农业科学,5,182-184.
    谭福杰(1986)杀虫剂混用的生物测定方法.昆虫知识,6,279-281.
    陈雨,张文芝,周明国(2007)氰烯菌酯对禾谷镰孢菌分生孢子萌发及菌丝生长的影响.农药学学报,9,235-239.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700