用户名: 密码: 验证码:
复杂网络同步控制及其在电力系统中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1998年,Watts和Strogatz在((Nature》上发表文章,发现了复杂网络背后的小世界特性,1999年Barabasi和Albert在《Science))发表研究成果,提出节点度分布具有无标度特性。这掀起了研究复杂网络理论的热潮,吸引了物理、数学、工程、社会学、生物学等各领域的学者去探究复杂世界背后隐藏的本质规律,因此成为众多领域研究的热点问题。
     复杂网络在自然界普遍存在,比如:因特网,交通网,电力网,人际关系网,科研引用网,病毒传播网,航空运输网,国际贸易网,人体生理网,新陈代谢网等等。近年来,复杂网络带来的问题日益突出:SARS病毒在极短的时间流行全球,金融危机波及各国,气候问题越发严重,电力事故不断出现等。为此,人们非常需要去认知复杂网络,了解其背后隐藏的本质规律,便于扬长避短地应用之。复杂网络系统从不稳定到稳定是一个动态的过程,在该过程中存在临界状态,对于处于临界状态的复杂网络系统又该呈现何种特征,如何设计出更加优良的同步稳定控制器,趋利避害的对待复杂网络问题,是当前该理论研究新的问题。
     随着社会的快速发展,能源紧缺问题日益突出,以石油、煤炭为核心的能源格局必须打破。同时,也带来严重的环境污染问题。发展新能源成为时代主题,也带来新的电网安全问题。2003年,美国电力科学研究院(EPRI)将未来电网定义为intelligentgrid;2005年,欧洲首先提出了"Smart Grid"----智能电网概念,意在解决新形势下人类所面临的能源、环境和电网安全问题。如何真正的从根本上解决电力系统安全问题,被推到了时代浪尖,迫使我们重新梳理和反思。复杂网络理论的研究还存在待完善之处,其应用研究才刚起步,还存在诸多亟待解决的问题。
     为此,本文结合当前复杂网络理论研究现状和电网建设的特点,采用上述理论,就目前存在问题展开研究工作,主要包括以下几个方面:
     1.进行复杂系统临界同步机理研究。复杂网络系统由于节点特性和边耦合特性的多样性而更加复杂。对于这种复杂网络系统有两个截然相反的整体形态(稳定和非稳定),对其临界特性的研究尤为重要。本文对其临界同步特性进行了研究,提出了判断一类复杂网络临界态的充分条件和必要条件,通过实验证明了这种临界态的存在及判断判据的正确性。对进一步研究复杂网络系统的临界特性有重要意义。
     2.复杂网络同步牵制控制理论的研究。牵制控制是实现复杂网络同步最有效的方法,通过对少量节点的控制驱动网络到期望的状态或轨道。本文通过引入节点重要度指数,在复杂网络和实际节点对网络贡献力上架起了桥梁。提出了基于节点重要度指数的牵制策略。同时,将节点重要度指数引入到了控制器的设计中,得到了牵制控制器设计更合理有效的方法,解决了牵制控制器设计中参数确定缺少理论依据的问题。
     3.基于复杂网络理论的交直流输电系统研究。利用复杂网络理论,深入分析超高压直流输电对电网网络特性的影响。提出了交直流混合输电系统的网络特性评价方法,算例证明直流输电的引入将使电网向无标度特性转移。同时对高压直流输电换流站选址进行研究,算例证明根据度大的节点选择换流站能增加网络的抗毁性。
     4.提出基于复杂网络牵制控制理论实现电网AGC牵制控制。将复杂网络牵制控制理论用到AGC控制中,将电力输送的潮流约束和传输能力转换成复杂网络的边权,并将边权视为电网节点间的耦合强度,考虑节点的实际容量,结合电网的物理连接得到节点的点权。同时,根据发电节点的点权大小,运用复杂网络牵制控制策略对部分发电节点进行牵制自适应控制,实现了复杂电网中实际有功平衡和各发电机转速同步。
     5.建立基于模糊支持向量机学习理论的电力系统负荷在线预测模型。机器学习是继专家系统之后人工智能应用的又一重要研究领域,也是人工智能的核心研究课题之一,其显著的特点就是小样本学习,且在学习过程中不存在过学习和局部极小的缺点,有较好的推广性,得到广泛的应用。本文运用模糊集理论对负荷影响因子进行模糊化,并采用最小二乘支持向量机(LS-SVM)学习方法,结合嵌入维思想进行建模和预测,利用粒子群(PSO)算法进行模型参数寻优。同时,为降低运算量,提出小批量更新方法,实现在线学习和准确预测。
In1998, Watts and Strogatz in the" Nature" published the article, revealed the small world property behind a complex network. Barabasi and Albert in1999, in "Science", published research results and proposed scale-free properties of distribution of node degree. This set out a wave of research in complex network theory and has attracted scholars of physics, mathematics, engineering, sociology, biology and other fields to explore the nature law of the complex world. So it has become a hot research issue in many areas.
     Prevalence of complex networks in nature, such as Internet, transportation networks, electricity networks, personal relationships, research and cited networks, virus transmission networks, air transportation networks, international trade networks, physiological networks, metabolic networks and so on. In recent years, problems caused by complex networks have become increasingly prominent, like, SARS virus epidemic in a very short time, the global financial crisis spread to many countries, the more severe climate, and electricity accidents have occurred. Hence, there is a great need for understanding complex networks and if we understand the nature law, it is easy to avoid weaknesses in applications. Complex network system from instability to stability is a dynamic process. In this process there is a critical state, which features should be shown in a critical state for the complex network system, how to design a more excellent and stable synchronization controller, while avoiding disadvantages of the treatment of complex network problems. This is a new hot topic of theoretical research in the present time.
     With the rapid development of society, the energy shortage problem is becoming increasingly prominent, the oil and coal as the core energy resourse will become short soon. At the same time, it also brings serious environmental pollution problems. Development of new energy has become theme of the times, and it also brings new power grid security issues. In2003, the U.S. Electric Power Research Institute (EPRI) defined the future grid as intelligent grid; in2005, the European first proposed "Smart Grid "----smart grid concept, intended to solve the new situation facing human energy, environment and power grid security. How to really solve the power security issues from the grid physical structure has motivated us to the era of this new research field.
     Therefore, in this thesis, we have considered the current status of complex network theory study and power grid construction characteristics and the use of this theory to study existing issues, including mainly the following aspects:
     1. Study critical complex synchronization mechanism. Complex network system will be more complicated for the node characteristics and the diversity of coupling characteristics of edges. For such a complex network system has the overall shape of two diametrically opposite (stable and unstable). In order to better control such a system and use it, it is necessary to study the critical state of synchronization. Experimental results demonstrate the existence of this critical. After extensive research find the sufficient and necessary conditions of a class of complex networks to determine the critical state.
     2. Study the pinning control theory of synchronization of complex networks. Pinning control is the most effective way to realize complex network synchronization, controlled by a small number of nodes to drive the network to the desired state or path. In here, a bridge is proposed by introducing importance index between the complex networks and the actual contribution of power of nodes. Pinning control strategy has beed proposed based on the node importance index. Meanwhile, by introducing the node importance index into the design of controller, a more reasonable and effective way of designing controller is obtained, to resolve to the issue of the lack of theoretical basis during the design of pinning control parameters.
     3. Study AC and DC transmission system based on complex network theory. Study properties of complex networks of china AC and DC hybrid transmission system, depth analysis the effect of DC transmission to characteristics of the grid. AC-DC hybrid transmission system is proposed using vulnerability assessment methods. Examples demonstrate the introduction of DC transmission will transfer grid characteristics to the scale-free feature. At the same time HVDC converter station location is also studied. Eamples demonstrate the node of converter station selected according to degree can increase the network survivability.
     4. Study the Grid AGC pinning control based on Complex Network Theory. Under the requirements of the smart grid, it is more flexible and efficient electric power, in order to real-time tracking changes in network load, and can well predict the situation on the power grid. Transform the transmission constraints and capacity into complex network edge weight, then consider node's actual capacity, combined with the physical network connection to get the node point weight. Basen on complex networks pinning control strategy add pinning adaptive control on the part of nodes, achieve synchronization in the each generator speed.
     5. Established the model of power system load online forecasting model based on fuzzy support vector machine learning theory. Machine learning is an important area of research and the core research of artificial intelligence; its notable feature is the small sample study. It is a trade-off between learning ability and the model complexity based on a limited sample of the information and to get the best generalization ability, and does not exist in the learning process over learning and local minimum, be widely used. In this thesis, use of least squares support vector machine (LS-SVM) which is a learning methods for small sample, combined with thinking of embedding dimension, and the use of particle swarm optimization (PSO) algorithm for model parameter optimization, research online prediction method to arrive to real-time online learning and accurate forecasting, which is the basis of power adjusted correctly.
引文
[1]D.J. Watts, S.H. Strogatz, Collective Dynamics of Small-word' Networks [J]. Nature, 1998,393(6684):440-442.
    [2]A.L. Barabasi, R. Albert, Emergence of Scaling in Random Networks[J]. Science, 1999,286(5439):509-512.
    [3]D J. Watts, Small Worlds:The Dynamics of networks between Order and Randomness[M].Princeton University Press.Princeton, NJ,1999.
    [4]M.E.J Newman, D.J. Watts, Scaling and percolation in the small-world network model[J]. physical Review E,1999,60(6):7332-7342.
    [5]Barrat A., Weigt M., On the properties of small-world networks[J]. Eur.Phys,J.B, 2000,13:547-560.
    [6]M.E.J Newman, C.Moore, D J. Watts, Mean-field solution of the small-world network model[J]. Physical Review Letters,2000,84(14):3201-3204.
    [7]M.E.J. Newman, Models of the small world:A review[R]. arXiv:cond-mat/0001118v2[cond-mat.stat-mech],2000
    [8]A.Pikovsky, M.Rosenblum, J.Kurths, Synchronization[M].Cambridge University Press.Cambridge,UK,2001.
    [9]R. Albert, A.L. Barabasi, Statistical Mechanics of Complex Networks[J]. Physics Reports,2001,424:175-308.
    [10]Latora V, Marchiori M., Efficient Behavior o f Small-World Networks[J]. Physical Review Letters,2001,87(19):198701-1-4.
    [11]Arcangelis L.de, Herrmann H.J., Self-organized criticality on small world networks[J]. Physcia A,2002,308:545-549.
    [12]M. Barahona, L.M. Pecora, Synchronization in small-world systems[J]. Phys.Rev.Lett.,2002,89(5):054101-1-054101-4.
    [13]Melian Carlos J., Bascompte Jordi, Complex networks:two ways to be robust[J]. Ecology Letters,2002,5:705-708.
    [14]Wang Xiaofan, Chen Guangrong, Synchronization in small-world dynamical networks[J]. international journal of bifurcation and chaos,2002,12(1):187-192.
    [15]Crucitti P., Latora V, Marchiori M., A topological analysis of the Italian electric power grid[J]. Physica A,2004,338:92-97.
    [16]Li X., Wang X.F., Chen G.R., Pinning a complex dynamical networks to its equilibrium[J]. IEEE Transactions Circuit System-I,2004,51(10):2074-2087.
    [17]Yuan Wu-Jie, Luo Xiao-Shu, Jiang Pin-Qun, Wang Bing-Hong, Fang Jin-Qing, Stability of a complex dynamical network model[J]. Physica A,2007,374:478-482.
    [18]Wu Xiaoquan, Synchronization-based topology identification of weighted general complex dynamical networks with time-varying coupling delay[J]. Physica A,2008, 387:997-1008.
    [19]Xiang Linying, Liu Zhongxin, Zengqiang Chen, Yuan Zhuzhi, Pinning weighted complex networks with heterogeneous dlays by a small number of feedback controllers[J]. science in china,2008,51(5):511-523.
    [20]Zou Y.L, Chen G.R., Choosing effective controlled nodes for scale-free networks synchronization[J]. Physica A,2009,388(14):2931-2940.
    [21]方锦清,汪小帆,郑志刚,李翔,狄增如,毕桥,一门崭新的交叉科学:网络科学(下篇)[J].物理学进展,2007,27(4):0361-0448.
    [22]L.M. Pecora, T.L. Carroll, Master stability functions for synchronized coupled systems[J]. Phys.Rev.Lett.,1998,80(10):2109-2112.
    [23]Gao Yang, Li Li Xiang, Peng Hai Peng, Yang Yi Xian, Zhang Xiao Hong, Stability anslysis of complex networks with multi-links[J]. Acta.Phys.Sini.,2008,57(3): 1444-1452.
    [24]He Guan Ming,Yang Jing Yu, Adaptive synchronization in nonlinearly coupled dynamical networks[J], Chaos, Solitons and Fractals,2008,38:1254-1259.
    [25]L.Wang, H.P.Dai, H.Dong, Y.Y.Cao, Y.X.Sun, Adaptive synchronization of weighted complex dynamical networks through pinning[J]. The European Physical Journal B, 2008,61:335-342.
    [26]Luo Quan, Wu Wei, Li Li Xiang, Yang Yi Xian, Peng Hai Peng, Adaptive synchronization research on the uncertain complex networks with time-delay[J]. Acta.Phys.Sini.,2008,57(3):1529-1534.
    [27]Song Zheng QinSheng Bi, Guoliang Cai, Adaptive projective synchronization in complex networks with time-varying coupling delay[J]. Physcial Letters A,2009, 373:1553-1559.
    [28]Yu Wen Wu, Chen Guan Rong, Lu Jin Hu, On pinning synchronization of complex dynamical networks[J], Automatica,2009,45:429-435.
    [29]Winfree A.T., The geometry of biological time[M].Springer-Verlag.Berlin,Germany, 1980.
    [30]方锦清,迅速发展的复杂网络研究与面临的挑战[J].自然杂志,2007,27(5):269-274.
    [31]Grigoriev R.O., Cross M.C., Schuster H.G., Pinning control of spatiotemporal chaos[J]. Physcial review Letters,1997,79(15):2795-2798.
    [32]Sorrentino Francesco, Bernardo Mario di, Garofalo Franco, Chen Guanrong, Controllability of complex networks via pinning[J]. Physcial Review E,2007,75(4): 046103-1-046103-6.
    [33]Tianping Chen, Xiwei Liu, Wenlian Lu, Pinning complex networks by a single controller[J]. IEEE Transaction on Circuits and Systems I,2007,54(6):1317-1326.
    [34]Wang X.F., Chen G.R., Pinning control of scale-free dynamical networks[J]. Physcia A,2002,310(3-4):521-531.
    [35]Fan Z.P., Chen G.R.. On pinning control of scale-free networks[C]. Proceeding of International conference on physics and control.2005,916-918.
    [36]Wenlian Lu, Adaptive dynamical networks via neighborhood information:synachronization and pinning control[J]. Chaos,2007,17(2): 023122-023139.
    [37]Z.X Liu, Z.Q Chen, Z.Z Yuan, Pinning control of weghted general complex dynamical networks with time delay[J]. Physica A:Statistical mechanics and its applications,2007,375(1):345-354.
    [38]Sun Wen, Chen Shi Hua, Guo Wan Li, Adaptive global synchronization of a general complex dynamical network with non-delayed and delayed couping[J]. Phys.Lett. A,2008,372:6340-6346.
    [39]Zhou Jin, Lu Jun-an, Lu Jinhu, Pinning adaptive synchronization of a general complex dynamial network[J]. Automatica,2008,44:996-1003.
    [40]Perry Simon, Watt matters-smart grid security[J]. infosecurity,2009,6(5):38-40.
    [41]Faruqui Ahmad, Hledik Ryan, Sergici Sanem, Piloting the Smart Grid[J]. The Electricity Journal,2009,22(7):55-69.
    [42]Hledik Ryan, How Green Is the Smart Grid?[J]. The Electricity Journal,2009,22(3): 29-41.
    [43]Miller Eric. Renewables and the smart grid[C]. Proceeding of Renewable energy focus. Scottish, UK.2009,10(5):67-69.
    [44]苗新,张逸飞,刘津,智能电网的中国之路[J].国家电网,2009,4(7):54-57.
    [45]Larsen kari. Smart grids-a smart idea?[C]. Proceeding of renewable energy focus. Scottish, UK,2009,10(5):62-67.
    [46]谢开,刘永奇,朱治中,于尔坚,面向未来的智能电网[J].中国电力,2008,41(6):19—22.
    [47]Chassin David P., What Can the Smart Grid Do for you? And What Can You Do for the Smart Grid?[J]. The Electricity Journal,2010,23(5):57-63.
    [48]Crossley Peter,Beviz Agnes. Smart energy systems:Transitioning renewables onto the grid[C]. Proceeding of Renewable Energy Focus, USA.2010,11(5): 55-59.
    [49]Jarventausta Pertti, Repo Sami, Rautiainen Antti, Partanen Jarmo, Smart grid power system control in distributed generation environment[J]. Annual Reviews in Control,2010,34:277-286.
    [50]Crucitti P., Latora V., Marchiori M., Rapisarda Andrea, Error and attack tolerance of complex networks[J]. Physica A,2004,340:388-394.
    [51]P.Chassin David, Posse Christian, Evaluating North American electric grid reliability using the Barabasi-Albert network model[J]. Physica A,2005,355:667-677'.
    [52]Xiaogang Chen, ke Sun, Yijia Cao, Structural vulnerability analysis of large power grid based on complex network theory[J]. Transactions of china electrotechnical society,2007,22(10):139-145.
    [53]陈晓刚, 孙可,曹一家,基于复杂网络理论的大电网结构脆弱性分析[J].电工技术学报,2007,22(10):139—145.
    [54]丁道齐,用复杂网络理论分析电网连锁性大停电事故机理[J].中国电力,2007,40(11):25—32.
    [55]丁明,韩平平,小世界电网的连锁故障传播机理分析[J].电力系统自动化,2007,31(18):6—10.
    [56]李洁,李仕雄,复杂网络研究及其在电力系统中的应用[J].电力学报,2008,23(4):279—282.
    [57]李晶晶,王红,用复杂网络理论分析电网及大停电事故[J].计算机技术与发展,2008,18(10):841—843.
    [58]史进,涂光瑜,罗毅,电力系统复杂网络特性分析与模型改进[J].中国电机工程学报,2008,28(25):93—98.
    [59]张国华,张建华,杨京燕,王策,张印,段满银,基于有向权重图和复杂网络理论的大型电力系统脆弱性评估[J].电力自动化设备,2009,29(4):21—26.
    [60]魏震波.基于复杂网络理论的电网脆弱性研究[Ph,D].四川大学2010:
    [61]S.N. Dorogovtsev, J.F.F Mendes, Evolution of networks[J]. Adv. Phys.,2002,51(4): 1079-1187.
    [62]Salathe Marcel, M.May Robert, Bonhoeffer Sebastian, the evolution of network topology by selective removal[J]. J.R.Soc.interface,2005,2:533-536.
    [63]D.H. Shi, L.M. Liu, X. Zhu, H.J. Zhou, Degree distribution of evolving networks[J]. Europhys.Letter,2006,76(4):10315-10317.
    [64]Timmerman P. Vulnerability, Resilience and the Collapse of Society:A Review of Models and Possible Climatic Applications[C]. Proceeding of Institute for Environmental Studies.1981. Toronto, Canada.
    [65]EA. Jackson, Controls of dynamic flows with attractors.[J]. Physical Review Letters, 1991,44:4839-4892.
    [66]J.Melian Carlos, Bascompte Jordi, Complex networks:two ways to be robust?[J]. Ecology Letters,2002,5:705-708.
    [67]Gu Ya-Qin, Shao Chun, Fu Xin-Chu, complete synchronization and stability of star-shaped compelx networks[J]. Chaos,Solitons and Fractals,2006,28:480-488.
    [68]M.A Janssena, M.L Schoon, W. Ke, Scholarly networks on resiliece,vulnerability and adaptation within the human dimensions global enviormental change[J]. Global Environmental Change,2006,16(3):240-252.
    [69]Sun H.J., Zhao H., Wu J.J., A robust matching model of capacity to defense cascading failure on complex networks[J]. Physcia A,2008,387:6431-6435.
    [70]Xiangping NI, Shengwei MEI, Xuemin ZHANG, Transmission lines'vulnerability assessment based on complex network theory[J]. Automation of Electric Power Systems,2008,32(4):1-5.
    [71]S. Boccaletti, A. Farini, FT. Arecchi, Adaptive synchronization of chaos for secure communication[J], physical Review E,1997,55(5):4979-4981.
    [72]M.Elowiz,Leibler S., A synthetic oscillarory network of transcriptional regularors[J]. Nature,2000,403:335-338.
    [73]Li Xiang, Jin Yu Ying, Chen Guangrong, Complexity and synchronization of the world trade web[J]. Physcia A,2003,328:287-296.
    [74]S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D-U. Hwang, Complex networks: Structure and dynamics[J]. Physics Reports,2006,424:175-308.
    [75]LM. Pecora, T.L. Carroll, Synchronization in chaotic systems[J]. Physical Review Letters,1990,64(8):821-825.
    [76]T. Kapitaniak, Synchronization of chaos using continuous control[J]. physical Review E,1994,50:1642-1645.
    [77]J.H. Peng, E.J. Ding, M. Ding, W. Yang, Synchronizing hyperchaos with a scalar transmitted signal[J]. Physical Review Letters,1996,76:904-910.
    [78]T Nishikawa, AE Motter, Synchronization is optimal in non-diagonalizable networks[J]. physical Review E,2006,73(6):065106-1-065106-4.
    [79]Wagemakers A., J.M.Buldu, Garcia-Ojalvo J., Sanjuan M.A.F., Synchronization of electronic genetic networks[J]. Chaos,2006,16:3127.
    [80]G.V.Osipov, J.Kurths, C.Zhou, Synchronization in oscillatory networks [M]. Springer.Berlin, Germany,2007.
    [81]Zhang Rong, Hu Manfeng, Xu Zhenyuan, Synchronization in complex networks with adaptive coupling[J]. Physics Letters A,2007,368:276-280.
    [82]Arenas Alex, Diaz-Guilera Albert, Kurths Jurgen, Moreno Yamir, Zhou Changsong, Synchronization in complex networks[J]. Physics Reports,2008,469:93-153.
    [83]Wang L, Dai H P, Dong H, Cao Y Y, Sun Y X, Adaptive synchronization of weighted complex dynamical networks through pinning[J]. The European Physical Journal B, 2008,61:335-342.
    [84]Wiener N., Cybernetics:or control and communication in the animal and the machine[M].John Wiley & Sons.New York,NY,USA,1948.
    [85]Winfree A.T., Biological rhythms and the behavior of populations of coupled oscillators[J]. J. Theoret. Biol,1967,16:15-42.
    [86]Wen Sun, Chen Shihua, Guo wanli, Adaptive global synchronization of a general complex dynamical network with non-delayed and delayed couping[J]. Physcial Letters A,2008,372:6340-6346.
    [87]M.E.J. Newman. The structure and function of complex networks.2003, arXiv: cond-mat/0303516vl.
    [88]Zhou Jin, Xiang Lan, Liu Zengrong, Synchronization in complex delayed dynamical networks with impulsive effects[J]. Physica A,2007,384:684-692.
    [89]Zhao Yanhong, Yang Yongqing, The impulsive control synchronization of the drive-response complex system[J]. Physics Letters A,2008,372:7165-7171.
    [90]Jin ZHou, Yunan Lu. Pinning synchronization of a general complex dynamical network[C]. Proceeding of IEEE International symposium on circuits and systems. New Orleans LA.2007,54:2494-2497.
    [91]L.Y. XIANG, Z.X Liu, Z.Q Chen, F. Chen, Z.Z Yuan, Pinning control of compllex dynamical networks with general topology[J]. Physica A:Statistical mechanics and its applications,2007,379(1):298-306.
    [92]Porfiri Maurizio, Bernardo Mario Di, Criteria for global pinning-controllability of complex networks[J]. Automatica,2008,44:3100-3106.
    [93]Wu Chai Wah, Localization of effective pinning control in complex networks of dynamical systems[J]. IEEE International Symposium on Circuit and Systems, 2008,5:2530-2533.
    [94]Xiang Linying, Liu Zhougxin, Zengqiang Chen, Chen Fei, Guo Ge, Yuan Zhuzhi, Comparison between pinning control of different chaotic complex dynamical networks[J]. Journal of Control Theory and Applications,2008,6(1):2-10.
    [95]Xiang Linying, Zengqiang Chen, Zhongxin Liu, Chen Fei, Yuan Zhuzhi, Pinning control of complex dynamical networks with heterogeneous delays[J]. Computers & Mathematics with Applications,2008. corrected, Available online.
    [96]Guo Wanli, Austin Francis, Chen Shihua, Sun Wen, Pinning synchronization of the complex networks with non-delayed and delayed coupling[J]. Physics Letters A, 2009,373:1565-1572.
    [97]Zheng Song, Bi Qin Sheng, Cai Guo Liang, Adaptive projective synchronization in complex networks with time-varying coupling delay[J]. Phys.Lett. A,2009,373: 1553-1559.
    [98]Porfiri Maurizio,Fiorilli Francesca, Node-to-node pinning control of complex networks[J]. Chaos,2009,19:013122-1--013122-11.
    [99]Zhengquan Yang, Zhongxin Liu, Zengqiang Chen, Zhushi Yuan, Controlled synchronization of complex network with different kinds of nodes[J]. Journal of Control Theory and Applications,2008,6(1):11-15.
    [100]倪向萍,梅生伟,张雪敏,基于复杂网络理论的输电线路脆弱度评估方法[J].电力系统自动化,2008,32(4):1—5.
    [101]G.Filatrella, Nielsen A.H., Pedersen N.F., Analysis of a power grid using a Kuramoto-like model[J]. The European Physical Journal B,2008,61:485-491.
    [102]Bompard Ettore, Ma Yuchao, Modeling bilateral electricity markets:a complex network approach[J]. IEEE Transactions on power system,2008,23(4):1590-1601.
    [103]王朝瑞,图论[M].北京理工大学出版社1996.
    [104]L.de Arcangelis,H.J. Herrmann, Self-organized criticality on small world networks[J]. Physica A,2002,308:545-549.
    [105]Wang Xiaofan,Chen Guanrong, Small-World, Scale-Free and Beyond[J]. IEEE Circuits and Systems Magazine,2003,3(1):6-20.
    [106]Rayleigh, The theory of sound[M].Dover Publishers.New York,1945.
    [107]C. Hayashi, Nonlinear oscillations in physical systems[M].Mcgraw-Hill.New York, 1964.
    [108]J.J. Stocker, Nonlinear vibrations[M].Interscience Publishers.New Yorks,1950.
    [109]T. Yang,LO. Chua, Generalized synchronization of chaos via linear transformations[J]. International Journal of Bifurcation Chaos,1999,9:215-223.
    [110]Asmus Peter, Inching Our Way to a Smarter Power Grid[J]. The Electricity Journal, 2006,9(4):52-55.
    [111]A.Yu.Aleksandrov,A.V.Platonov, Aggregation and stavility analysis of nonlinear complex systems[J]. Journal of Mathematical Analysis and Applications,2008,342: 989-1002.
    [112]Jing-jing LI,Hong WANG, Analysison power grids and blackouts with complex network theory[J]. Computer technology and development,2008,18(10):841-843.
    [113]Hua Dong, shi-yuan Yang, De-hui Wu, Intelligent prediction method for small-batch producing quality based on fuzzy least square SVM[J]. systems engineering-theory & practice,2007,27(3):98-104.
    [114]Chun-zheng YE, Xian-rong CHANG, Wei-guo GU, Short-term load forecasting based on wavelet transform and support vector machines[J]. Power System Protection and Control,2009,37(14):41-45.
    [115]徐德刚.基于复杂网络理论的复杂系统同步控制研究[Ph,D].浙江大学博士论文.2007:
    [116]高洋,李丽香,彭海朋,杨义先,张小红,多重边复杂网络系统的稳定性分析[J].物理学报,2008,57(3):1444-1452.
    [117]Xu De-gang.Research on synchronization control of complex systems based on complex networks theory[Ph,D].Zhejiang university D.2007:
    [118]Chen Hua Liang, Liu Zhong Xin, Chen Zeng Qiang, Yuan Zhu Zhi, Research on one weighted routing strategy for complex networks[J]. Acta.Phys.Sini.,2009 58(9): 6068-6073.
    [119]魏震波,刘俊勇,朱国俊,贺星棋,龚薇,电力系统脆弱性理论研究[J].电力自动化设备,2009,29(7):38-43.
    [120]白加林,刘天琪,曹国云,陈陈,电力系统脆弱性评估方法综述[J].电网技术,2008,32(增刊2):26—30.
    [121]詹奕,尹项根,高压直流输电与特高压交流输电的比较研究[J].高电压技术,2001,27(4):44—46.
    [122]陈万钧,孔静云,陈哲民,三峡工程直流换流站规划选站的补充研究[J].中国电力,1995,(10):11—17.
    [123]曾静,王伟刚,三沪直流工程换流站设计特点[J].电力建设,2007,28(3):9—12.
    [124]胡劲松,高压直流换流站的关键建站条件[J].中国电力,2006,39(12):20—23.
    [125]M.Rahmani, M.Rashidinejad, E.M.Carreno, R.Romero, Efficient method for AC transmission network expansion planning[J]. Electric power systems research,2010.
    [126]张伯明,孙宏斌,吴文传,郭庆来,智能电网控制中心技术的未来发展[J].电力系统自动化,2009,33(17):21-28.
    [127]孙宏斌,张伯明,吴文传,郭庆来,张沛,面向中国智能输电网的智能控制中心[J].电力科学与技术学报,2009,24(2):2-7.
    [128]严胜,姚建国,杨志宏,高宗和,智能电网调度关键技术[J].电力建设,2009,30(9):1-3.
    [129]喻洁,李方兴,李扬,夏安邦,互联区域多目标发电调度的协同优化策略[J].电力系统自动化,2009,33(2):30-34.
    [130]张宏斌,张伯明,吴文传,郭庆来,张沛,面向中国智能输电网的智能控制中心[J].电力科学与技术学报,2009,24(2):2-7.
    [131]Y Yong, W Fushuan, Y Shouhui, I Macgill, Generation Scheduling with Fluctuating Wind Power[J]. Automation of Electric Power Systems,2010,34(6):79-88.
    [132]年玉广,谭文,苏凯,刘吉臻,节能发电调度的网厂两级优化方案[J].中国电力,2010,43(9):15-18.
    [133]胡杰 文闪闪,胡导福,何益鸣,电力负荷预测常用方法的分析比较与应用[J].湖北电力,2008,32(2):13—15.
    [134]李元诚,方廷健,于尔坚,短期负荷预测的支持向量机方法研究[J].中国电机工程学报,2003,23(6):55—59.
    [135]Mandal Paras, Senjyu Tomonobu, Funabashi Toshihisa, Neural networks approach to forecast several hour ahead electricity prices and loads in deregulated market[J]. Energy conversion and mangement,2006,47:p2128-2142.
    [136]Guanghui CHANG, Dichen LIU, Hao XIONG, Short Term Load Forecasting Based on Multi-resolution SVM Regression[J]. Automation of Electric Power Systems, 2007,31(9):37-41.
    [137]Jia LIU, Dan LI, Li-qun GAO, Shun LU, A short term load forecasting approach based on support vector machine with adaptive particle swarm optimization[J]. Journal of Northeastern University(NaturaI Science),2007,28(9):1230-1233.
    [138]Lian-fang KONG, Tian-xiang LUO, Jie WU, State Contractive Constraint-based Model Predictive Load Frequency Control[J]. Proceedings of the CSEE,2007,27(7): 18-22.
    [139]畅广辉,刘涤尘,熊浩,基于多分变率SVM回归估计的短期负荷预测[J].电力系统自动化,2007,31(9):37—41.
    [140]孙莲芳, 罗天祥,吴捷,基于状态收缩约束的模型预测负荷频率控制[J].中国电机工程学报,2007,27(7):18-22.
    [141]杨丽徒,王金风,陈根永,王家耀,基于元胞自动机理论的电力负荷空间分别预测[J].中国电机工程学报,2007,27(4):p0015-0020.
    [142]Baoying LIU, Rengang YANG, short term load forecasting model based on LS-SVM with PCA[J]. Electric Power Automation Equipment,2008,28(11):14-18.
    [143]刘耀年,沈轶群,姜成元,陈灵根,基于LSSVM与SMO稀疏化算法的短期负荷预测[J].继电器,2008,36(4):63-66.
    [144]潘锋,汪利华,张敏华,支持向量机算法应用于短期电力负荷预测[J].电气应用,2009,28(14):82-85.
    [145]张雪君,陈刚,周杰,马爱军,张忠静,基于粒子群优化鲁棒支持向量回归机的中长期负荷预测[J].电力系统保护与控制,2009,37(21):77-81.
    [146]张晓星,周湶,仁海军,孙才新,程其云,基于增量约简算法确定电力负荷预测模型输入参数[J].电力系统自动化,2005,29(13):p40-44.
    [147]蒋刚,肖建,宋昌林,郑永康,一种模糊支持向量负荷预测法及其参数优化策略[J].控制与决策,2006,21(9):1054-1058.
    [148]刘佳,李丹,高立群,鲁顺,基于自适应粒子群支持向量机的短期电力负荷预测[J].东北大学学报(自然科学版),2007,28(9):1229-1232.
    [149]刘宝英,杨仁刚,基于主成分分析的最小二乘支持向量机短期负荷预测模型[J].电力自动化设备,2008,28(11):13-17.
    [150]叶淳铮,常鲜戎,顾为国,基于小波变换和支持向量机的电力系统短期负荷预测[J].电力系统保护于控制,2009,37(14):p41-48.
    [151]Maia C.A.,Goncalves M.M., A methodology for short-term electric load forecasting based on specialized recursive digital filters[J]. Computers & industrial engineering, 2009,57:724-731.
    [152]Eker Ilyas, Governors for hydro-turbine speed control in power generation:a SIMO robust design approach[J], Energy Conversion and Management,2004,45:: 2207-2221.
    [153]Lu Qiang, Sun Yusong, Sun Yuanzhang, Wu Felix F., Ni Yixin, Yokoyama Akihiko, Goto Masuo, Konishi Hiroo, Nonlinear decentralized robust governor control for hydroturbine-generator sets in multi-machine power systems[J]. Electrical Power and Energy Systems,2004,26:333-339.
    [154]Tong S.C, Chai T.Y, Fuzzy direct adaptive control for a class of nonlinear systems[J]. Fuzzy sets and systems,1999,103:379-381.
    [155]王立新,模糊系统与模糊控制教程[M].译:王迎军清华大学出版社2003.
    [156]Tie-shan Li, Shao-cheng Tong, Gang Feng, A novel robust adaptive-fuzzy-tracking control for a class of nonlinear MIMO systems[J]. IEEE Transactions on fuzzy systems,2010,18(1):150-160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700