用户名: 密码: 验证码:
小麦类胡萝卜素生物合成关键酶基因的克隆与遗传转化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦是世界上重要的粮食作物,提高其营养品质是小麦遗传育种研究的重要课题。类胡萝卜素是维生素A的前体,维生素A的缺乏可导致夜盲症、白内障等眼部疾病,甚至于完全失明,还会加剧腹泻、呼吸疾病、儿童麻疹等,但普通小麦中类胡萝卜素含量相对较低(3μg/g以下)。本文以小麦类胡萝卜素生物合成关键酶(八氢番茄红素合成酶PSY、八氢番茄红素脱氢酶PDS和ζ-胡萝卜素脱氢酶ZDS)的EST序列为切入点,采用分子生物学方法分离基因的cDNA全长序列,检测分析基因的表达特性,在此基础上利用转基因方法鉴定基因的功能,并探讨提高小麦类胡萝卜素含量的基因工程新途径;获得以下主要结论:
     (1)采用RACE技术,首次从普通小麦中分离获得类胡萝卜素合成途径中两个重要脱氢酶基因TaPDS和TaZDS的cDNA全序列;同时,采用同源序列分离法,获得了小麦PSY基因的完整编码区序列。通过RT-PCR半定量法检测分析了PSY、PDS和ZDS基因的表达特性,发现三者在富含叶绿体、质体的光合作用器官中高水平表达,而在非光合作用的种子中表达较弱。首次证实了普通小麦种子中存在类胡萝卜素的代谢途径,且种子中类胡萝卜素含量较低,为提高种子类胡萝卜素含量的基因工程改良研究提供了理论基础。
     (2)应用“最小基因表达框”的小麦转基因技术,利用小麦胚乳特异性强启动子和广谱性启动子分别驱动玉米的八氢番茄红素合成酶PSY1基因、欧文氏菌胡萝卜素脱氢酶CrtI基因在小麦中超量表达,获得转基因植株,转基因种子中类胡萝卜素含量约由0.5μg/g提高到3.8~4.9μg/g;首次鉴定了玉米PSY1基因和细菌CrtI基因在小麦中的功能,并且表明应用转基因技术提高类胡萝卜素含量的可行性。
     (3)完善了“基因最小表达框”基因枪法小麦转基因技术体系,转化率达到0.7%,与常规转基因技术的转化率相一致,为进一步建立安全性转基因技术体系奠定了良好基础。
     本文在类胡萝卜素代谢途径关键酶基因分离和功能分析的基础上,采用转基因技术提高了小麦种子类胡萝卜素含量,对于深入理解小麦类胡萝卜素合成的分子生物学基础和提高小麦营养品质的育种实践都具有一定意义。
Wheat is the word's important food crop, and improving the nutritional quality of wheat is an important objective in wheat molecular breeding programs. Carotenoids are essential components of human diets, primarily as precursors of vitamin A. Vitamin A deficiency causes symptoms ranging from night blindness to those of xerophthamia and keratomalacia, leading to total blindness. Furthermore, vitamin A deficiency exacerbates affilictiona, such as diarrhea, respiratory diseases, and childhood diseases such as measles. However, there is low carotenoid content in common wheat (less than 3μg/g).
     In this thesis, firstly, the EST (Expressed Sequence Tag) sequences of several wheat carotenoids biosynthesis key enzymes, such as phytoene synthase (PSY), phytoene desaturase (PDS) andζ-carotene desaturase (ZDS), were analyzed. Then the full-length cDNA sequences and the expression characteristics of these genes were identified by molecular biology methods, on the basis of which, the function of these genes were identified in genetic transformation and the new pathway of increasing the wheat carotenoids content are discussed. The main results were as follows.
     1. The full-length cDNA sequences of phytoene desaturase gene (TaPDS) andζ-carotene desaturase gene (TaZDS) were isolated from common wheat (Triticum aestivum. L.) by using RACE (Rapid Amplification of cDNA Ends) method. Otherwise, the complete coding sequence of phytoene synthase gene (PSY) was isolated from the same wheat variety by using homologous sequence separation. Through semi-quantitative RT-PCR method, the expressions of PSY, PDS and ZDS genes were detected. These genes showed higher expression in photosynthetic tissues (leaves and flowers), and lower expression in non-photosynthetic tissues (seeds). Since the first full-length cDNA cloning of these enzymes in common wheat are reported here, the implications for the genetic modification of the carotenoids (pro-vitamin A) content in wheat are also discussed.
     2. In order to increase the carotenoid content of common wheat endosperm, transgenic wheat has been produced by over-expressing a maize psy1 gene coding phytoene synthase driven by endosperm-specific 1Dx5 promoter in the elite wheat (Triticum aestivum L.) variety EM12, together with a bacterial carotene dusaturase gene CrtI from Erinia uredovora under the constitutive CaMV 35S promoter control. This combination covers the requirements forβ-carotene synthesis and, as hoped, a clear increasing of carotenoids content was detected in the T_0 generation of transgenic wheat seeds, which showed a light yellow colour. We observed an increase in total carotenoids content from about 0.5μg/g up to 3.8~4.9μg/g.
     3. The "minimal expression cassettes" transformation procedure has been developed and optimized. Stable transgenic plants were recovered from the immature embryos with transgenes on the linear gene cassettes lacking vector backbone sequences, corresponding to promoters, open reading frames and terminators. The efficiency of transformation using gene cassettes reached 0.7%, and it's similar to the conventional transgenic technology.
     The results of present research provided with valuable reference for improving wheat nutritional quality through genetic engineering.
引文
[1] 惠伯棣.类胡萝卜素化学及生物化学[M],中国轻工业出版社,2005:10-21
    [2] Britton G. Overview of carotenoids biosynthesis. In carotenoids (eds Britton G.,Liaaen Jensen S. & Pfander H.) [M]. pp. 13-147. Brirkhauser, Basel, Switzerla
    [3] 任永霞,王罡,郭郁频等.类胡萝卜素概述[J].山东农业大学学报,2005,36(3):485-488
    [4] Howitt C.A., Pogson B.J. Carotenoid accumulation and function in seeds and non-green tissues [J]. Plant Cell and Environment, 2006, 29:435-445
    [5] Niyogi K.K. Photoprotection revisited [J]. Ann. Rev. Plant Physio. Plant Molec.Biol.1999, 50:391-417
    [6] Pe(?)uelas J., Munn(?)-Bosch S. Isoprenoids: an evolution pool for photoprotection [J].Trends in Plant Sci. 2005, 10:166-169
    [7] Tracewell C.A., Vrettos J.S., Bautista J.A., et al. Carotenoid photo-oxidation in photosystem Ⅱ [J]. Archives of Biochemistry and Biophysics, 2001, 385(1): 61-69
    [8] Demmig-Adams B., Gilmore A.M., Adams W.W Ⅲ. In vivo functions of carotenoids in higher plants [J]. FAEBS, 1996, 10(4): 403-412
    [9] Euler H. von, Hellstrom H. Resemblance of action of lipochromes to that of vitamin A [J]. Biochem Zeitschr. 1928, 203:370-384
    [10] Moore T. Vitamin A and carotene: The association of vitamin A activity with carotene in the carrot root [J]. Biochem J, 1929, 23(4): 803-811
    [11] Bartley G.E., Scolnik P.A. Plant carotenoid: Pigment for photoprotection, visual attraction and Human health [J]. Plant cell, 1995, 7:1027-1038
    [12] Karrer P., Helfenstein A., Wehrli H., et al. Pflanzenfarbstoffe ⅩⅩⅤ. (U|¨)ber die Konstitution des Lycopins und Carotins[J]. Helv Chim Acta, 1930, 13(5):1084-1099
    [13] Karrer P., Morf R. Pflanzenfarbstoffe ⅩⅩⅩⅤ Zur Konstitution des β-Carotins und β-Dihydro-carotins [J]. Helv Chim Acta, 1931, 14:1033-1036
    [14] 韩雅珊.类胡萝卜素功能的研究进展[J].中国农业大学学报,1999,4(1):5-9
    [15] 王庆伟.类胡萝卜素的研究进展与临床应用[J].中国药事,2000,14(1):58-60
    [16] 马爱国.抗氧化营养素对DNA损伤的保护作用[J].青岛医学院学报,1996,32(2):95-97
    [17] 范晓岚,杨军,杨惠等.β-胡萝卜素的抗氧化作用与疾病预防[J].中国公共卫生,2003,19(4):479-480
    [18] Bendiah A. Beta-carotene and the immune response [J]. Proc Nutr Soc, 1991,50:263-274
    [19] Mangcls A.R., Holden J.M., et al. Carotenoid content of fruit and vegetables: an evaluation of analytical data [J]. Ann Diet Assoc. 1993, 93:248-296
    [20] Fraser P.D., Bramley P.M. The biosynthesis and nutritional uses of carotenoids [J].Progress in Lipid Research, 2004, 43:228-265
    [21] 惠伯棣,朱雨杰,武兴德等.高等植物中类胡萝卜素的生物合成[J].北京农业科学,1999,17(2):17-20
    [22] Bartley G.E. and Scolnik P.A. Molecular biology of carotenoid biosynthesis in plants [J]. Ann. Rev. Plant Physio. Plant Molec. Biol. 1994, 45:287-301
    [23] Kajiwara S., Fraser P.D., Kondo K., et al. Expression of an exogenous isopentenyl diphosphate isomerase gene enhances isoprenoid biosynthesis in Escherchia coli[J]. Biochem J. 1997, 324:421-426
    [24] Dogbo O., Camara B. Purification of isopentenyl pyrophosphate isomerase and geranylgeranyl pyrophosphate synthase from Capsicum chromoplasts by affinity chromatography [J]. Biochem Biophys. Acta. 1987, 920:140-148
    [25] Kuntz M., R(o|¨)mer S., Suire C., et al. Identification of a cDNA for the plastid-located geranylgeranly pyrophosphate synthase from Capsicum annum:Correlative increase in enzyme activity and transcript level during fruit ripening [J].Plant J. 1992, 2:25-34
    [26] Scolnik P.A., Bartley G.E. Nucleic acid sequences of an Arabidopsis cDNA for geranylgeranyl pyrophosphate synthase [J]. Plant Physiol, 1994, 104:1469-1470
    [27] Aitken S. M., Attucci S., Ibrahim R. K., et al. A cDNA encoding geranylgeranyl pyrophosphate synthase from white lupin [J]. Plant Physiol, 1995, 108(2): 837-838
    [28] Bantignies B., Liboz T. and Ambid C. Nucleotide sequence of a Catharanthus roseus geranylgeranyl pyrophosphate synthase gene [J]. Plant Physiol. 1995, 110:336-336
    [29] Bonk M., Hoffmann B., Von Lintig J., et al. Chloroplast import of four carotenoid biosynthetic enzymes in vitro reveals differential fates prior to membrane binding and oligomeric assembly [J]. Eur. J. Biochem. 1997, 247 (3): 942-950
    [30] Ray J.A., Bird C.R., Mammders M., et al. Sequence of pTOM5, a ripening related cDNA from tomato [J]. Nucl Acid Res, 1987, 24:1058-1066
    [31] Armstrong G.A., Alberti M., Leach F., Hearst J.E. Nucleotide Sequence,Organization, and Nature of the Protein Products of the Cartenoid Biosynthesis Gene cluster of Rhodobacter Capsulatus [J]. Mol Gen Genet, 1989, 216(2-3):254-268
    [32] Bird C.R., Ray J.A., Fletcher J.D., et al. Using antisense RNA to study gene function: Inhibition of carotenoid biosynthesis in transgenic tomatoes [J]. Bio Technol. 1992, 9:635-639
    [33] Chamovitz D., Pecker I., Hirschberg J. The molecular basis of resistance to the herbicide norflurazon [J]. Plant Mol Biol. 1991, 16:967-974
    [34] Isaacson T., Ronen G., Zamir D., Hirschberg J. Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of β-carotene and xanthophyllsin plants [J]. Plant Cell, 2002, 14 (2): 333-342
    [35] Park H., Kreunen S.S., Cuttriss A.J., et al. Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation and photomorphogenesis [J]. Plant Cell, 2002, 14(2): 321-332
    [36] Sandmann G. Molecular evolution of carotenoid biosynthesis from bacteria to plants [J]. Physiology Planarum, 2002, 116:431-440
    [37] Misawa N., Nakagawa M., Kobayashi K., et al. Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli [J]. J. Bacterial, 172(12): 6704-6712
    [38] 朱长甫,陈星,王英典.植物类胡萝卜素生物合成及其相关基因在基因工程中的应用[J].植物生理与分子生物学通讯,2004,30(6):609-618
    [39] Cunningham F.X. Jr, Gantt E. One ring or two? Determination of ring number in carotenoids by lycopene cyclases [J]. Proc. Natl. Acad. Sci, USA, 2001, 98(5):2905-2910
    [40] Cunningham F.X. Jr, Pogson B.J., Sun Z., et al. Functional analysis of the β-and ε-lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation [J]. Plant Cell, 1996, 8(9): 1613-1626
    [41] Armstrong G.A., Schmidt A., Sandmann G. and Hearst J.E. Genetic and biochemical characterization of carotenoid biosynthesis mutants of Rhodobacter capsulatus [J]. J. Biol. Chem., 1990, 265(14): 8329-8338
    [42] 韩利军,阳成伟,欧志英.类胡萝卜素的生物合成途径及生物学功能研究进展 [J].生物学杂志,2002,19(6):1-3
    [43] 郑阳霞,杨婉身,季静,王罡.类胡萝卜素生物合成相关基因的克隆及其遗传工程的研究进展[J].细胞生物学杂志,2006,28:442-446
    [44] 王玉萍,刘庆昌,翟红.植物类胡萝卜素生物合成相关基因的表达调控及其在植物基因工程中的应用[J].分子植物育种,2006,4(1):103-110
    [45] 姜娜娜,李长生,王绛辉等.番茄类胡萝卜素的研究[J].安徽农业科学,2007,35(34):10979-10980.
    [46] Bramley P., Teulieres C., Blain I., et al. Biochemical characterization of transgenic tomato in which carotenoid biosynthesis has been inhibited through the expression of antisense RNA to pTOM5 [J]. Plant J. 1992, 2:343-349
    [47] Fraser P.D., Romer S., Shipton C.A., et al. Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner [J]. Proc Natl Acad Sci USA 2002, 99: 1092-1097.
    [48] Botella-Pav(?)a P. and Rodr(?)guez-Concepci(?)n M.. Carotenoid biotechnology in plants for nutritionally improved foods [J]. Physiologia Plantarurn. 2006, 126(3):369-381
    [49] Rosati C., Aquilani R., Dharmapuri S., et al. Metabolic engineering of β-carotene and lycopene content in tomato fruit [J]. Plant J. 2000, 24:413-419
    [50] Giuliano G., Bartley G.E., Scolnik P.A. Regulation of carotenoid biosynthesis during tomato development [J]. Plant Cell, 1993, 5(4): 379-387
    [51] Dharmapuri S., Rosati C., Pallara P., et al. Metabolic engineering of xanthophyll content in tomato fruits [J]. FEBS Lett. 2002, 519:30-34
    [52] Shewmaker C.K., Sheehy J.A., Daley M., et al. Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects [J]. Plant J.1999, 20(4): 401-412
    [53] Ravanello M.P., Ke D., Alvarez J., et al. Coordinate expression of multiple bacterial carotenoid genes in canola leading to altered carotenoid production [J].Metab. Eng. 2003, 5(4): 255-263
    [54] Romer S., Lubeck J., Kauder F., et al. Genetic engineering of a zeaxanthin-rich potato by antisense inactivation and co-suppression of carotenoid epoxidation [J].Metab. Eng. 2002, 4(4): 263-272
    [55] Ducreux L.J., Morris W.L., Hedley P.E., et al. Metabolic engineering of high carotenoid potato tubers containing enhanced levels of β-carotene and lutein [J]. J. Exp. Bot., 2005, 56(409): 81-89
    [56] Misawa N., Yamano S., Linden H., et al. Functional expression of the Erwinia uredovora carotenoid biosynthesis gene crtI in transgenic plants showing an increase of beta-carotene biosynthesis activity and resistance to the bleaching herbicide norflurazon [J]. The Plant Journal, 1993, 4(5): 833-840
    [57] Misawa N., Masamoto K., Hori T., et al. Expression of an Erwinia uredovora phytoene desaturase gene not only confers multiple resistances to herbicides interfering with carotenoid biosynthesis but also alters xanthophyll metabolism in transgenic plants [J]. The Plant Journal, 1994, 6(4): 481-489
    [58] Mann V., Harker M., Pecker I., et al. Metabolic engineering of astaxanthin production in tobacco flowers [J]. Nat. Biotech. 2000, 18:888-892
    [59] 季静,王罡.来自龙胆草(Getina lutea)的5个类胡萝卜素生物相关酶基因对类胡萝卜素生物合成量影响的差异[J].农业技术生物学报,2002,10(3):62-63
    [60] 梁燕,王鸣,陈杭,陈大明.番茄红素β-环化酶反义RNA基因对烟草的遗传转化[J].西北农林科技大学学报(自然科学版),2003,31(3):73-76
    [61] Burkhardt P.K., Beyer P., Wunn J., et al. Transgenic Rice (Oryza sativa)endosperm expressing daffodil (Narcissus pseudonarcissus) phytoene synthase accumulates phytoene, a key intermediate of provitamin A biosynthesis [J]. Plant J.1997, 11(5): 1071-107
    [62] Ye X., Al-Babili S., Kl(o|¨)ti A., et al. Engineering the provitamin A (beta-carotene)biosynthetic pathway into (carotenoid-free) rice endosperm [J]. Science, 2000, 287:303-305
    [63] Paine J.A., Shipton C.A., Chaggar S., et al. Improving the nutritional value of Golden Rice through increasing pro-vitamin A content [J]. Nat. Biotechnology,2005, 23:482-487
    [64] Mares-Perlman J.A., Millen A.E., Ficek T.L., et al. The body of evidence to support a protective role for lutein and zeaxanthin in delaying chronic disease [J].Overview. Journal of Nutrition, 2002,132: 518-524
    [65] Adam K.K., Sorrells M.E., Liu R.H. Phytochemical profiles and antioxidant activity of wheat varieties [J]. J Agric Food Chem, 2003, 51:7825-7834
    [66] Leenhardt F., Mijalovsky A., Lyan B., et al. Carotenoids Content of Wheat:Importance of Selection and Impact of Breadmaking [C]. International Workshop Modelling quality traits and their genetic variability for Wheat, July 2004, Clermont-Ferrand, France
    [67] Rani K.U., Prasada Rao U.J.S., Leelavathi K., Haridas Rao P. Distribution of Enzymes in Wheat Flour Mill Streams [J]. Journal of Cereal Science, 2001, 34:233-242
    [68] Kruger J.E, Matsuo R.R, Preston K. A comparison of methods for the prediction of Cantonese noodle colour [J]. Canadian Journal of Plant Science, 1992, 72:1021-1029
    [69] Park H., Kreunen S.S., Cuttriss A.J., et al. Identification of the Carotenoid Isomerase Provides Insight into Carotenoid Biosynthesis, Prolamellar Body Formation, and Photomorphogenesis [J]. Plant Cell, 2002, 14:321-332
    [70] Cenci A., Somma S., Chantret N., et al. PCR identification of durum wheat BAC clones containing genes coding for carotenoid biosynthesis enzymes and their chromosome localization [J]. Genome, 2004, 47:911-917
    [71] Travella S., Klimm T.E. and Keller B. RNA Interference-Based Gene Silencing as an Efficient Tool for Functional Genomics in Hexaploid Bread Wheat [J]. Plant Physiology, 2006, 142:6-20
    [72] 孙道杰,何中虎,王辉.小麦面粉黄色素相关基因研究[J].西北植物学报,2006,26(4):655-660
    [73] Pozniak C.J., Knox R.E., Clarke F.R., et al. Identification of QTL and association of a phytoene synthase gene with endosperm color in durum wheat [J]. Theor Appl Genet, 2007, 114:525-537
    [74] Ravindra M.P., Manoj D.O., Shubhada A.T., et al. Mapping and validation of a major QTL for yellow pigment content on 7AL in durum wheat (Triticum turgidum L. Ssp. durum) [J]. Mol Breeding, 2008, 21(4): 485-496
    [75] Zhang W., Dubcovsky J. Association between allelic variation at the Phytoene synthase 1 gene and yellow pigment content in the wheat grain [J]. Theor Appl Genet, 2008, 116(5): 635-645
    [76] 杨芳萍,何心尧,何中虎等.中国小麦品种黄色素含量基因等位变异分子检测及其分布规律研究[J].中国农业科学,2008,41(10):2923-2930
    [77] Vasil I.K. and Anderson O.D. Genetic engineering of wheat gluten [J]. Trends Plant Sci. 1997, 2:292 -297
    [78] 齐莉莉,刘大钧.小麦基因组研究进展[J].麦类作物,1999,19:1-5
    [79] Vaisl V., Castillo A.M., Fmmm M.E., et al. Herbicide resistant fertile transgenic wheat plant obtained by microjectile bombardment of regenerable emhryogenic callus [J]. Biotechnology, 1992, 10(6): 667-674
    [80] 赵慧,张正斌,徐萍.转基因小麦目录[J].麦类作物学报,2005,25(4):116-126
    [81] 尹静,肖佳雷,马凤鸣.小麦转基因技术的应用[J].东北农业大学学报,2006,37(2):245-248
    [82] H. Zhou, J.W. Arrowsmith, M. E. Fromm. Glyphosate-tolerant CP4 and GOX genes as a selectable marker in wheat transformation [J]. Plant Cell Rep., 1995, 15:159-163
    [83] 刘进元,余荔华.植物抗病基因工程的研究进展[J].生物工程进展,1994,2:31-34
    [84] Stoger E., Williams S., Christou P., et al. Expression of the insecticidal lectin from snowdrop (Galathus nivalis agglutinin, GNA) in transgenic wheat plants: effect on predation by the grain aphid Sitobion avenae [J]. Molecular Breeding, 1999, 5(1):65-73
    [85] 于洪欣,柳建军,冯兆礼等.通过花粉管通道法将抗虫基因(CpTI)导入小麦的研究[J].山东农业科学,1999(1):5-8
    [86] 牟红梅,刘树俊,周文娟等.慈菇蛋白酶抑制剂通过花粉管途径对小麦的导入及转基因植株分析[J].遗传学报,1999,26(6):634-642
    [87] 郭亮,文玉香,梁玉梅等.苏云金芽孢杆菌毒蛋白基因在小麦基因组中的甲基化修饰[J].遗传学报,1997,24(3):255-262
    [88] 郭北海,张艳敏,李洪杰等.甜菜碱醛脱氢酶基因(BADH)转化小麦及表达[J].植物学报,2000,42(3):279-283
    [89] 奚亚军,路明.小麦转基因技术的研究现状及在育种上的应用[J].中国农学通报,2002,18(3):55-58
    [90] Payne P.I., Corfield K.G., Holt L.M. Correlation between the inheritance of certain HMW-GS and bread wheat making quality in progenies of six crosses of bread wheat [J]. J Sci Food Agri, 1981, 32(1): 51-60
    [91] Lawrence G.J., MacRitch F., Wrigly C.W. Dough and baking quality of wheat lines deficient in glutenin subunits controlled by the Glu-A1, Glu-B1 and Glu-D1 loci [J].J. Cereal Sci, 1988, 8:177-188
    [92] Blechl A.E., Anderson O.D. Expression of a novel high-molecular-weight glutenin subunit gene in transgenic wheat [J]. Nat. Biotech., 1996, 14:875-879
    [93] Altpeter F., Vasil V., Srivastava V., et al. Integation and expression of the high-molecular-weight glutenin subunit lAxl gene into wheat [J]. Nature Bitechnology, 1996, 14:1155-1159
    [94] Barro F., Rooke L., Bekes F., et al. Transformation of wheat with high molecular weight subunit genes results in improved functional properties [J]. Nat Biotechnol,1997, 15:1295-1299
    [95] 董志峰,马荣才,彭于发,管华诗.转基因植物中外源非目的基因片段的生物安全研究进展[J].植物学报,2001,43(7):661-672
    [96] 王利华,苏乔,包永明.转基因植物中载体框架序列的安全性隐患及解决方案[J].中国生物工程杂志,2004,24(5):38-42
    [97] Fu X., Le T.D., Strfanina F., et al. Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patterns [J]. Transgenic research, 2000, 9:11-19
    [98] Nguyen T.L., Porntip T., Angharad M.R., et al. Linear transgene constructs lacking vector backbone sequences generate transgenic rice plants which accumulate higher levels of proteins conferring insect resistance [J]. Molecular Breeding, 2002,9:231-244
    [99] Zhao Y., Qian Q., Wang H., et al. Co-transformation of gene expression cassettes via particle bombardment to generate safe transgenic plant without any unwanted DNA [J]. In Vitro Cell. Dev. Biol.-Plant, 2007, 43:328-334
    [100] 赵艳.Bar基因表达框和完整质粒转化水稻农艺性状的变异效应比较[J].杭州师范学院学报(自然科学版),2004,3(2):133-135
    [101] 赵艳,于彦春,钱前等.无载体主干序列的bar和cecropin B基因表达框共转化水稻[J].遗传学报,2003,30(2):135-141
    [102] Romano A., Raemakers K., Bernardil J., et al. Transgene organisation in potato after particle bombardment-mediated (co-)transformation using plasmids and gene cassettes [J]. Transgenic Research, 2003, 12:461-473
    [103] Sandhu S. and Altpeter F. Co-integration, co-expression and inheritance of unlinked minimal transgene expression cassettes in an apomictic turf and forage grass (Paspalum notatum Flugge) [J]. Plant Cell Rep, 2008, 27:1755-1765
    [104] Vidal J.R., Kikkert J.R., Donzelli B.D., et al. Biolistic transformation of grapevine using minimal gene cassette technology [J]. Plant Cell Rep, 2006, 25:807-814
    [105] Yao Q., Cong L., Chang J., et al. Low copy number gene transfer and stable expression in a commercial wheat cultivar via particle bombardment [J]. J. Exp.Bot., 2006, 57(14): 3737-3746
    [106] Yao Q., Cong L., Li K., et al. Optimization of wheat co-transformation procedure with gene cassettes resulted in an improvement in transformation frequency [J].Molecular Biology Rep., 2007, 34(1): 61-67
    [107] 姚琴,丛玲,陈明洁等.无载体框架序列转基因小麦中外源lAxl基因表达框的遗传分析[J].遗传,2006,28(6):59-62
    [108] 姚琴.“清洁”载体转化系统的建立与应用[D].武汉,华中科技大学,2006
    [109] Shi N., He G., Li K. Transferring a Gene Expression Cassette Lacking the Vector Backbone Sequences of the lAxl High Molecular Weight Glutenin Subunit into Two Chinese Hexaploid Wheat Genotypes [J]. Agricultural Sciences in China,2007, 6(4): 381-390
    [110] Kumar S., Arul L., Talwar D., et al. PCR amplification of minimal gene expression cassette: an alternative, low cost and easy approach to 'clean DNA' transformation[J]. Current Science, 2006, 91:930-934
    [111] Naik P.S., Chanemougasoundharram A., Paul Khurana S.M. and Kalloo G. Genetic manipulation of carotenoid pathway in higher plants [J]. Current Science, 2003,85(10): 1423-1430
    [112] Sharp P.J., Johnstons S., Brown G., et al. Validation of molecular markers for wheat breeding. [J]. Australian Journal of Agricultural research, 2001, 52(11-12):1357-1366
    [113] Buckner B., Miguel P.S., J anick-Buckner D., et al. The yl gene of maize codes for phytoene synthase [J]. Genetics, 1996, 143 (1): 479-488
    [114] He X.Y., Zhang Y.L., He Z.H., et al. Characterization ofphytoene synthase 1 gene(Psyl) located on common wheat chromosome 7A development of a functional marker [J]. Theor Appl Genet, 2008, 16(2): 213-21
    [115] 张庆华,茅矛,陈竺.基因组研究中全长cDNA克隆的策略[J].生物工程进展,2000,20(4):3-5
    [116] Frohman M.A, Dush M.K., Martin G.R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer [J]. Proc Nat Acad Sci, 1988, 85:8998-9002
    [117] Schaefer B.C. Revolutions in rapid amplification of cDNA ends: new strategies for polymerase chain reaction cloning of full-length cDNA ends [J]. Analytical Biochemistry., 1995, 227:255-273
    [118] Dieffenbach C.W., Dveksler G.S. PCR Primer: A Laboratory Manual [M]. Beijing,Science Press, 1998, 268-286
    [119] Cunningham F.X. and Gantt E. Genes and enzymes of carotenoids biosynthesis in plants [J]. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49:557-583
    [120] Gallagher C.E., Matthews P.D., Li F., et al. Gene Duplication in the Caroetenoid biosynthetic Pathway Preceded Evolution of the Grasses [J]. Plant Physiology,2004, 135:1776-1783
    [121] Li F., Vallabhaneni R., and Wurtzel E.T. PSY3, a New Member of the Phytoene Synthase Gene Family Conserved in the Poaceae and Regulator of Abiotic Stress-Induced Root Carotenogenesis [J]. Plant Physiology, 2008, 146:1333-1345
    [122] Ugarcic-Hardi Z., Peric L., Strelec I., et al. Comparison of colorimetric and spectrophotometric methods for color determination in pasta [J]. Z Lebensm.Unters. Forsch. A, 1999, 208(5-6): 383-387
    [123] ICC method 152. In Standard Methods of the International Association for Cereal Science and Technology; ICC: Verlag Moritz Sch(a|¨)fer, Detmold, Germany, 1990
    [124] AACC 14-50. In Approved Methods of the American Association of Cereal Chemists; AACC, St. Paul, MN 1961 (revised)
    [125] Panfili G., Fratianni A., Irano M. Improved normal-phase high-performance liquid chromatography procedure for the determination of carotenoids in cereals [J]. J.Agric. Food Chem. 2004, 52:6373-6377
    [126] Fratianni A., Irano M., Panfili G., Acquistucci R. Estimation of color of durum wheat. Comparison of WSB, HPLC and reflectance colorimeter measurements [J].J. Agric. Food Chem. 2005, 53: 2373-2378.
    [127] Burkhard S. and V B(o|¨)hm V. Development of a New Method for the Complete Extraction of Carotenoids from Cereals with Special Reference to Durum Wheat(Triticum durum Desf.) [J]. J. Agri. Food Chem., 2007, 55, 8295-8301
    [128] 孙延芳.硬粒小麦类胡萝卜素与蛋白质的研究[D].西北农林科技大学,2007,28-29
    [129] Pinzino C., Nanni B. and Zandomeneghi S. Aging, free radicals, and antioxidants in wheat seeds [J]. J. Agri. Food Chem., 1999, 47:1333-1339
    [130] Calurri L., Capocchi A., Galleschi L., et al. Antioxidants, free radicals, storage proteins, puroindolines, and proteolytic activities in bread wheat (Triticum aestivum) seeds during accelerated aging [J]. J. Agri. Food Chem., 2004, 52:4274-4281
    [131] Lamacchia C., Shewry RR., Fonzo N.D., et al. Endosperm-specific activity of a storage protein gene promoter in transgenic wheat seed [J]. J. Exp. Bot., 2001, 52:243-250
    [132] Palaisa K.A., Morgante M., Williams M., et al. Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci [J].Plant Cell, 2003, 15:1795-1806
    [133] Romer S., Fraser P.D., Kiano J.W., et al. Elevation of the provitamin A content of transgenic tomato plants [J]. Nature Biotechnology, 2000, 18:666-669
    [134] Ravanello M.P., Ke D., Alvarez J., et al. Coordinate expression of multiple bacterial carotenoid genes in canola leading to altered carotenoid production [J].Metab. Eng., 2003, 5:255-263
    [135] Barro F., Cannell M.E., Lazzeri P.A., et al. The influence of auxins on transformation of wheat and tritordeum and analysis of transgene integration patterns in transformants [J]. Theor. Appl. Genet., 1998, 97:684-695
    [136] Stacey J. and Isaac P. Isolation of DNA from plants [J]. Methods Mol. Biol., 1994,28:9-15
    [137] Sambrook J., Fritsch E.F. and Manniatis T. Molecular Cloning: a laboratory manual, 2nd edition [M]. New York, Cold Spring Harbor Laboratory Press, 1989,474-490

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700