用户名: 密码: 验证码:
基于长期健康监测的连续刚构梁桥的性能分析与演化规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
健康监测是现代大型桥梁结构不可或缺的组成部分,它能为桥梁的设计、施工、使用和维修决策提供性能、状态信息和科学依据。但是由于健康监测数据常常是多种因素综合作用的结果,因此,长期健康监测数据分析与挖掘成为一个挑战性的前沿课题。本文综合分析了国内外大型桥梁监测系统及性能分析、安全评定研究现状,并以肇庆西江大桥的健康监测系统为基础,完善了集中式健康监测管理系统,较深入系统地分析了肇庆西江大桥运营期间监测数据与结构状态性能,解决了一些相关的关键科学技术问题。主要研究内容及其成果如下:
     根据温度实测数据,详细分析了在太阳辐射等自然环境条件下混凝土箱梁的温度变化规律;基于正态分布概率模型,计算得到了具有沥青铺装层的混凝土箱梁温度作用代表值;提出了混凝土箱梁竖向温度梯度模式可采用幂函数加折线的形式描述,且顶底板温差与大气温度成线性正比关系;详细分析了季节温度概率分布,得到该桥运营期间的最大季节升温温差为23.4℃,最大季节降温温差为20℃。分析结果说明目前桥梁工程设计所采用的温差偏小。
     通过对长期应变监测数据的分析和确定数据筛选机制,成功地测量了在役桥梁混凝土的收缩徐变及其演化规律。分析了国际上常用的三种收缩徐变模型技术特点和适应性,推荐采用模型进行工程相关的收缩徐变计算,并建议采用等效龄期思想,对温度效应对收缩徐变的影响进行修正。应用CEB-FIP(1990)模型分析了背景桥梁的收缩徐变,结果和实测值比较吻合。
     基于监测系统所采集的大量应变数据,从机理和算法上解决了应变监测数据的多因素耦合效应、超重车引起混凝土桥梁结构变形小等困难,发展了针对超重汽车类异常事件的识别方法。在分析长期应变监测信号的特征基础上,利用小波变换在信号突变识别方面有着优越性能的特点,对信号进行小波变换和异常信号的初步筛选,确定少量异常数据的突变位置,然后计算突变位置的应变变化幅度,并与有限元模拟的超重汽车引起的应变变化幅度对比,判定其是否为超重汽车荷载异常事件。推导了超重车引起的异常信号的捕获概率,成功地估算了背景桥梁上每天的超重车数量。基于Miner理论,推导了超重汽车引起桥梁关键部位的附加损伤的估算公式。同时基于大量监测数据,采用自编程序识别出超重汽车疲劳应力谱,并估算得到了背景桥在设计基准期内由超重汽车引起的损伤值。
     利用监测系统涵盖混凝土浇筑、凝固、施工和营运全过程的特点,提出了由监测应变数据直接换算出桥梁内部混凝土当前应力的算法。基于将近5年的应变监测数据,本文提出一种局部时变可靠度评估方法,即以混凝土应力和强度作为的桥梁局部可靠度功能函数中的荷载(S)与抵抗力(R),首次在国际上实现基于长期健康监测的荷载概率分布及其随时间变化规律(五年)的测量。通过对该桥各监测的局部时变可靠度分析,能够较客观地评估桥梁在监测点附近的可靠度,以及这些可靠度随时间的变化。结果表明此法可行,并且能够帮助桥梁工程师和桥梁管理者制定相应的桥梁检查和维护策略。
Health monitoring is the indispensable component of the modern large-scale bridges andit provides performance, status and other scientific information for bridge design, construction,services and maintenance strategies. However, due to the health monitoring data often theresulted from the combined effects, the analysis and mining of the data becomes a challengingtopic in the whole world. This paper systematically summarizes the monitoring systems andthe research state of their performance analysis and safety evaluation of world-widelarge-scale bridges. Based on the health monitoring system of Zhaoqing West River Bridge,the thesis improves the centralized monitoring system, and deeply analyzes the monitoringdata and structural performance of Zhaoqing West River Bridge in service and solves somerelated key scientific problems. The main researches and results are as follows:
     According to the measured temperature data, the temperature variation of the concretebox-girder is analyzed in detail under the solar radiation and other natural conditions. Basedon the normal distribution probability, the representative values of temperature effect of thebox girder with asphalt layer is recommended; It is concluded that the vertical temperaturegradient of the concrete box-girder may be described in the form of combination of the powerand the broken line, and the temperature difference between the top deck and the base plate isproportional to the atmospheric temperature. The probability distribution of seasonaltemperatures is analyzed, and the maximum measured seasonal rising temperature is23.4℃and the dropping temperature is20℃during the service time of the bridge, which shows thatthe temperature difference used in bridge engineering design is too small in Guangdong.
     By the analysis on the monitored data and establishing the mechanism of selecting theeffective data, the concrete shrinking and creeping strains and their evolution in the servicebridge are measured successfully. After the technical characteristics and adaptability of threecommon shrinkage and creep models are analyzed, the CEB-FIP (1990) model is finallyrecommended for the calculations in the similar concrete structures. It is recommended tomodify the the shrinkage and creep model with effects of temperature by the age-equivalentidea. The shrinkage and creep of the concrete on the background bridge was analyzed with the model, and the results have good agreement with that from measurement.
     Based on abundant monitored strains, the difficulties are overcome from mechanism andalgorithm, which the monitored strains are coupled with multiple factors and the strainscaused by overloaded vehicles are small in a concrete bridge. A methodology is developed toidentify overloaded vehicles. Based on the analysis of the characteristics of long-termmonitored data, By taking the advantages of wavelet transform on detecting abnormal data insignal, the wavelet is used for identify abnormal data and location primarily, the change ofstrains at abnormal positions between adjacent signal is compared with the correspondingfinite element simulation value to determine it whether induced by overloaded vehicle or not.The capturing probability of the overloaded vehicles is derived, and the daily number ofoverloaded vehicles on the background bridge is estimated successfully. Based on Minertheory, the formula of the additional damage on the key portions caused by overloadedvehicles is derived. At last, based on extensive monitored data, the fatigue stress spectrumgenerated by overloaded vehicles and the additional damage of the background bridge in thedesigned benchmark period caused by overloads vehicles are estimated.
     By the use of the characteristics that the monitoring system covers the whole processincluding concrete pouring, solidification, construction and service, an algorithm is suggestedto convert the monitored strain into the stress of the bridge directly. Based on nearly five yearsof monitored strain data of the bridge, an evaluation method of localized time-dependentreliability is suggested, in which the monitored stress and strength of concrete in bridge aretaken as the load (S) and resistance (R) in the localized reliability functional functionrespectively. The load probability distribution and its variation with time (5years) are firstlyrealized from the long-term health monitoring in the world. By means of the localizedtime-varying reliability analysis of the bridge, not only the reliability of the bridge in thevicinity of the monitoring points can be assessed objectively, but also the variations of theirreliability with time can be demonstrated. Results show that this method can help bridgeengineers and managers to decide a bridge inspection or maintenance strategy.
引文
[1]楼庄鸿.楼庄鸿桥梁论文集[M].北京:人民交通出版社,2004.
    [2]罗旗帜,李新平,姚玲森.桥梁工程[M].广州:华南理工大学出版社,2006.
    [3] Mathivat J., The Cantilever Construction of Prestressed Concrete Bridge [M]. JohnWiley&Sons,1983.
    [4]马保林.高墩大跨连续刚构桥[M].北京:人民交通出版社,2000.
    [5]雷俊卿.桥梁悬臂施工与设计[M].北京:人民交通出版社,2000.
    [6]张通.大跨刚构-连续梁桥的全寿命性能监测与分析[D].哈尔滨工业大学博士学位论文,2008.
    [7]李保木.集中式桥梁健康监测系统设计与监测数据分析[D].华南理工大学硕士学位论文,2008.
    [8] Kim H. M., Bartkowicz T. J., Damage detection and health monitoring of large spacestructures [J]. Sound and Vibration,1993,6(27):12-17.
    [9] Starritt L. W., Matthews L. K., Laser optical displacement system [J].1995.
    [10] Topole K. G., Stubbs N., Non-destructive damage evaluation of a structure from limitedmodal parameters [J]. Earthquake Engineering and Structural Dynamics,1995,11(24):1427-1436.
    [11] Curran P., Tilly G., Design and Monitoring of the Flintshire Bridge [J]. StructuralEngineering International,1999,3(9):225-228.
    [12] Muria V. D., Comez R., King C., dynamic structural properties of cable stayed tampicobridge [J]. Journal of Structure Engineering,1991,11(117).
    [13]兰海,史家钧.大跨斜拉桥结构的综合监测[J].结构工程师,2000(2):5-11.
    [14] Cheung M. S., Tadros G. S., Field monitoring and research on performance of theconfederation bridge [J]. Journal of Civil Engineering,1997,6(24):951-962.
    [15] NIuadi D. A., Monitoring of a concrete arch bridge during construction [J]. SmartStructures and Materials,2002:4696-5017.
    [16] Nigbor R. L., Diehl J. G., Two years’ experience using OASIS realtime remotecondition monitoring system on two large bridges: Structural health monitoring: currentstatus and perspectives, Lancaster (PA),1997[C]. Technomic.
    [17] Cheung M. S., Naumoski N., The first smart long-span bridge in Canada—healthmonitoring of the Confederation Bridge: Proceedings of the1st international workshopon structural health monitoring of innovative civil engineering structures, Winnipeg,2002[C]. ISIS Canada Corporation.
    [18] Mufti A. A., Structural health monitoring of innovative Canadian civil engineeringstructures [J]. Structural Health Monitoring,2002,1(1):89-103.
    [19] Wu Z. S., Structural health monitoring and intelligent infrastructures in Japan:Structural health monitoring and intelligent infrastructure, Lisse,2003[C]. Balkema.
    [20] Koh H. M., Choo J. F., Kim S. K., Recent application and development of structuralhealth monitoring systems and intelligent structures in Korea: Structural healthmonitoring and intelligent infrastructure, Lisse,2003[C]. Balkema.
    [21] Yun C. B., Lee J. J., Kim S. K., Recent R&D activities on structural health monitoringfor civil infra-structures in Korea [J]. Journal of Civil Engineering,2003,7(6):651-673.
    [22] Fujino Y., Abe M., Structural health monitoring—current status and future: Proceedingsof the2nd European workshop on structural health monitoring, Lancaster (PA),2004[C].DEStech.
    [23]肖纯.工程结构远程健康监测系统的集成与数据处理研究[D].武汉理工大学博士学位论文,2006.
    [24]魏平.疲劳寿命计在结构健康监测中的应用研究[D].南京航空航天大学硕士学位论文,2004.
    [25] Lau K. C., Mak P. N. W., Structural Health Monitoring of Three Cable-supportedBridges in Hong Kong [J]. Structural Health Monitoring,1999:450-460.
    [26]刘西拉.重大土木与水利工程安全性及耐久性的基础研究[J].土木工程学报,2001,34(6):1-7.
    [27]黄腾,郑玉华等.南京长江第二大桥结构安全监测系统[J].河海大学学报(自然科学版),2003,31(4):411-414.
    [28]周红青.南京长江大桥结构安全监测[J].铁道标准设计,2004:70-72.
    [29]张敏,杨志芳,朱利明.东海大桥桥梁结构健康监测系统研究与设计[J].桥梁建设,2006(2):67-70.
    [30]李惠,杨光焕,马玉文.东营黄河公路大桥工程监测系统设计[J].公路交通科技,2008(48):18-21.
    [31]黄平明,刘旭政,张永健.基于健康观测的大跨度悬索桥结构评估[J].江南大学学报(自然科学版),2008,7(2):211-215.
    [32]李松报.基于桥梁健康监测系统的郑州黄河公铁两用桥的桥梁养护管理体系的构建[J].桥梁,2009(8):58-62.
    [33]郭志明,张光伟,丁鸿志.南京三桥监测系统在特大雪灾中的应用[J].公路,2010(8):43-48.
    [34]陈阶亮,李松,芮旭东.钱江四桥结构健康监测系统及其运营效能综述[J].城市道桥与防洪,2010(2):65-69.
    [35]王祺明,孙智,周哲峰.上海长江大桥结构健康监测系统设计思路[J].世界桥梁,2009(增刊1):34-37.
    [36] Houser G. W., Bergman L. A., structural control: past, present, and future[J]. Journal ofEngrg Mech,1997,9(123).
    [37]张和.战时桥梁损伤监测及其系统设计[D].南京理工大学,2004.
    [38] Ko J. M., Ni Y. Q., Technology developments in structural health monitoring oflarge-scale bridges[J]. Engineering Structures,2005,27:1715-1725.
    [39]孙全胜.智能桥梁结构健康监测的研究[D].东北林业大学,2005.
    [40] Emerson M., Temperature differences in bridges: basis of design requirements [J].Transport&Road Research Laboratory (Great Britain), TRRL Report,1977,765:1-39.
    [41]康为江.钢筋混凝土箱梁日照温度效应研究[D].湖南大学硕士学位论文,2000.
    [42] Priestley M. J., Design of concrete bridges for temperature gradients [J]. New ZealandEngineering,1978,75(5):209-217.
    [43] Hoffman P. C., McClure R. M., West H. H., Temperature study of an experimentalsegmental concrete bridge [J]. Journal-Prestressed Concrete Institute,1983,28(2):78-97.
    [44] Priestly M. J. N., Effeets of Tranvers Temperature Gradients on Bridges, CentralLaboratories, New Zealand Ministry of works, Report No.394, OCT.,1971.
    [45] Hambly E. C., Temperature distributions and stresses in concrete bridges [J]. StructuralEngineer,1978,56A (5):143-148.
    [46] Dilger W. H., Amin G., Chan M. et al., Temperature stresses in composite box girderbridges [J]. Journal of Structural Engineering,1983,109(6):1460-1478.
    [47] Hoffman P. C., McClure R. M., West H. H., Temperature problem in a prestressedbox-girder bridge [J]. Transportation Research Record,1984:42-50.
    [48] Fu H. C., Ng S. F., Cheung M. S. Thermal behavior of composite bridges [J]. Journal ofstructural engineering New York, N.Y.,1989,116(12):3302-3323.
    [49] Saetta A., Scotta R., Vitaliani R., Stress analysis of concrete structures subjected tovariable thermal loads [J]. Journal of Structural Engineering,1993,121(3):446-457.
    [50]刘兴法.混凝土结构的温度应力分析[G].北京:人民交通出版社,1991.
    [51]赵毅强,林才奎,汪徐送.太平大桥混凝土箱体的温度场[J].中南汽车运输,1999,34:34-37.
    [52]康为江,方志,邹银生.钢筋混凝土连续箱梁日照温差应力的实验研究[J].湖南交通科技,2001,27(1):63-69.
    [53]郭棋武,方志,邓海等.混凝土斜拉桥的温度效应分析[J].中国公路学报,2002,15(2):48-51.
    [54]刘耀东,陈祥宝.采用人工神经网络求解温度场算法研究[J].中国公路学报,2000,13(1):69-72.
    [55]张元海,李乔.桥梁结构日照温差二次力及温度应力计算方法研究[J].中国公路学报,2004,17(1):49-52.
    [56]王毅.预应力混凝土连续箱梁温度作用的观测与分析研究[D].东南大学博士学位论文,2006.
    [57]李全林.日照下混凝土箱梁温度场和温度应力研究[D].湖南大学硕士学位论文,2004.
    [58]张明远,卢哲安,刘鹏飞等.某大跨预应力混凝土连续梁桥的温度效应分析[J].武汉理工大学学报,2007,29(2):110-113.
    [59]谭毅平,韩大建.预应力混凝土箱梁桥日照温度效应研究[J].深圳大学学报理工版,2008,25(1):43-49.
    [60]杨小兵.混凝土收缩徐变预测模型研究[D].武汉大学硕士学位论文,2004.
    [61]林南熏,陈叶军.高层钢筋混凝土结构考虑建造过程的收缩徐变效应[J].华南理工大学学报(自然科学版),2003,31(2):71-76.
    [62] Bazant Z. P., Prediction of concrete creep and shrinkage: past, present and future [J].Nuclear Engineering and Design,2001,203:27-38.
    [63]周履,陈永春.收缩徐变[M].北京:中国铁道出版社,1994.
    [64] Bazant Z. P., Prediction of concrete creep effects using age-adjusted effective modulusmethod [J]. ACI Journal,1972,69:212-217.
    [65]向小斌.大跨径连续刚构桥混凝土徐变实验研究[D].武汉理工大学硕士学位论文,2007.
    [66]卫军,赵红京.极端干燥地区钢筋混凝土梁的长期变形计算[J].建筑结构,2003(05).
    [67]吴胜兴,周氏.混凝土徐变度及应力松弛系数的估算方法综述与建议[J].水利学报,1991(10):65-69.
    [68]胡狄.预应力混凝土桥梁徐变效应分析[D].中南大学博士学位论文,2003.
    [69] CEB-FIP. Model Code for Concrete Structures [S]. Paris:1978.
    [70] CEB欧洲国际混凝土委员会.1990年CEB-FIP模式规范(混凝土结构)[S].中国建筑科学研究结构所规范室译,1991.
    [71] Committee ACI. Prediction of creep, shrinkage and temperature effects in concretestructures [S]. Manual of concrete practice,1992.
    [72] Bazant Z. P., Murphy W. P., Creep and Shrinkage Prediction Model for Analysis andDesign of Concrete Structures-Model B3[J]. Materials and Structures,1995,180(28):357-365.
    [73] Gardner N. J., Zhao J. W., Creep and Shrinkage Revisited [J]. ACI Materials Journal,1993,90(3):236-246.
    [74] Gardner N. J., Lockman M. J., Design Provisions for Drying Shrinkage and Creep ofNormal-Strength Concrete [J]. ACI Materials Journal,2001,98(2):159-167.
    [75] Kanstad T., Deformations of segmentally cast cantilever bridges of high-strengthconcrete: Proceedings of the5th International RILEM Symposium on Creep andShrinkage of Concrete, London, Engl,1993[C]. Publ by E.&F.N. Spon.
    [76] Peter T. F., Deformations in Concrete Cantilever Bridges: Observations and TheoreticalModeling [D]. Norway: The Norwegian University of Sciencs and Technology,2002.
    [77] Li P. X., Robertson N. I., Long-term Performance Predictions of the North HalawaValley Viaduct [R].University of Hawaii,2003.
    [78]孙海林,叶列平,杨孚衡.城市轨道交通预应力混凝土连续梁桥的收缩和徐变分析[J].公路交通科技,2005,22(1):89-92.
    [79]袁颖.桥梁结构损伤识别方法的相关问题研究[D].大连:大连理工大学,2005.
    [80]王利恒.基于线性及非线性动力特性的桥梁结构非破损检测研究[D].北京:北京工业大学,2006.
    [81] Hajela P., Soeiro J. F., Structural damage detection based on static and modal analysis[J]. AIAA Journal,1990,28(6):1110-1125.
    [82] Sanayei M., Onipede O., Damage assessment of structures using static test data [J].AIAA journal,1991,29(7):1174-1179.
    [83] Hjelmstad D. K., Shin S., Damage detection and assessment of structures from staticresponse [J]. Journal of engineering mechanics,1997,123(6):568-576.
    [84] Mares C., Surace C., An application of genetic algorithms to identify damage in elasticstructures [J]. Journal of Sound and Vibration,1995,195(2):195-215.
    [85] Chiang Y. D., Lai Y. W., Structural damage detection using the simulated evolutionmethod [J]. AIAA JOURNAL,1999,37(10):1331-1333.
    [86] Chou H. J., Ghaboussi J., Genetic algorithm in structural damage detection [J].Computers and Structures,2001,79(14):1335-1353.
    [87] Venkatasubramanian V., King C., A neural network methodology for process faultdiagnosis [J]. AIChE Journal,1989,35(12):1993-2002.
    [88] Wu X., Ghaboussia H. J. J., Use of neural networks in detection of structural damage [J].Computers&Structures,1992,42(4):649-659.
    [89] Elkordy F. M., Lee C. C. K., Application of neural networks in vibrational signatureanalysis [J]. Journal of Engineering Mechanics,1994,120(2):250-265.
    [90] Hou Z., Noori S. M. R., Wavelet-based approach for structural damage detection [J].Journal of Engineering Mechanics,1997,126(7):677-683.
    [91] Sun Z., Chang C. C., Structural damage assessment based on wavelet packet transform[J]. Journal of Structure Engineering,2002,128(10):1354-1361.
    [92] Bayissa L. W., Haritos N. S., Thelandersson. Vibration-based structural damageidentification using wavelet transform [J]. Mechanical Systems and Signal Processing,2008,22:1194-1215.
    [93] Pandey K. A., Biswas M., Damage detection from changes in flexibility [J]. Journal ofSound and Vibration,1994,169(1):3-17.
    [94] Lin S. C., Location of modeling errors using modal test data [J]. AIAA Journal,1990,169(1):1650-1654.
    [95] Park S. Y., Park L. H. S., Weighted-error-matrix application to detect stiffness damageby dynamic-characteristic measurement [J]. The International Journal of Analytical andExperimental Modal Analysis,1988,3(3):101-107.
    [96] Smith W. S., Beattue A. C., Secant-method matrix adjustment for structural models [J].AIAA Journal,1991,28(6):1123-1130.
    [97] Kabe M. A., Stiffness matrix adjustment using mode data [J]. AIAA Journal,1985,23(9):1431-1436.
    [98] Berman A., Nagy J. E., Improvement of large analytical model using test data [J].AIAA Journal,1983,21(8):1168-1173.
    [99] Ding Y. L., Li A. Q., Deng Y., Structural Damage Warning of a Long-SpanCable-Stayed Bridge Using Novelty Detection Technique Based on Wavelet PacketAnalysis [J]. Advances in Structural Engineering,2010,13(2):291-298.
    [100] Oh C. K., Sohn H., Bae I. H., Statistical novelty detection within the Yeongjongsuspension bridge under environmental and operational variations [J]. Smart Materialsand Structures,2009,18(12).
    [101] Ni Y. Q., Li H., Wang J. Y., Implementation issues of novelty detection technique forcable-supported bridges instrumented with a long-term monitoring system [J]. Proc. SPIE,2002,4704(225):1117-1127.
    [102] Zhang Q. W., Damage feature extraction and novelty detection for bridge healthmonitoring [J]. Journal of Tongji University,2003,31(3):258-262.
    [103] Moyo P., Brownjohn J. M. W., Detection of anomalous structural behavior usingwavelet analysis [J]. Mechanical Systems and Signal Processing,2002,16(2/3):429-445.
    [104] Omenzetter P., Brownjohn J. M. W., Moyo P., Identification of unusual events inmulti-channel bridge monitoring data [J]. Mechanical Systems and Signal Processing,2004,18:409-430.
    [105]周奎,王琦,刘卫东等.土木工程结构健康监测的研究进展综述[J].工业建筑,2009,39(3):96-102.
    [106]杨玉冬,王浩.大跨桥梁结构健康监测和状态评估研究进展[J].江苏建筑,2005,2:18-21.
    [107] Aktan A. E., Farhey D. F. et al., Condition Assessment for Bridge Management [J].Infrastruct Systems,1996,2(3):108-117.
    [108] Galambos T. V., Systems Reliability and Structural Systems [J]. Structural Safety,1990,(7):101-108.
    [109] Hohenbichler M., Rackwitz R., First-Order Concepts in System Reliability [J].Structural Safety,1983,(1):177-188.
    [110] Fabio B., Franco B., Frangopol D. M. et al., Probabilistic Service Life Assessment andMaintenance Planning of Concrete Structures [J]. JOURNAL OF STRUCTURALENGINEERING,2006,132(5):810-825.
    [111] Sohn H., Law K. H., Bayesian probabilistic damage detection of a reinforced-concretebridge column [J]. Earthquake Engng Struct. Dyn.,2000,29:1131-1152.
    [112] Liang M. T., Wu J. H., Liang C. H., MULTIPLE LAYER FUZZY EVALUATIONFOR EXISTING REINFORCED CONCRETE BRIDGES [J]. JOURNAL OFINFRASTRUCTURE SYSTEMS,2001,7(4):144-159.
    [113] Anoop M. B., Rao K. B., Application of Fuzzy Sets for Remaining Life Assessment ofCorrosion Affected Reinforced Concrete Bridge Girders [J]. JOURNAL OFPERFORMANCE OF CONSTRUCTED FACILITIES,2007,21(2):166-171.
    [114] Zhao Z. Y., Chen C. Y., A fuzzy system for concrete bridge damage diagnosis [J].Computers and Structures,2002,80:629-641.
    [115] Bakhary N., Hao H., Deeks A. J., Damage detection using artificial neural network withconsideration of uncertainties [J]. Engineering Structures,2007,29:2806-2815.
    [116] Wang G. H., Wu H. G., Hu L. H., Study on the Method of Bridge Structural DamageIdentif ication Based on RBF Neural Network [J].兰州交通大学学报(自然科学版),2006,25(4):18-26.
    [117] Lee C. K., Kim S. K., GA-based algorithm for selecting optimal repair andrehabilitation methods for reinforced concrete (RC) bridge decks [J]. Automation inConstruction,2007,16:153-164.
    [118]朱劲松,肖汝诚.基于定期检测与遗传算法的大跨度斜拉桥损伤识别[J].土木工程学报,2006,39(5):85-89.
    [119]王永平,张宝银,张树仁.桥梁使用性能模糊评估专家系统[J].中国公路学报,1996,9(2):62-67.
    [120] Freudenthal A. M., Safety of struetures [J]. Trans. ASCE,1947,112:125-180.
    [121] Conell C. A., A Probability-based structural code [J]. ACT,1968,66(12):974-985.
    [122] Frangopol D. M., Kong J. S., Gharaibeh E. S., Reliability-based Life-CycleManagement of Highway Bridges [J]. Journal of Computing in Civil Engineering,2001,(1):27-34.
    [123] Engelund S., A Benchmark Study on Importance Sampling Techniques in StructuralReliability [J]. Structural Safety,1993,(12):255-276.
    [124] Reddy R. K., A Random-fuzzy Rreliability Analysis: Proceedings of the FirstInternational Symposium on Uncertainty Modeling and Analysis, Maryland,1990[C].
    [125] Enright M. P., Frangopol D. M., Condition Prediction of Deteriorating ConcreteBridges Using Bayesian Updating [J]. Journal of Structural Engineering,1999,125(10):1118-1125.
    [126] Enright M. P., Frangopol D. M., Service-Life Prediction of Deteriorating ConcreteBridges [J]. J.Struct.Engrp.,1998,124(3):309-317.
    [127] Frangopol D. M., Strauss A., Kim S. Y., Bridge Reliability Assessment Based onMonitoring [J]. JOURNAL OF BRIDGE ENGINEERING,2008,13(3),258-270.
    [128] Akgul F., Frangopol D. M., Lifetime Performance Analysis of Existing ReinforcedConcrete Bridges[J]. Journal of Infrastructure Systems,2005,11(2):122-128.
    [129] Stewart M. G., Mullard J. A., Spatial Time-Dependent Reliability Analysis of CorrosionDamage and the Timing of First Repair for RC Structures [J]. Engineering Structures,2007,(29):1457-1464.
    [130]周建庭,黄尚廉,王梓夫等.基于可靠度理论的桥梁远程智能监测评价体系研究[J].桥梁建设,2005(3):12-15.
    [131]吴大宏.基于遗传算法和神经网络的桥梁结构健康监测系统研究[D].西南交通大学博士学位论文,2002.
    [132]禹智涛,韩大建.既有桥梁可靠性的综合评估方法[J].中南公路工程,2003,28(3):8-12.
    [133]刘沐宇,袁卫国,任飞.大跨度钢管混凝土拱桥安全性模糊综合评价[J].武汉理工大学学报,2003,25(5):33-36.
    [134]牛荻涛,王庆霖.一般大气环境下混凝土强度经时变化模型[J].工业建筑,1995(6):36-38.
    [135]张苑竹,金伟良.基于可靠度的混凝土梁耐久性优化设计[J].浙江大学学报,2003,37(3):325-330.
    [136]肖纯.工程结构远程健康监测系统的集成与数据处理研究[D].武汉理工大学博士学位论文,2006.
    [137]吴小平.复杂桥梁结构综合监测系统开发研究[D].浙江大学博士学位论文,2005.
    [138]吴大宏,赵人达.基于神经网络的混凝土桥梁荷载识别方法研究[J].中国铁道科学,2002,23(1):25-28.
    [139] Rieles J. M., Kosmatka J. B., Damage Deteetion In Elastie Sturetuers Using VibartoryResidual Forces And Weighted Sensitivity [J]. AIAA Jounral,1992,30:2310-2316.
    [140]张启伟.大型桥梁健康监测概念与监测系统设计[J].同济大学学报,2001(1):65-69.
    [141]华燕,王际芝,黄勇.大型结构试验和结构监测中的数据采集系统[J].工程力学,2003,20(2):166-170.
    [142]汤立群,黄培彦,黄小清.基于互联网的集中式远程实时大跨度桥梁健康监测系统技术:中国力学学会学术大会,北京,2005[C].
    [143]葛耀君.分段施工桥梁分析与控制[M].北京:人民交通出版社,2003.
    [144]贾润中,张玥,胡兆同.钢筋混凝土连续弯箱梁桥的温度梯度[J].长安大学学报(自然科学版),2006,26(4):58-62.
    [145]李松,彭友松,强士中.哑铃形钢管混凝土拱日照温度分布研究[J].中国铁道科学,2006,27(5):71-74.
    [146] Elbadry M. M., Ghali A., Temperature variations in concrete bridges [J]. Journal ofStructural Engineering,1983,109(10):2355-2374.
    [147]岳笛,刘纲,杨溥等.重庆石板坡长江大桥复线桥温度效应分析[J].重庆建筑大学学报,2007,29(5):119-122.
    [148]孙全胜,代景国.严寒地区某斜拉桥冬季混凝土箱梁温度梯度试验研究[J].中国安全科学学报,2007,17(4):146-150.
    [149]项海帆.高等桥梁结构理论[M].北京:人民交通出版社,2002.
    [150]刘兴法.混凝土结构的温度应力分析[M].北京:人民交通出版社,1991.
    [151]王毅.预应力混凝土连续箱梁温度作用的观测与分析研究[D].东南大学博士学位论文,2006.
    [152]方志,汪剑.大跨预应力混凝土连续箱梁桥日照温差效应[J].中国公路学报,2007,20(1):62-67.
    [153] Zun E. Y., Thermal Effects and Design Thermal Loads on Composite Box GirderBridge [D]. Korea: The Seoul National University,1999.
    [154]中华人民共和国国家标准. GB/T50283-1999公路工程结构可靠度设计统一标准[S].北京:人民交通出版社,1999.
    [155] Lucas M. J., Virlogeux M., Temperature in the box gider of the nomandy bridge [J].Stmeutral Engineering Intemational:Joumal of the Intemational Assoeiation for Bridgeand Stmcutral Engineering(IABSE),2005,15(3):156-165.
    [156] Au T. F., Tong M., Tham L., Design thermal loading for steel bridges in Hong Kong [J].Transactions Hong Kong Institution of Engineers,2001,7(6):357-366.
    [157]饶瑞.大跨度混凝土箱梁桥徐变效应研究[D].华南理工大学博士学位论文,2009.
    [158]凯尔别克.太阳辐射对桥梁结构的影响[M].北京:中国铁道出版社,1981.
    [159]雷笑,叶见曙,王毅.日照作用下混凝土箱梁的温差代表值[J].东南大学学报(自然科学版),2008,38(6):1105-1109.
    [160]唐红元.斜拉桥预应力混凝土桥塔关键问题研究[D].东南大学博士学位论文,2006.
    [161] Institute British Standard. BS5400: Part4:1984Code of Practice for Design ofConcrete Bridges [S].1984.
    [162]段明德.《公路钢筋混凝土及预应力混凝土桥涵设计规范》徐变系数的计算和应用[J].中国公路学报,1998(10):70-76.
    [163]杨小兵.混凝土收缩徐变预测模型研究[D].武汉:武汉大学,2004.
    [164]马龙.现代混凝土徐变的几个问题探讨[D].南京:河海大学,2006.
    [165] Akthem A. M., Lam P. J., Statistical evaluation of shrinkage and creep models [J]. ACIMaterials Journal,2005,102(3):170-176.
    [166] Lam P. J., Evaluation of concrete shrinkage and creep prediction models [D]. San JoseState university,2002.
    [167] Bazant P. Z., Baweja S., Creep and shrinkage predication model for analysis and designof concrete structures-model B3[J]. Materials and Structures,1995,28:357-365.
    [168] Bazant Z. P., Constitutive equation of wood at variable humidity and temperature[J].Wood Science and Technology,1985(19):159-177.
    [169] Bazant Z. P., Asghari A. A., Schmidt J., Experimental study of creep of hardenedcement paste at variable water content [J]. Materials and Structures,1976,(9):279-290.
    [170] Fahmi H. M., Bresler B., Polivka M., Prediction of Creep of Concrete at VariableTemperatures [J]. Journal of the American Concrete Institute,1973,70(10):709-713.
    [171] Bazant P. Z., Kim J. K., Improved prediction model for time-dependent deformations ofconcrete:Part4-Temperature effects [J]. Materials and Structures,1992,(25):84-94.
    [172] CEB-FIP model code (1990)[S]. Thomas Telford, London:1991.
    [173] Bazant P. Z., Prasannan S., Solidification theory for concrete creep: I Formulation [J].Journal of Engineering Mechanics,1989,15(8):1691-1703.
    [174] CEB欧洲国际混凝土委员会.1990年CEB-FIP模式规范(混凝土结构)[S].中国建筑科学研究院结构所规范室译,1991.
    [175] Rusch H., Jungwirth D., Hilsdorf H. K., Creep and shrinkage: their effects on thebehavior of concrete structures [M]. New York: Springer-Verlag,1993.
    [176] Gilbert R. I. Time effects in concrete structures [M]. Amsrerdam: Elsevier,1988.
    [177]肖汝城.桥梁结构分析及程序系统[M].北京:人民交通出版社,2002.
    [178]朱伯芳.有限单元法原理与应用[M].北京:中国水利水电出版社,1998.
    [179] Achenbach J. D., Moran B., Zulfiqar A., Techniques and instrumentation for structuraldiagnostics:1997Proceedings of the International Workshop on Structural HealthMonitoring, Stanford, CA, USA,1997[C].
    [180] Aktan A. E., Helmicki A. J., Hunt V. J., Issues related to intelligent bridge monitoring:1996Proceedings of Building an International Community of Structural EngineersCongress, Chicago, USA,1996[C].
    [181] Alampalli S., Fu G., Instrumentation for remote and continuous monitoring of structureconditions [J]. Transportation Research Record1432,1994:59-67.
    [182] Balageas D. L., Structural Health Monitoring2002[M]. Lancaster: DestechPublications,2002.
    [183] Chang F. K., Structural Health Monitoring2000[M]. Lancaster: TechnomicPublications,1999.
    [184] Zhang W., Shi B., Zhang Y. F., The strain field method for structural damageidentification using Brillouin optical fiber sensing [J]. Smart Mater. Struct,2007,16:843-850.
    [185] Ghali A., Favre R., Concrete Structures: Stresses and Deformations [M]. London: E&FN Spon, Chapman&Hall,1994.
    [186] Smerda Z., Kristek V., Creep and Shrinkage of Concrete Elements and Structures [M].New York: Elsevier Science Publishing Company,1988.
    [187] Mays G. C., Tilly G. P., Long endurance fatigue performance of bonded structuraljoints[J]. Int J Adhes,1982,2(2):109-113.
    [188] Daubechies I., Ten Lectures on Wavelets [M]. Philadelphia: Society for Industrial andApplied Mathematics,1992.
    [189] Donoho D. L., Johnstone I. M., Ideal spatial adaption by wavelet shrinkage [J].Biometrica,1994,81:425-455.
    [190] Abramovich F., Samarov A., On one-sided estimation of a sharp cusp using wavelets
    [R]. Department of Statistics and Operations Research, Tel Aviv University,2000.
    [191] Donoho D. L., Johnstone I. M., Adapting to unknown smoothness via waveletshrinkage [J]. Journal of American Statisticians Association,1995,90:1124-1200.
    [192] Xie S. M., Jiang D., Zhao W. D., An advanced analysis technique—submodeling andside-frame example [J]. J Dalian RailwayInstitute,2000,21(13).
    [193] Company ANSYS. Modeling and Meshing Guide [CP/OL].
    [194] Standard The People's Republic Of. General Code for Design of Highway Bridges andCulverts (JTG D60-2004)[S]. Beijing: People Transportation Press,2004.
    [195]中华人民共和国行业标准. JTG D60-2004公路桥涵设计通用规范[S].北京:人民交通出版社,2004.
    [196] Nowak A. S., Live load model for highway bridges [J]. Structural Safety,1993,13:53-66.
    [197] Hwang E. S., Nowak A. S., Simulation of dynamic load for bridges[J]. ASCE Journal ofStructural Engineering,1991,117(5):1413-1434.
    [198]任月明.风雨激励下输电塔线体系的动力响应分析[D].大连理工大学硕士学位论文,2007.
    [199] Schmidt S., Solari G.,3-D wind-induced effects on bridges during balanced cantilevererection stages [J]. Wind and Structures,2003,6(1):1-22.
    [200] Cooper, D. I. Flint&Neill Partnership (1996).“Interim Short Span Bridge AssessmentLoading”, International Symposium on The Safety of Bridges, London, UK, July.
    [201]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社,2002.
    [202]宋玉普.混凝土结构的疲劳性能及设计原理[M].北京:机械工业出版社,2006.
    [203] Houser G.W., Bergman L. A., Structural control: past, present, and future [J]. Journal ofEngrg Mech,1997,9(123).
    [204] Gharaibeh E. S., Reliability-based Life-Cycle Management of Highway Bridges [J].Comput Civil Engng., ASCE,2001,15(1):147-157.
    [205]张建仁.结构可靠度理论及其在桥梁工程中的应用[M].北京:人民交通出版社,2003.
    [206]中华人民共和国交通部部颁规范.公路钢筋混凝土及预应力混凝土桥涵设计规范(JTG D62-2004)[S].北京:人民交通出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700