用户名: 密码: 验证码:
高强钢双金属焊接疲劳裂纹扩展机理及组织演化规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的进步和焊接技术的进一步推广,人们对焊接零部件的制造精度、抗疲劳性能和使用寿命提出了越来越高的要求,钢结构中很多关键结构件都是通过焊接连接并且在疲劳载荷下服役。广泛使用的高强度低合金钢焊接接头的力学性能明显低于母材,成为整个焊接结构的“薄弱环节”,当焊接结构在疲劳载荷下服役时,接头部分常常出现过早疲劳失效。目前对传统焊接接头的改善研究已经进入了“瓶颈”阶段,这严重影响了高强度低合金钢性能发挥。延长接头的疲劳寿命、提高接头的安全性和可靠性,成为学术界和工程界特别关注的一个热点问题,这也是提高焊接结构抗疲劳性能和延长使用寿命的关键基础问题。
     本论文针对高强度低合金钢焊接接头经常出现力学性能(尤其是抗疲劳性能)下降严重的问题,提出在焊接金属和母材金属之间引入相对较软的缓冲层形成具有“软+硬”双金属焊缝的新型焊接接头以改善焊接接头的力学性能。将相对较软缓冲层焊接性好、韧性好、导热系数高及可降低焊接冷裂纹产生机率的优点与高硬度焊接金属强度高及抗疲劳性能好的优点结合起来;充分利用焊接过程中缓冲层与两侧金属合金元素扩散机理、后面焊道热循环对已焊接缓冲层的“热处理”原理。本文采用理论分析和实验研究相结合的方法,系统研究了焊接接头的金相组织、硬度分布、残余应力变形和分布、超载塑性变形和疲劳裂纹扩展性能。创新性提出的具有“软+硬”双金属焊缝的新型焊接接头、超载塑性变形分析新方法、残余应力变形分析新方法和“考虑载荷幅值影响的疲劳裂纹扩展速率模型”取得了良好的效果,主要的研究工作与创新成果如下:
     (1)建立具有“软+硬”双金属焊缝的新型焊接接头:针对高强度低合金钢焊接性差、接头不均匀性强和薄弱环节力学性能下降严重等技术难题,将焊接过程中“软金属”和“硬金属”两者优点有机结合,提出在焊接金属和母材金属之间引入相对较软的缓冲层形成具有“软+硬”双金属焊缝的新型焊接接头。解决了高强钢常规焊接接头中采用超强匹配或等强匹配时焊接材料的焊接性及韧性差、采用低强匹配时焊后焊缝金属强度无法保证等难题,同时提高了缓冲层与两侧金属粘着力、降低了冷裂纹产生机率,有效提高了焊接质量。常幅载荷疲劳试验结果表明,对于本文所制作的焊接接头试样,选用4mm的缓冲层取得了良好的效果。焊接接头试样最薄弱区域的疲劳裂纹扩展速率达到母材水平,而在最大载荷25kN应力水平下的疲劳裂纹扩展寿命比常规焊接接头在最大载荷24kN应力水平下的疲劳扩展寿命增加了101%。
     (2)超载疲劳裂纹扩展寿命及塑性变形分析新方法:超载后裂纹尖端残余压应力和应变硬化源于塑性变形量,通过定量测量试样厚度沿疲劳裂纹扩展路径上的变化,找出了超载塑性变形量与疲劳裂纹扩展速率之间的关系,结合试样的疲劳断裂机理,合理诠释了超载条件下疲劳裂纹扩展速率的变化规律。在超载过程中,具有“软+硬”双金属焊缝的新型焊接接头中高强度焊接金属增加了抵抗超载断裂的能力,降低了超载断裂区对裂纹扩展的加速作用;较厚低强度缓冲层增加了超载塑性变形量,增加了残余压应力和应变硬化对裂纹扩展的抑制作用,从而增加了接头试样的疲劳裂纹扩展寿命,效果显著。超载条件下疲劳试验结果表明,对于本文所制作的焊接接头试样,选用10mm的缓冲层取得了良好的效果;第一次超载(70kN)后疲劳裂纹从10mm扩展到17.5mm过程中,具有10mm缓冲层的焊接接头试样的疲劳寿命与常规焊接接头试样相比疲劳寿命提高了约6倍。
     (3)残余应力变形及硬度分析新方法:通过改变焊接件刚度和边界约束条件的方法测量了残余应力变形量,根据计算的残余应力释放量定性比较了不同焊接接头中焊接残余应力的大小及符号。提出了根据接头硬度分布曲线来判定接头试样中残余拉应力区位置和宽度的新方法。疲劳与硬度试验结果表明,焊接软化区与垂直焊缝沿试样长度方向上的残余拉应力区成明显的对应关系,两个区域发生的位置和宽度基本相同。该测试方法操作简单、成本低,更具工程实用价值。
     (4)提出适用于接头非均质区的疲劳裂纹扩展速率模型:利用焊接接头试样的疲劳试验数据,提出了适用于焊接接头试样非均质区、考虑应力幅影响的疲劳裂纹扩展速率模型,合理诠释了焊接接头中存在“最薄弱区”的固有现象。从疲劳断裂机理角度解释了裂纹扩展速率在接头“薄弱区域”突然增加的原因,获得了不同焊接接头在疲劳裂纹扩展过程中疲劳断裂机理的变化规律。疲劳试验数据表明:选择“考虑应力幅影响的疲劳裂纹扩展速率模型”作为观测焊接接头试样非均质区疲劳数据的连续模型,曲线能真实反映出裂纹扩展速率的变化规律,拟合误差较Paris曲线降低了一个数量级,由原来的1.0295×10-12降低到2.8964×10-13,相关系数大幅提高,从原来0.7470提高到0.9316。
Along with the advance of science and technology, and with the further extension andapplication of welding technique, the demand for manufacturing accuracy, fatigue resistanceand service life of welding component is increasingly high. Many key-components of steelstructure are connected by welding procedure, and need to be working under the condition offatigue loading. The mechanical properties of the widely used high-strength low-alloy (HSLA)welded joints are obviously lower than those of the parent metal, thus it become the “weaklink” of the whole welded structure. The welded joints often generate premature fatiguefailure when welded structures serve under fatigue loading. The study on improvement of thetraditional welded joints has stepped into its “bottleneck” stage which has seriously affectedthe performances of HSLA steels. As a result, prolonging fatigue life and increasing safetyand reliability of the welded joints is a hot topic being discussed in the academic field andengineering field, and is also a fundamental key problem for increasing fatigue resistance andprolonging fatigue life of welded structures.
     Aiming at the technical problem that the mechanical properties of the welded joints oftendeteriorate seriously, this thesis proposed an alternative welded joint with a bi-metal seam(soft+hard) to improve the mechanical properties of the welded HSLA steels byincorporating a relative soft buffer layer (BL) between the parent metal and the weld metal.The advantages of the good weldability, toughness, thermal conductivity and cold-crackresistance of the relative soft BL were combined with the advantages of the high strength andgood fatigue resistance of the hard weld metal. In addition, the alloy element diffusionmechanism between the BL and the two adjacent metals (weld metal and parent metal) wasmade full use together with the “heat treatment” effect of subsequent weld thermal cycle onthe BL. The microstructure, hardness profile, residual stress-induced deformation, residualstress distribution, overloading-induced deformation and fatigue crack growth performance ofwelded joints were systematically studied by combing the theory analysis with the experimentstudy. This thesis innovatively proposed an alternatively welded joint with a bi-metal seam(soft+hard), new methods for analyzing overloading-induced deformation and residualstress-induced deformation, and fatigue crack growth rate model taking into account load amplitude variation, which achived good effects according to the experimental results. Themajor research and innovative conclusions are as follows:
     (1) An alternatively welded joint with a bi-metal seam (soft+hard): Aiming at thetechnical problems of poor weldability, heterogeneity and mechanical properties deterioration(weak link) of welded HSLA steel, this thesis proposed an alternative welded joint with abi-metal seam (soft+hard) by incorporating a relative soft BL between the parent metal andthe weld metal to combine the advantages of soft metal with the advantages of hard metal.The alternative welded joint solved the problems that the weldability and the toughness ofovermatching or equalmatching weld joints were poor, and the fatigue strength ofundermatching weld joint was low. This kind of welded joint increased the adhesive forcebetween the BL and the two adjacent metals and reduced the welding cold crack, thusimproved the welding quality. The experimental results under constant amplitude fatigueloading showed that the welded HSLA with a4mm BL gained good results as for the studiedwelded joints. The fatigue crack growth rate in weakest zone of welded joint specimen wasreached to that of the parent metal, and the fatigue life of the welded HSLA specimen with a4mm BL under maximum load of25kN increased by101%as compared with the traditioinalwelded joint specimen under maximum load of24kN.
     (2) An alternative method for analyzing plastic deformation and overloading fatiguelife: Because the compressive residual stress and strain hardening at the crack tip resultedfrom the plastic deformation, the relationship between the overload-induced plasticdeformation and the fatigue crack growth rate was proposed by testing the thickness variationalong the fatigue crack growth path of the specimens. Based on fatigue fracture mechanism,the fatigue crack growth rate variation under overloading was explained reasonably. Duringoverloading test, as for the alternatively welded joint with a bi-metal seam (soft+hard), theweld metal with high strength increased the fracture resistance, thus reduced the acceleratedeffect of overload-induced fracture zone on fatigue crack growth; the thick BL with lowstrength increased the overload-induced plastic deformation, thus increased the retardationeffect on the fatigue crack growth by increasing the compressive residual stress and strainhardening. The experimental results under overloading showed that the welded HSLA with a10mm BL gained good results as for the studied welded joints. The fatigue life of the welded HSLA specimen with a10mm BL after application of the1stoverload (70kN) increased byapproximately6times as compared with the traditioinal welded joint specimen as the fatiguecrack propagated form10mm to17.5mm.
     (3) An alternative method for analyzing hardness and residual stress-induceddeformation: The residual stress-induced deformation was measured by changing the stiffessand boundary conditions of the welded HSLA steel. The amplitude and nature of weldingresidual stress in different welded joints were compared according the partial release(accumulated value) of residual stress. A novel method for determining the location and itswidth of the tensile residual stress zone was proposed by using hardness profile of weldedjoint. The experimental results of fatigue and hardness showed that welding softening zonecorresponded to the tensile residual stress zone in the direction of vertical weld and alongspecimen length, and that the locations and the widths of the two zones were similar. Thetested method is of practical engineering value because of easy operatioin and low cost.
     (4) A novel fatigue crack growth rate mode suitable for heterogeneous zone ofwelded joint: A novel fatigue crack growth rate mode taking into account the stressamplitude effect was proposed according to the fatigue date resulted from the welded jointspecimens. The mode was suitable for heterogeneous zone of welded joint, and explained theinherent phenomenon that welded joint existed “weakest link” zone of fatigue performance.The sudden increase in the fatigue crack growth rate within the “weak link” zone wasexplained based on the fatigue fracture mechanism, and the fatigue fracture mechanismvariation during fatigue crack propagatin was gained for different welded joints. The fatiguedata showed that the curve could reflect the variation of the fatigue crack growth rate if thenovel fatigue mode taking into account the stress amplitude effect was chose to descripe thefatigue data resulted from heterogenous zone of welded joint, and that the fitting error wasdecreased one order of magnitude as compare with Paris mode from1.0295×10-12to2.8964×10-13, the correlation coefficient was increased from0.7470to0.9316.
引文
[1]米振莉,杨林,李志超等.不同焊接方法对TWIP钢焊后热影响区组织和性能的影响[J].焊接学报,2013,34(5):9-12
    [2]王依.工程机械焊接结构跨尺度分析及其应用研究[D].杭州:浙江大学,2013
    [3]张敏强.焊接结构疲劳寿命评估问题的研究[D].大连:大连理工大学,2005
    [4]夏静.高匹配焊接接头的安全评定研究[D].天津:天津大学,2004
    [5]张彦华.焊接结构原理[M].北京:北京航空航天大学出版社,2011:3-4
    [6]提高焊接接头疲劳性能的研究进展和最新技术[EB/OL],http://www.docin.com/p-97376814.html,2013-8-1
    [7]童乐为.焊接钢结构断裂与疲劳[EB/OL], http://www.doc88.com/p-78942276178.html,2013-7-1
    [8]焊接结构疲劳与改善[EB/OL], http://www.shws.org/bbs/showtopic-1093.aspx,2011-12-14
    [9]Svensson L.E., Bhadeshia H.K.D.H.. The design of submerged arc weld deposits forhigh-strength steels, Process of the international conference on improved weldment controlusing computer technology[C]. Vienna,Austria,1988
    [10] Bhole SD, Nemade JB, Collins L, Liu C. Effect of nickel and molybdenum additions onweld metal toughness in a submerged arc welded HSLA line-pipe steel[J]. Journal ofMaterials Processing Technology,2006,173:92-100
    [11] Jorge JCF, Souza LFG, Rebello JMA. The effect of Chromium on themicrostructure/toughness relationship of C-Mn weld metal deposits [J]. MaterialsCharacterization,2001,47:195-205
    [12] Shanmugam S, Misra RDK, Hartmann J, Jansto SG. Microstructure of high strengthniobium-containing pipeline steel [J]. Materials Science Engineering A,2006,441:215-229
    [13] Bose-Filho W.W., Carvalho A.L.M., Strangwood M.. Effect of alloying elements on themicrostructure and inclusion formation in HSLA multipass welds [J]. MaterialsCharacterization,2007,58:29-39
    [14] Krishnadev M., Zhang W.. Extra low carbon welding consumables for HSLA80andHSLA100steels and improving HAZ toughness at high heat inputs [A]. Internationalsymposium: Metal welding and applications and thermomechanical processing of alloys[C]. Publisher: CIM,1999:55-70
    [15] Dixon B.. Submerged arc welding with alloy powder additions for high strength steels [J].International Journal for the Joining of Materials,1996,8:14-21
    [16] Wang W., Liu S.. Alloying and microstructural management in developing SMAWelectrodes for HSLA-100steel [J]. Welding Journal,2002,81(7):132s-145s
    [17] Kim S.H., Band C.Y., Bang K.S.. Weld metal impact toughness of electron beam welded9%Ni steel [J]. Journal of Materials Science,2001,36:1197-2000
    [18]朱莎莎,曹睿,冯伟等.980MPa高强钢焊接接头薄弱环节的确定[J].焊接学报,2011,32(3):77-80
    [19] Keehan E., Andren H.O., Karlsson L, et al. Microstructural and mechanical effects ofnickel and manganese on high strength steel weld metals [A]. Sixth internationalconference: Trend in welding research[C], Pine Mountain. GA, USA,2002:695-700
    [20] Beidokhti B., Koukabi A.H., Dolati A.. Influences of titanium and manganese on highstrength low alloy SAW weld metal properties [J]. Materials Characterization,2009,60:225-233
    [21] Ananthapadmanaban D., Rao V.S, Abraham N., et al. A study of mechanical properties offriction welded mild steel to stainless steel joints [J]. Materials and Design,2009,30:2642-2646
    [22] Xia M., Biro E., Tian Z., et al. Effects of heat input and maritensite on HAZ softening inlaser wedling of dual-pahse steels[J]. ISIJ Int,2008,48:809-814
    [23] Biro E., McDermid J.R., Embury J.D., et al. Softening kinetics in the subcriticalheat-affected zone of dual-phase steel welds [J]. Metallurgical and Materials Transitions A–Physical Metallurgy and Materials Science,2010,41:2348-2356
    [24] Okita Y., Baltazar-Hemandez V.H., Nayak S.S., et al. Effects of HAZ-softening in thefailure mode of resistance spot welded dual-phase steels [A]. Sheet metal weldingconference XIV [C]. America: American Welding Society,2010:1-4
    [25] Baltazar-Hemandez V.H., Nayak S.S., Zhou Y.. Tempering of martensite in dual-phasesteels and its effects on softening behavior [J]. Metallurgical and Materials Transitions A–Physical Metallurgy and Materials Science,2011,42:3115-3129
    [26] Xu W., Westerbaan D., Nayak S.S., et al. Tensile and fatigue properties of fiber laserwelded high strength low alloy and DP980dual-phase steel joints [J]. Materials and Design,2013,43:373-383
    [27] Parkes D., Xu W., Westerbaan D. Nayak S.S., et al. Microstructure and fatigue propertiesof fiber laser welded dissimilar joints between high strength low alloy and dual-phasesteels [J]. Materials and Design,2013,51:665-675
    [28] Mohandas T., Reddy G.M., Kumar B.S.. Heat-affected zone softening in high-strengthlow alloy steels [J]. Journal of Materials Processing Technology,1999,88:284-294
    [29] Tsay L.W., Chung C.S., Chent C.. Fatigue crack propagation of D6AC laser welds [J].International Journal of Fatigue,1997,19:25-31
    [30] Anvazhagan B., Srinivasan G., Albert S.K., et al. A study on influence of heat inputvariation on microstructure of radioactivity ferritic martensitic steel weld metal producedby GTAW process [J]. Fusion Engineering and Design,2011,86:192-197
    [31]陈继民.基于纳米连接的纳米线焊接技术进展[J].中国机械工程,2013,24(9):1273-1277
    [32]何鹏,矫震,王君等.纳米尺度连接技术的研究现状与展望[J].焊接学报,2013,34(2):109-112
    [33] Cavaliere P., Cabibbo M., Panella F., et al.2198Al-Li plates joined by friction stirwelding: mechanical and microstructural behavior [J]. Materials and Design,2009,30:3622-3631
    [34]张丹丹,曲文卿,尹娜等.工艺参数对铝锂合金搅拌摩擦焊搭接接头力学性能的影响[J].焊接学报,2013,34(2):84-89
    [35]姬书得,孟庆国,史清宇等.搅拌针形状影响搅拌摩擦焊接过程金属塑性流动规律的数值模拟[J].焊接学报,2013,34(2):93-96
    [36] Prasad K., Dwivedi D.K.. Some investigations on microstructure and mechanicalproperties of submerged arc welded HSLA steel joints [J]. International Journal ofAdvanced Manufacturing Technology,2008,36:475-483
    [37] Anawa E.M, Olabi A.G.. Control of welding residual stress for dissimilar laser weldedmaterials [J]. Journal of Materials Processing Technology,2008,2004:22-33
    [38] Ravi S., Balasubramanian V., Nasser S.N.. Fatigue life prediction of strengthmis-matched high strength low alloy steel welds [J]. Materials and Design,2006,27:278-286
    [39] Ravi S., Balasubramanian V., Nasser S.N.. Assessment of some factors influencing thefatigue lige of strength mis-matched HSLA steel weldments [J]. Materials and Design,2004,25:125-135
    [40] Ravi,S. Balasubramanian V., Nasser S.N.. Effect of mis-matched ratio (MMR) on fatiguecrack growth behavior of HSLA steel welds [J]. Engineering Failure Analysis,2004,11:413-428
    [41] Ukadgaonker V.G., Bhat S., Jha M., et al. Fatigue crack growth towards the weldinterface of alloy and maraging steels [J]. International Journal of Fatigue,2008,30:689-705
    [42] Kainuma S., Mori T.. A study on fatigue crack initiation point of load-carrying filletwelded cruciform joints [J]. International Journal of Fatigue,2008,30:1669-1677
    [43] Nykanen T., Marquis G., Bjork T.. A simplified fatigue assessment method for highquality welded cruciform joints [J]. International Journal of Fatigue,2009,31:79-87
    [44] Venkata Ramana P., Madhusudhan Reddy G., Mohandas T., et al. Microstructure andresidual stress distribution of similar and dissimilar electron beam welds–Maraging steelto medium alloy medium carbon steel [J]. Materials and Design,2010,31:749-760
    [45] Liu J., Yue Z.F., Liu Y.S.. Surface finish of open holes on fatigue life [J]. Theoretical andApplied Fracture Mechanics,2007,47:35-45
    [46] Yu M.T., Topper T.H., Wang L.. The effect of microstructure on the mechanical behaviorof a low carbon, low alloy steel [J]. Internationa Journal of Fatigue,1988,10:249-255
    [47] Tsay L.W., Li Y.M., Chen C., et al. Mechanical properties and fatigue crack growth rateof laser-welded4130steel [J]. Internationa Journal of Fatigue,1992,14:239-247
    [48] Ohta A., Sasaki E., Niher M., et al. Fatigue crack propagation rates and threshold stressintensity factors for welded joints of HT80steel at several stress ratios [J]. InternationaJournal of Fatigue,1982:233-237
    [49] Smith C., Pistorius P.G., Wannenburg J.. The effect of a long post weld heat treatment onthe integrity of a welded joint in a pressure vessel steel [J]. International Journal ofPressure Vessels and Piping,1997,70:183-195
    [50] Singh V., Raju P.V.S.S., Namboodhiri T.K.G., et al. Low-cycle fatigue behavior of alow-alloy high-strength steel[J]. Internationa Journal of Fatigue,1990,12:289-292.
    [51] Tsay L.W., Chern T.S., Gau C.Y., et al. Microstructure and fatigue crack growth of EH36TMCP steel weldments [J]. Internationa Journal of Fatigue,1999,21:857-864.
    [52] Price J.W.H., Kerezsi B.. Potential guidelines for design and fitness for purpose forcarbon steel components subject to repeated thermal shock [J]. International Journal ofPressure Vessels and Piping,2004,81:173-180
    [53] Zhang C.G., Lu P.M., Hu X.Z., et al. Residual stress-induced deformation and fatiguecrack growth in weld-repaired high-strength low-alloy steel with soft buffer layer [J].Materials Science and Engineering A,2013,564:147-157
    [54]徐晓丽.残余应力对焊接接头表面裂纹扩展的影响[D].大连:大连理工大学,2013
    [55] Jang J.I., Son D., Lee Y.H., et al. Kwon. Assessing welding residual stress in A335P12steel welds before and after stress relaxation annealing through instrumented indentation technique [J]. Scripta Materialia,2003,48:743-748
    [56] Pang J.W.L., Preuss M., Withers P.J., et al. Effects of tooling on the residual stressdistribution in an inertia weld [J], Materials Science and Engineering A,2003,356:405–413
    [57] Owen R.A., Preston R.V., Withers P.J., et al. Neutron and synchrotron measurementsof residual strain in TIG welded aluminium alloy2024[J]. Materials Science andEngineering A,2003,346:159–167
    [58] Duquennoy M., Ouaftouh M., Qian M.L., et al. Ultrasonic characterization of residualstresses in steel rods using a laser line source and piezoelectric transducers [J].Independent Nondestructive Testing and Evaluation International,2001,34:355–362
    [59] Pathak A.K., Datta G.L.. Three dimensional finite element analysis to predict thedifferent zones of microstructure in submerged arc welding [J]. Journal of Engineeringmanufacture,2004,218:269–280
    [60] Alberg H., Berglund D.. Comparison of plastic, viscoplastic, and creep models whenmodeling welding and stress relief heat treatment [J]. Computer Methods in AppliedMechanics and Engineering,2003,192:49-50
    [61] Olabi A.G., Hashmi M.S.J.. Effects of the stress-relief conditions on a martensitestainless-steel welded component [J]. Journal of Materials Processing Technology,1998,77:216-225
    [62] Sedek P., Brozda J., Wang L., et al. Residual stress relief in MAG welded joints ofdissimilar steels [J]. International Journal of Pressure Vessels and Piping,2003,80:705-713
    [63] Cheng X., Fisher J.W., Prask H.J., et al. Residual stress modification by post-weldtreatment and its beneficial effect on fatigue strength of welded structures [J].International Journal of Fatigue,2003,25:1259-1269
    [64]林健,赵海燕,蔡志鹏等.磁处理降低钢铁材料中残余应力的研究现状及展望[J].材料工程,2005,3:55-59
    [65]林健,赵海燕,蔡志鹏等.脉冲磁处理法降低工程结构的焊接残余应力[J].清华大学学报(自然科学版),2007,47(2):161-164
    [66] Ahmad R., Bakar M.A.. Effect of a post-weld heat treatment on the mechanical andmicrostructure properties of AA6061joints welded by the gas metal arc welding coldmetal transfer method [J]. Materials and Design,2011,32:5120-5126
    [67] Yaghi A.H., Hyde T.H., Becker A.A., et al. A comparison between measured andmodeled residual stresses in a circumferentially butt-welded P91steel pipe [J]. Journalof Pressure Vessel Technology–Transactions of the ASME,2010,132:1-10
    [68] Yaghi A.H., Hyde T.H., Becker A.A., et al. Finite element simulation of welded P91steel pipe undergoing post-weld heat treatment [J]. Science and Technology of Weldingand Joining,2011,16:232-238
    [69] Aloraier A., Al-Mazrouee A., Price J.W.H., et al. Weld repair practices without postweld heat treatment for ferritic alloys and their consequeentces on residual stresses: Areview [J]. International Journal of Pressure Vessels and Piping,2010,87:127-133
    [70] Dewan M.W., Liang J.D., Wahab M.A., et al. Effect of post-weld heat treatment andelectrolytic plasma processing on tungsten inert gas welded AISI4140alloy steel [J].Materials and Design,2014,54:6-13
    [71] Zhang G., Yang X., He X., et al. Enhancement of mechanical properties and failuremechanism of electron beam welded300M ultrahigh strength steel joints [J]. Materialsand Design,2013,45:56-66
    [72] Paddea S., Francis J.A., Paradowska A.M., et al. Residual stress distributions in a P91steel-pipe girth weld before and after post weld heat treatment [J]. Materaisls Scienceand Engineering A,2012,534:663-672
    [73] Miller P.C.. Look at magnetic treatment of tools and surface [J]. Tooling&Production,1990,55(12):100-103
    [74]林健,黄士卫,蔡志鹏等.磁处理对低碳钢焊接残余应力作用规律的试验研究[J].机械工程学报,2006,42(5):208-213
    [75] Troitskii O.A., Spitsyn V.I., Sokolov N.V., et al. Application of high-density currentin plastic working of metals [J]. Physica Status Solidi (A) Applied Research,1979,52(1):85-93
    [76]黄欣泉,蔡志鹏.电磁复合处理降低焊接残余应力增效效应的初步研究[J].机械工程学报,2011,47(4):88-92
    [77] Bahadur A., Kumar B.R., Kumar A.S., et al. Development and comparison of residualstress measurement on welds by various methods [J]. Materials Science andTechnology,2004, V20:261-269
    [78] George E. Totten. Handbook of residual stress and deformation of steel [M]. ASMInternational,2002:391-396
    [79] Zhang C.G., Lu P.M., Hu X.Z., et al. Effect of buffer layer and notch location on fatiguebehavior in welded high-strength low-alloy [J]. Journal of Materials ProcessingTechnology,2012,212:2091-2101.
    [80] Paradowska A., Price J.W.H., Ibrahim R., et al. A neutron diffraction study of residualstress due to welding [J]. Journal of Materials Processing Technology,2005, V164-165:1099-1105
    [81] Hatamleh O., DeWald A.. An investigation of the peening effects on the residual stressesin friction stir welded2195and7075aluminum alloy joints [J]. Journal of MaterialsProcessing Technology,2009,209:4822-4829
    [82] Hatamleh O., Rivero I.V., Swain S.Z.. An investigation of the residual stresscharacterization and relaxation in peened friction stir welded aluminum-lithium alloy joints[J]. Materials and Design,2009,30:3367-3373
    [83] I.F Pariente, Guagliano M.. About the role of residual stresses and surface workhardening on fatigue of a nitride and shot peened low-alloy steel [J]. Surface&Coatings Technology,2008,202:3072-3080
    [84] Zhao X.H., Wang D.P., Huo L.X.. Analysis of the S-N curves of welded joints enhancedby ultrasonic peening treatment [J]. Materials and Design,2011,32:88-96
    [85] Petinov S.V., Reemsnyder H.S., Thayamballi A.K.. The similitude of fatigue damageprinciple: application in S-N curves-based fatigue design [J]. Fatigue design and reliability,1999,23:219-228
    [86] Wingerde van A.M., Packer J.A., Wardenier J.. Ceriteria for the fatigue assessment ofhollow structural section connections [J]. Journal of Constructional Steel Research,1995,35:71-115
    [87] Zhao X.L., Herion S., Packer J.A., et al. Design guide for circular and rectangular hollowsection welded under fatigue loading [M]. Cologne: CIDECT, TUV Verlag,2000
    [88] Nagamoto R., Matoba M., Kawasaki T., et al. Model fatigue test results of weldedstructural element and proposal for fatigue design procedure [J]. Naval Architecture andOcean Engineering,1993,30:133-142
    [89] Niher E., Inamura F., Koe S.. Recommendations concerning stress determination forfatigue analysis of welded components [M]. Cambridge: Abington Publishers,1995
    [90] Yung J.Y., Lawrence F.V.. Analytical and graphical aids for the fatigue design ofweldments [J]. Fatigue&Fracture of Engineering Materials&Structures,1985,8(3):223-241
    [91] Janosch J.J., Debiez S.. Influence of the shape of undercut on the fatigue strength of filletwelded assemblies—application of the local approach [J]. Weld World,1998:350-360
    [92] Hou C.Y., Lawrence F.V.. Crack closure in weldments [J]. Fatigue&Fracture ofEngineering Materials&Structures,1996,19(6):683-693
    [93] Sonsino C.M.. Multiaxial fatigue of welded joints under in-phase and out-of-phase localstrains and stresses [J]. International Journal of Fatigue,1995,17(1):55-70
    [94] Glinka G.. Energy density approach to calculation of inelastic strain-stress near notchesand cracks [J]. Engineering Fracture Mechanics,1985,22(3):485-508
    [95] Paris P.C.. Fracture mechanics and fatigue: a historical perspective [J]. Fatigue&Fracture of Engineering Materials&Structures,1998,21(5):535-540
    [96] Bowness D., Lee M.M.K.. Prediction of weld toe magnification factors for semi-ellipticalcracks in T-butt joints [J]. International Journal of Fatigue,2000,22:369-387
    [97] Hobbacher A.. Stress intensity factors of welded joints [J]. Engineering FractureMechanics,1993,46(29):173-182
    [98] Smith I.F., Gurney T.R.. Changes in the fatigue life of plates with attachments due togeometrical effects [J]. Welding Journal Research Supplement,1986,65:244s-250s
    [99] Lie S.T., Lan S.. A boundary element analysis of misaligned loading-carrying cruciformwelded joints [J]. International Journal of Fatigue,1998,20(6):433-439
    [100] Nguyen N.T., Wahab M.A.. The effect of undercut and residual stresses on fatiguebehavior of misaligned butt joints [J]. Engineering Fracture Mechanics,1996,55(3):453-469
    [101] Elber W.. The significance of fatigue crack closure [J]. Damage tolerance in aircraftstructures,1971:230-242
    [102] Suresh, S.. Fatigue of materials [M],2ndEd.. Cambridge; University Press,2002
    [103] Schijve J.. Fatigue of structures and materials [M]. Dordrecht: Kluwer AcademicPublisher,2001
    [104] Bannantine J.A.. Fundamental of metal fatigue analysis [M]. New Jersey: Prentice-Hall,1990
    [105] Maddox S.. Fatigue strength of welded structures [M]. Cambridge: Abington Publishers,1991
    [106] Radaj D., Sonsino C.M.. Fatigue assessment of welded joints by local approaches [M].Cambridge: Abington Publishers,1998
    [107] Cao X., Wanjara P., Huang J., et al. Hybrid-fiber laser-Arc welding of thick sectionhigh strength low alloy steel [J]. Materials and Design,2011,32:3399-3413
    [108] Ghosh M., Kumar K., Mishra R.S.. Friction stir lap welded advanced high strength steels:Microstructure and mechanical properties [J]. Materials Science and Engineering A,2011,528:8111-8119
    [109] Moon J., Kim S.J., Lee C.. Effect of thermo-mechanical cycling on the microstructureand strength of lath martensite in the weld CGHAZ of HSLA steel [J]. Materials Scienceand Engineering A,2011,528:7658-7662
    [110] Coelho R.S., Corpas M., Moreto J.A., et al. Induction-assisted laser beam welding of athermomechanically rolled HSLA S500MC steel: A microstructure and residual stressassessment [J]. Materials Science and Engineering A,2013,578:125-133
    [111] Liu L.M., Wang J.F., Song G.. Hybrid laser–TIG welding, laser beam welding and gastungsten arc welding of AZ31B magnesium alloy [J]. Materials Science and Engineering A,2004,381(1-2):129-133
    [112] Kong F., Kovacevic R..3D finite element modeling of the thermally induced residualstress in the hybrid laser/arc welding of lap joint [J]. Journal of Materials ProcessingTechnology,2010,210:941-950
    [113] Bang H.S., Y.C. Kim, Oh I.H.. A study on mechanical and microstructure characteristicsof the STS304L butt joints using hybrid CO2laser-gas metal arc welding [J]. Materialsand Design,2011,32:2328-2333
    [114] Watanabe T., Suzuki Y., Yanagisawa A., et al. Resistance spot welding of mild steel tomagnesium alloy [J]. Journal of the Japan Welding Society,2009,27(3):202-207
    [115] Wielage B., Mucklich S., Grund T.. Corrosion behavior of soldered joints of magnesiumalloys and dissimilar materials [J]. Microchim Acta,2007,156:151-157
    [116] Elthalabawy W.M., Khan T.I.. Microstructural development of diffusion-brazedaustenitic stainless steel to magnesium alloy using a nickel interlayer [J]. MaterialsCharacterization,2010,61(7):703:712
    [117]齐晓东.基于夹层设计的镁合金与钢、铝合金激光-TIG复合焊接研究[D].大连:大连理工大学,2011
    [118] Watanabe T., Sugiyama Y.. Resistance spot welding of a magnesium alloy AZ31B plateto a1050aluminum plate using Ag insert metal [J]. Keikinzoku/Journal of Japan Instituteof light metals,2004,54(7):293-297(In Japannese)
    [119] Liu L.M., Tan J.H., Zhao L.M., et al. The relationship between microstructure andproperties of Mg/Al brazed joints using Zn filler metal [J]. Materials Characterization,2008,59(4):479-483
    [120] Mohan S., Prakash V., Pathak J.P.. Wear characteristics of HSLA steel [J]. Wear,2002,252:16-25
    [121] Scholl M., Devanathan R., Clayton P.. Abrasive and dry sliding wear resistance ofFe-Mo-Ni-Si and Fe-Mo-Ni-S-C weld hardfacing alloys [J]. Wear,1990,135:355-368
    [122] Li J., Shi K., Zhou Y., Li X.. Research on the softening phenomena of HAZ in weldedjoint of coiled tubing [A]. Transaction of JWRI, Special issue on WSE2011[C]. Osaka:Joining and Welding Research Institute, Osaka University,2011:115-117
    [123] Zhang C.G., Hu X.Z., Lu P.M.. Fatigue and hardness effects of a thin buffer layer on theheat affected zone of a weld repaired Bisplate80[J]. Journal of Materials ProcessingTechnology,2012,212:393-401
    [124] Bissalloy Steels Group Limited, Bisplate technical manual [EB/OL],www.bisalloy.com.au,2013-5-1
    [125] Borozdin A.V., Pavlov A.A., Kroshkin V.A.. Experience with the use of high strength lowalloy steels [J]. Translated from Khimicheskoe I Neftyanoe Mashinostronie,1991:31-32
    [126]金属机械性能编写组.金属机械性能[M].北京:机械工业出版社,1982:85-105
    [127] Irwin GR. Analysis of stresses and strains near the end of a crack traversing a plate [J].Journal ofApplied Mechanics,1957,24:361-364
    [128] Irwin GR. Relation of stresses near a crack to the crack extension force [A]. In:9thInternational Congress, Applied Mechanics [C], Brussels.1957
    [129] Cui W.C. A state-of-the-art review on fatigue life prediction methods for metalstructures [J]. Journal of Marine Science and Technology,2002,7:43-56
    [130] McDowell D.L., Dunne F.P.E.. Microstructure-sensitive computational modeling offatigue crack formation [J]. International Journal of Fatigue,2010,32:1521-1542
    [131]王春生.铆接钢桥剩余寿命与使用安全评估[D].上海:同济大学,2003
    [132]李少华,尹士科,刘奇凡.焊接接头强度匹配和焊缝韧性指标综述[J].焊接,2008,(1):24-27
    [133] Piascik, R.S., Newman, J.C. Jr.. An Extended Compact Tension Specimen for FatigueCrack Growth and Fracture Testing [J]. International Journal of Fracture,1995,76:43-48
    [134] Mundra K., Debroy T.. Calculation of weld metal composion change in high-powerconduction mode carbon dioxide laser-weld stainless steel [J]. MetallurgicalTransaction B,1993,24B(2):145-155
    [135]张宏圭,金湘中,陈根余等.光纤激光焊接5052铝合金镁元素烧损研究[J].激光技术,2012,36(6):713-718
    [136]汤小红,庞涛. Al-Mg-Si608合金氩弧焊焊接接头的气孔与合金元素烧损[J].焊接学报,2010,31(4):21-24
    [137] Monteiro P.J.M.. Corrosion: Development of high-performance steels [EB/OL],http://www.ce.berkeley.edu/~paulmont/steel.htm,2013-6-1
    [138] Damri D, Knott J.F.. Fracture modes encountered following the application of a majortensile overload [J]. International Journal Fatigue,1993,15:53-60
    [139] Tsukuda H., Qgiyama H., Shiraishi T.. Transient fatigue crack growth behavior followingsingle overloads at high stress ratios [J]. Fatigue&Fracture of Engineering Materials&Structures,1996,19:879-891
    [140] Borrego L.P., Ferreira J.M., Pinho da C.J.M., et al. Evaluation of overload effects onfatigue crack growth and closure [J]. Engineering Fracture Mechanics,2003,70:1379-1397
    [141] Kumar R., Kumar A., Kumar S.. Delay effects in fatigue crack propagation [J].International Journal of Pressure and Vessels Piping,1996,67:1-5
    [142] Goel H.S., Chand S.. A fatigue crack growth model for single overload tests [J]. Journalof Engineering Materials and Technology–Transactions of theASME,1994,14:168-172
    [143] Wheeler O.E.. Spectrum loading and crack growth [J]. Journal of Basic Engineering,1972,4:181-186
    [144] Sheu B.C., Song P.S., Hwang S.. Shaping exponent in wheeler model under a singleoverload [J]. Engineering Fracture Mechanics,1995,51:135-143
    [145] Paris P., Erdogan F.. A critical analysis of crack propagation laws [J]. Journal of BasicEngineering, Trans ASME,1963,85:528-534
    [146] Shuter D.M., Geary W.. some aspects of fatigue crack retardation behavior followingtensile overloads in a structural steel [J]. Fatigue and Fracture of Engineering Materials andStructure.1996,19:185-199
    [147] Hou C.Y., Charng J.J.. Estimation of plasticity-induced crack closure in a pre-existingplastic zone [J]. International Journal of Fatigue,1996,18:463-474
    [148] Dougherty D., Srivatsan T.S., Padovan J.. Fatigue crack propagation and closure behaviorof modified1070steel: experimental results [J]. Engineering Fracture Mechanics,1997,56:167-187
    [149] Wheatley G., Hu X.Z., Estrin Y.. Effects of a single tensile overload on fatigue crackgrowth in a316L steel[J]. Journal of Materials Processing Technology,1999,88:284-294
    [150] Zhang C.G., Hu X.Z., Lu P.M., et al. Tensile overload-induced plastic deformation andfatigue behavior in weld-repaired high-strength low-alloy steel [J]. Journal of MaterialsProcessing Technology,2013,213:2005-2014
    [151] Yuen, B.K.C., Taheri, F.. Proposed modifications to the Wheeler retardation model formultiple overloading fatigue life prediction [J]. International Journal of Fatigue,2006,28:1803-1819
    [152] Zhang C.G., Yang J.Z., Hu X.Z., et al. Microstructure characteristics and fatigueproperties of welded HSLA with and without buffer layer [J]. Materials Science andEngineering: A,2012,546:169-179
    [153]李英贤.冲击载荷作用下动态应力强度因子的研究[J].南京航空航天大学学报,1996,23(3):432-435
    [154] Zheng, X.L., Hrit M.A.. Fatigue crack propagation in steels [J]. Engineering FractureMechanics,1983,18(5):965-973
    [155]师小红,徐章遂,康健.基于断裂力学的疲劳裂纹扩展速率公式研究[J].机械设计与制造,2007,10:11-12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700