用户名: 密码: 验证码:
散热基板用金刚石颗粒增强复合材料的微观组织与热物理性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子工业的繁荣和高密度封装设备的发展需要,传统的散热基板材料已经不能达到其性能要求。众所周知,单晶金刚石具有较高的热导率和较低的热膨胀系数等性能特点,因此金刚石复合材料已然成为散热基板新材料研究领域的热门。本文采用放电等离子烧结工艺,制备了具有优良热物理性能的金刚石-硅及金刚石-铜复合材料。采用场发射扫描电子显微镜(FSEM)、EDAX-能谱仪、X射线衍射(XRD)、导热系数测试仪及热膨胀系数测试仪等对材料微观组织及性能进行分析研究。
     金刚石-硅复合材料的研究表明,随着硅含量的增加降低了样品的烧结温度并增加了样品的相对密度;采用放电等离子原位反应技术能够制备相对密度高且热物理性能优越的Diamond/Si复合材料;烧结过程中在金刚石和硅基体界面反应产生了界面碳化硅相;硅有效降低了气孔并对金刚石在高温时的石墨化具有一定的阻碍作用;随着金刚石体积分数的增加,烧结样品的热导率急剧增加;界面微观组织尤其是基体硅与金刚石颗粒的界面键合对复合材料的热导率和热膨胀系数有直接关联;与真空烧结相比,在氩气条件下烧结得到的样品相对密度及热导率更高且热膨胀系数更低;添加烧结助剂Al的样品界面与没有添加的样品相比有很大不同,Al主要分布在硅和金刚石界面处;添加烧结助剂Al有利于提高样品的相对密度但其热导率下降;添加微量烧结助剂Ti有利于样品的致密化且能够提高样品的热导率;与采用低品质的FDP型金刚石(热导率约为1000W·m~(-1)·K~(-1))相比较,采用高品质的MBD8型金刚石(热导率约为2000W·m~(-1)·K~(-1))制备得到的金刚石-硅复合材料具有更优异的热物理性能。
     通过金刚石-铜复合材料的界面微观组织和热物理性能的研究显示,(Al, Si)包覆的金刚石颗粒均有效地提高了烧结样品的相对密度和热导率;对于Al包覆的Diamond-Cu复合材料而言,当金刚石体积分数为40%~50%条件下,样品热导率为491-565W/(m.K),在理论热导率的60%以上。Al包覆的金刚石-铜复合材料的热膨胀系数在Kerner模型和R-H模型理论值以下,说明了铜和金刚石颗粒之间具有较强的键接;对于Si包覆的Diamond-Cu复合材料而言,当金刚石体积分数为40%~50%条件下,样品热导率为450-535W/(m.K),在理论热导率的55%以上。
     在Maxwell-Eucken模型和Hasselman-Johnson模型基础上,考虑了相对密度对复合材料热传导理论的修正。
With booming electronic industry and growing requirement for highly integrateddevices, traditional materials for radiating substrate have not fulfilled their performancerequirements. As is known to all that single crystal diamond has high thermal conductivityand low thermal expansion coefficient, so diamond composites have became hot spots inthe new material research field of radiating substrate. Diamond-Si and diamond-Cucomposites prepared by spark plasma sintering process have excellent thermo-physicalproperties in this work. The microstructures and properties of materials were analyzed byfield emission scanning electron microscope (FSEM), EDAX-energy spectrometer, X-raydiffractometer (XRD) and testers of thermal conductivity and thermal expansioncoefficient.
     The research of diamond-silicon composites shows that increase of silicon contentreduced sintering temperatures and increased relative packing density obviously.Diamond-Si composites prepared by in-situ reactive spark plasma sintering yieldedexcellent thermo-physic properties and high relative density. As a result of reaction betweendiamond and silicon, SiC phase formed. This study shows that silicon facilitates reductionof porosity and hinders diamond graphitization. Thermal conductivity of samples sinteredimproved obviously with the increase of diamond content. Thermal conductivity andthermal expansion appear to be strongly related to interface microstructure, particularly tointerfacial bonding between the silicon matrix and the diamond particles. Samples sinteredin argon have remarkably high thermal conductivity and relative packing density comparedwith the samples sintered in vacuum. In the sample with trace aluminum, the Al phase isfound to be embedded in the interface between diamond and silicon. The addition ofaluminum improved relative density of samples sintered but reduced the thermalconductivity. The addition of titanium not only improved relative density of samples sintered but also increased the thermal conductivity. Compared with the use of low qualityFDP-diamond particles (thermal conductivity is about1000W·m~(-1)·K~(-1)), diamond-siliconcomposites have superior thermal physical properties via using high qualityMBD8-diamond particles (thermal conductivity is about2000W·m~(-1)·K~(-1)).
     The interfacial microstructures and thermal conductivities of Cu/diamond compositeswere examined. The results show that (Al or Si)-coated diamond particle is an effectiveapproach to promoting the relative packing density and improving thermal conductivity ofsamples sintered. Thermal conductivity of Al-coated diamond particles dispersed Cu-matrixcomposites containing40-50vol%diamond reached491-565W·m~(-1)·K~(-1), higher than60%the theoretical thermal conductivity estimated by Maxwell-Eucken’s equation. Thecoefficient of thermal expansion of the Al-coated composites falls in the lines of Kernermodel and R-H model lower bound, indicating strong bonding between the Al-coateddiamond particles and the Cu-matrix in the composite. Thermal conductivity of Si-coateddiamond particles dispersed Cu-matrix composites containing40-50vol%diamond reached401-535W·m~(-1)·K~(-1), higher than55%the theoretical thermal conductivity estimated byMaxwell-Eucken’s equation.
     On the basis of Maxwell-Eucken model and Hasselman-Johnson model, heatconduction theory of composite would be revised by considering relativity density.
引文
[1] C. Zweben. Advances in composite materials for thermal management in electronicpackaging[J]. JOM,1998,50(6):47–51
    [2] K. Chu, C.C. Jia, X.B. Liang, H. Chen, H. Guo. The thermal conductivity of pressureinfiltrated SiCp/Al composites with various size distributions: experimental studyand modeling[J]. Mater Des,2009,30:3497–3503
    [3] T.H. Nam, G. Requena, P. Degischer. Thermal expansion behavior of aluminummatrix composites with densely packed SiC particles. Compos Part A,39(2008), p.856–865
    [4] H. Zhao, W. Wang, Z. Fu, H. Wang. Thermal conductivity and dielectric property ofhot-pressing sintered AlN-BN ceramic composites[J]. Ceram. Int,2009,35:105-109
    [5] X. Zhang, S. Tan, D. Jiang. AlN-TiB2composites fabricated by spark plasmasinering[J]. Ceram. Int,2005,31:267-270
    [6] J. Chen, Y. Wang, L. Cheng, Litong Zhang. Thermal diffusivity of three-dimensionalneedled C/SiC-TaC composites[J]. Ceram. Int,2011,37:3095-3099
    [7] Y. Cui, L. Geng, Z.K. Yao. A new advance in the development of high performanceSiCp/Al composite [J]. Journal of Materials Science and Technology,1997,13:227-229
    [8] X. Sui, C. Luo, Z. Luo, et al. The fabrication of particle reinforced cast metal matrixcomposites [J]. Journal of Materials Processing Technology,1997,63:426-431
    [9]武高辉,张强,姜龙涛. SiC/Al复合材料在电子封装应用中的基础研究[J].电子元件与材料,2003,22(6):27-29
    [10]喻学斌,吴人洁,张国定.金属基电子封装复合材料的研究现状及发展[J].材料导报,1994,8(3):64-66
    [11] S. Muthu. Red, green and blue LEDs for white light illumination[J]. IEEE J. Select.Topics Quantum Electron.2002,8:333-338
    [12]李忠辉,丁晓民,杨志坚等.高亮度InGaN基白光LED特性研究[J].红外与毫米波学报,2002,21(5):390-392
    [13] N. Narendran, N. Maliyagoda, L. Deng and R. Pysar.“Characterizing LEDs forgeneral illumination applications: mixed-color and phosphor-based white sources”[J].Proceedings of SPIE, Vol.4445,2001
    [14] D. A. Steigerwald, et al. Illumination with solid state lighting technology[J], IEEEjournal on selected topics in Quantum Electronics,2002,8(2):310-320
    [15] Available: http://www.ibm.com
    [16] H. Kagan. Recent advances in diamond detector development[J]. Nuel. Instr. Meth,2005,541(12):221-227
    [17] Gray K J. Effective thermal conductivity of a diamond coated heat spreader. Diam.Rel. Mater.2000,9(2):201-204
    [18] Y. Sato, M. Kamo. The properties of nature and synthetic diamond[M], AcademicPress Limited, London, UK,1992, p.439
    [19] W. Shen, W. Shao. Thermal conductivity and thermal expansion coeffient ofdiamond/5wt%Si-Cu composite by vacuum hot pressing[J], Fusion Engineering andDesign,2010,85:2237-2240
    [20] E.A. Ekimov, N.V. Suetin, A.F. Popovich, V.G. Ralchenko. Thermal conductivity ofdiamond composites sintered under high pressures[J], Diamond&Related Material,2008,17:838–843
    [21] K. Chu, Z. Liu, C. Jia, et al. Thermal conductivity of SPS consolidated Cu/diamondcomposites with Cr-coated diamond particles[J]. Journal of Alloys and Compounds,2010,490:453-458
    [22] A.M. Abyzov, S.V. Kidalov, F.M. Shakhov. High thermal conductivity compositesconsisting of diamond filler with tungsten coating and copper(silver) matrix[J]. JMater Sci,2011,46:1424-1438
    [23] L. Weber, R. Tavangar. Diamond-based metal matrix composites for thermalmanagement made by liquid metal infiltration-Potential and limits[J]. Adv Mater Res,2009,59:111-115
    [24] H. Shatil, A.S. William. Thermal management of power electronics modulespackaged by a stacked-plate technique[J]. Micro electronics Reliability,1999,39:1343-1349
    [25]田民波,梁彤翔.电子封装技术和封装材料[J].半导体情报,1995,32(4):42-61
    [26]张强,孙东立.电子封装基片材料研究进展[J].材料科学与工艺,2000,8(4):66-72
    [27] C. Zweben. Ultrahigh-thermal-conductivity packaging materials. in:21st IEEESemiconductor Thermal Measurement and Management Symposium:2005.168-174
    [28]田民波,林金堵,祝大同.高密度封装基板[M].北京:清华大学出版社,2003.
    [29]石功奇,王健等.陶瓷基片材料的研究现状[J].功能材料,1994,24(2):176-180
    [30]台湾工研院光电所,半导体照明网
    [31] Thermal management of golden dragon LED, opt semiconductors, August7,2002
    [32] Available: www. laminaceramics.com
    [33]罗毅,邵嘉平.半导体照明产业化关键技术国内外专利现状分析及应对策略[J].新材料产业,2004(6):34-40
    [34] C. Zweben. Advanced materials for optoelectronic packing[J]. Electron packing prod,2002,42(9):37-40
    [35]阳范文,赵耀明.电子封装用环氧树脂的研究现状与发展趋势[J].电子工艺技术,2001,11:238-241
    [36] S. P. Armes, S. Gottesfeld, et al. Conducting polymer-colloidal silica composites[J].Polymer,1991,32(13):2325-2330
    [37] F. Danes, B. Gamier, T. Dupuis. Predicting, Measuring, and Tailoring the TransverseThermal Conductivity of Composites from Polymer Matrix and Metal Filler[J].International Journal of Thermophysics.2003,24(3):771-784
    [38]杨坤民,陈福林等.导热橡胶的研究进展[J].2004,52(1):118-123
    [39]刘刚,易戈文.氟塑料一石墨板式换热器的研制及应用[J].化工设备技术.1998,19(5):26-30
    [40]马庆芳,方荣生.实用热物理性质手册[M].北京:中国农业机械出版社,1986
    [41]石功奇,王健.高热导氮化铝陶瓷基片的研究现状[J],硅酸盐通报,1993,(2):37-41
    [42]李秀清. AlN陶瓷封装的研究现状[J].半导体情报,1999,36(2):13-20.
    [43] R. Lazzari, N. Vast, J. M. Besson, S. Baroni, et al. Atomic structure and vibrationalproperties of icosahedral B4C boron carbide[J]. Physical Review Letters,1999,83(16):3230-3233.
    [44] H. Buhr, G. Miiller. Microstructure and thermal conductivity of AIN (Y2O3) ceramicssintered in different atmospheres[J]. J.Eur.Ceram.Soc,1993,12:271-277
    [45] K. Watari, H. J. Hwang, et al. Low temperature sintering and high thermalconductivity of YLiO2doped AIN ceramics[J]. J. Am. Ceram. Soc,1996,79(7):1979-1981
    [46] C. Chen, M. E. Perisse. Thermophysical properties of aluminum nitride ceramic[J]. JMater Sci,1994,29(6):1595-1600
    [47] D. Saums. Developments and applications for engineered thermal materials[J].Advancing Microelectronics,2004,31(6):6-7
    [48] C. Zweben. Advanced composites and other advanced materials for electronicpackaging thermal management[J]. Proceedings of2001international symposium onadvanced packaging materials,2001,(3):360-365
    [49]童震松,沈卓身.金属封装材料的现状及发展[J].电子与封装,2005,5(3):6-15
    [50] M. Hunt. Aluminum composites come of age[J]. Materials Engineering,1991,108(1):37-40
    [51] M. Hunt. Progress in powder metal composites[J]. Materials Engineering,1990,107(1):33-36
    [52] M. Hunt. Electronic packaging[J]. Materials Engineering,1991,108(1):24-25
    [53] W. H. Hunt. Novel materials for electronics packaging and thermal management[J].JOM,1992,(7):8-9
    [54] S. L. Hyo, Y. J. Kyung, et al. Fabrication process and thermal properties of SiCp/Almetal matrix composites for electronic packaging applications[J]. Journal ofMaterials Science,2000,35:6231-6236
    [55]杨伏良.新型轻质低膨胀高导热电子封装材料的研究[D].博士学位论文,中南大学,2007
    [56]丁峰,谢维章.导热树脂基复合材料[J].复合材料学报,1993,10(3):19-24
    [57] Y. P. Mamunya. Electrical and thermal conductivity of polymers filled with metalpowders[J]. European Polymer Journal.2002,38(9):1887-1897
    [58] S. Toshi. Castable epoxy compositions and their cured products[P]. JPN KokaiTokkyo Koho: JP06157718,1994
    [59] Y. C. Freddy, X. L. Song, et al. Comparative study of thermally conductive fillers inunder fill for the electronic components [J]. J Mat Pro Tech,1999,89-90(19):437-439
    [60] J. W. Bae, et al. The properties of A1N filled epoxy molding compounds by the effectof filler size distribution[J]. J Mater Sci,2000,35(3):5907-5913
    [61] Y. S. Xu, D. L. Chung, et al. Thermal conductivity aluminum nitride polymermaterial composites [J]. Composites, Part A,2001,32(12):1749-1757
    [62] W. Y. Zhou, S. H. Qi, et al, Thermally conductive silicone rubber reinforced withboron nitride particle[J]. Polymer composites,2007,28(1):23-28
    [63] Y. S. Xu. Cement of high specific heat and high thermal conductivity obtained byusing silane and silica fume as admixture[J]. Cement Concrete Research,2000,30(7):1175一1178
    [64] L. Hatsuo, R. Saraunt. Very high thermal conductivity obtained by boronnitride-filled polybenzoxaine[J]. Thermochemical Acta,1998,320:177-186
    [65] C. L. Choy, Y. Fei, T. G. Xi, Thermal conductivity of gel-spun polyethylene fibers[J].Journal of Polymer Science, Part B: Polymer Physics,1993,31(3):365-370
    [66] S. Z. Yu. Thermal conductivity of polystyrene-aluminum-nitride composites[J].Composites PartA,2002,33(2):289-292
    [67] R. L. Dietz, D. Peck. New high thermal conductivity thermoplastics forpower applications [J]. Soldering&Surface Mount Technology,1997,(26):55-57
    [68]周文英.高导热绝缘高分子复合材料研究[D].博士学位论文,西北工业大学,2007
    [69] S. Toshi. Epoxy resin compositions with toughness and impact resistance[P]. JPNKokai Tokkyo Koho: JP05112629,1993
    [70]均敏,张平.石墨填充聚丙烯的研究[J].工程塑料应用,1995,23(5):9-11
    [71] O. Haruyuki, L. Shrinkage. Wet-type polyester resin composition having highthermal conductivity and molded circuit breaker and parts[P]. Eur Pat Appl: Ep531655,1993
    [72]李培德,刘京辉,冯勇祥等.石墨改性聚丙烯换热器的发展[J].化工生产与工艺,2001,8(2):17-19
    [73]钱欣,濮阳楠.酚醛树脂/石墨导热性能研究[J].工程塑料应用,1997,25(3):10-12
    [74]储九荣,张晓辉,徐传壤.导热高分子材料的研究与应用[J].高分子材料与工程,2000,16(4):17-18
    [75]刘刚,易戈文.氟塑料-石墨板式换热器的研制及应用[J].化工装备技术,1998,19(5):26-30
    [76] H. Nakano. Microstructural characterization of high thermal conductivity aluminumnitride ceramic[J]. J Am Ceram Soc,2002,85(12):3093-3095
    [77] K. S. Mazdiyasni, et al. Phase characterization and properties of AlN-BN composites.Am Ceram Soc Bull,1985,64(8):1149-1154
    [78] G. J. Zhang, J. F. Yang. Nonoxide-boron nitride composite: in situ synthesis,microstructure and properties[J]. Journal of the European Ceramic Society,2002,22:2551-2554
    [79] T. Kanai, K. Tanemoto. Hot-pressed BN-AIN ceramic composites of high thermalconductivity-part III[J]. Jpn J Appl Phys,1993,32(8):3544-3548
    [80] R. Jimbou, M. Saidoh. New composite composed of boron carbide and carbon fiberwith high thermal conductivity for first wall[J]. Journal of Nuclear Materials,1996,237:781-786
    [81] R. Jimbou, K. Kodama. Thermal conductivity and retention characteristics ofcomposites made of boron carbide and carbon fibers with extremely high thermalconductivity for first wall armour[J]. Journal of Nuclear Materials,1997,241:1175-1179
    [82]李美娟. AlN/BN复相陶瓷的SPS制备、显微结构与性能调整[D].武汉理工大学博士学位论文,2006
    [83] C. Zweben. Thermal materials solve power electronics challenges[J]. PowerElectronics Technology,2006,32(2):40-47
    [84] Jin. Sungho. Advances in thermal management materials for electronics applications[J]. JOM,1998,50(6):46
    [85] D. B. Knorr. Materials issues in the multichip module packaging of electronics [J].JOM,1992,46(7):7-9
    [86] S. Elomari, R. Boukhili. Thermal expansion responses of pressure infiltrated SiC/Almetal-matrix composites[J]. J Mater Sci,1997,32(9):2131-2140
    [87] C. L. Davis, B. E. Artz. Thermal conductivity of metal-matrix composites[J]. J ApplPhys,1995,77(10):4954-4960
    [88] G. Sundberg. Identification and characterization of diffusion barriers for Cu/SiCsystems[J]. J. Mater. Sci,2005,40(13):3383-3393
    [89]于家康,周尧和.混杂2D-C/Al电子封装复合材料的设计与制备[J].中国有色金属学报,2000,10(S1):1-5
    [90]谢盛辉,陈康华.高体积比SiCp/6013Al复合材料反应熔渗制备与热学性能[J].有色金属,2004,2(56):27-30
    [91] H. W. Markstein. A wide choice of materials for MCMs[J]. Electronic Packaging andProduction,1997,37(4):34-36
    [92] P. EP. MCM process combines beryllia substrate[J]. Electronic Packaging andProduction,1996,36(9):81
    [93] D. M. Jacobson. Spray-formed silicon-aluminum[J]. Advanced Materials AndProcesses,2000(3):36-39
    [94]顾晓峰. SiCp/Al复合材料的制备及其器件的研究[D].博士学位论文,武汉理工大学,2006
    [95] Y. Cui, L. F. Wang. Multi-functional SiC/Al composites for aerospace applications[J].Chinese Journal of Aeronautics,2008,(21):578-584
    [96]刘君武.高增强体含量的SiC/Al复合材料无压渗透法制备及性能研究[D].博士学位论文,合肥工业大学,2008
    [97] L. Zhang, X. H. Qu. SiCp/Cu composites prepared by pressureless infiltration ofcopper into porous SiC performs[J]. Powder Metallurgy,2008,51(1):53-58
    [98] M. L. Kwang. Thermo-mechanical properties of AlN-Cu composite materialsprepared by solid state processing[J]. Journal of Alloys and Compounds,2007,28(2):434-435
    [99] M.Hunt.Progress in power metal composites[J].Materials Engineering,1990,107(1):33~36.
    [100] C. Yan,W. Li, J. Ren.Multi-functional SiC/Al Composites for Aerospace[J]Applications.Chinese Journal of Aeronautics21(2008):578~584
    [101]崔岩.无压渗透法制备高性能SiC/Al电子封装复合材料[J].2002年材料科学与工程新进展,2003:1080~1082.
    [102]张鸿翔.热循环过程对高体积分数Al/SiCp电学和热学性能影响的研究[D]:博士学位论文.上海交通大学.2007
    [103]王磊.电子封装SiCp/Al复合材料性能及影响因素研究[D]:硕士学位论文.南昌航空工业学院.2006.
    [104]王艳辉,王明智,臧建兵.超硬材料工具制造[J].金刚石与磨料磨具工程,1999,(1):6-13
    [105]李荣久.陶瓷-金属复合材料[M].冶金工业出版社.2004,3. p.40-43
    [106]万隆,陈石林,刘小磬.超硬材料与工具.化学工业出版社.2006,p.22-36
    [107] A.M. Abyzov, S.V. Kidalov, F.M. Shakhov. High thermal conductivity compositesconsisting of diamond filler with tungsten coating and copper(silver) matrix[J]. JMater Sci,2011,46:1424-1438.
    [108]尹法章.添加微量Ti元素对Diamond/Cu复合材料组织及性能的影响[J].复合材料学报.2010,3-27
    [109]夏扬.界面对热沉用金刚石-Cu复合材料热导率的影响[J].人工晶体学报.2009,1-38
    [110] K. Chu, Z. Liu, Chengchang Jia, et al. Thermal conductivity of SPS consolidatedCu/diamond composites with Cr-coated diamond particles[J]. Journal of Alloys andCompounds,2010,490:453-458
    [111] K. Chu, C.C. Jia. Modeling the thermal conductivity of diamond reinforcedaluminum matrix composites with inhomogeneous interfacial conductance[J]. MaterDesign,2009,30:4311-4317
    [112] O. Beffort, S. Vaucher. On the thermal and chemical stability of diamond duringprocessing of Al/diamond composites by liquid metal infiltration[J]. Diam RelatMater,2004,13:1834-1843
    [113] Kiyoshi Mizuuchi, et al. Processing of diamond particle dispersed aluminum matrixcomposites in continuous solid-liquid co-existent state by SPS and their thermalproperties[J]. Compos Part B,2011,42:825-831
    [114] Ruch PW, et al. Selective interfacial bonding in Al(Si)-diamond composites and itseffect on thermal conductivity[J]. Compos Sci Technol,2006,66:2677-2685
    [115] K. Mizuuchi, K. Inoue, Y. Agari, Y. Morisada, M. Sugioka, M. Itami, et al. Thermalconductivity of diamond particle dispersed aluminum matrix composites produced insolid–liquid co-existent state by SPS [J]. J Jpn Soc Powder Metal,2008,55:96-100
    [116] L. Weber, R. Tavangar. Diamond-based metal matrix composites for thermalmanagement made by liquid metal infiltration-Potential and limits[J]. Adv Mater Res,2009,59:111-115
    [117] T. Schubert, L. Ciupinski. Interfacial characterization of Cu/diamond compositesprepared by powder metallurgy for heat sink applications[J]. Scripta Materialia.2008,58:263-266
    [118] W. Shen, W. Shao. Thermal conductivity and thermal expansion coeffient ofdiamond/5wt%Si-Cu composite by vacuum hot pressing[J], Fusion Engineering andDesign,2010,85:2237-2240.
    [119] Ekstrom, United States Patent6914025, America2005
    [120]淦作腾,任淑彬,沈晓宇等.放电等离子烧结法制备金刚石/Cu复合材料.粉末冶金材料科学与工程[J],201015(1):59-63
    [121] Agari Yasuyuki,Inour Kanryu.Thermal conductivity of copper composites dispersedwith diamond particles prepared by spark plasma sintering[J].Thernophys prop,2006,27:328~330
    [122]梁雪冰.放电等离子烧结制备Diamond/Al复合材料:复合材料学报[J],200806(2):192-196
    [123] P.W.Ruch, O.Beffort, S.Kleiner, et al. Selective interfacial bonding in Al(Si)-diamondcomposites and its effect on thermal conductivity[J].Composites Science andTechnology,2006,66:2677-2685
    [124] ISO22007-4, Plastics-Determination of thermal conductivity and thermaldiffusivity-Part4: Laser flash method[J]. International Standard, Switzerland: Firstedition;2008-12-15
    [125] Available: www.netzsch.cn
    [126] ISO11359-2, Plastics-Thermo mechanical analysis of thermal conductivity andthermal diffusivity-Part4: Laser flash method[J]. International Standard, Switzerland:First edition;2008-12-15
    [127] J. Opfermann, J. Blumm.陶瓷坯体烧结行为的动力学软件分析与模拟.德国耐驰仪器制造有限公司热分析应用文集,Available: www.54pc.com
    [128][美]M.N.奥齐西克著,俞昌铭译.热传导[M].高等教育出版社
    [129] Euken A. Heat transfer in ceramic refractory maerials: Calculation from thermalconductivities of constituents[J]. Fortchg. Gebiete Ingenieurw., B3, Forschungsheft,1932,16:353-360
    [130] D.P.H. Hasselman, L.F. Johnson. Effective thermal conductivity of composites withinterfacial thermal barrier resistance[J]. J Compos Mater,1987,21:508–515
    [131] E.T. Swartz, R.O. Pohl. Thermal boundary resistance[J]. Rev Mod Phys,1989,61:605.
    [132] R.S. Prasher, Phelan PE. A scattering-mediated acoustic mismatch model for theprediction of thermal boundary resistance[J]. J Heat Transfer,2001,123:105-112.
    [133] A. Majumdar, P. Reddy. Role of electron–phonon coupling in thermal conductance ofmetal–nonmetal interfaces[J]. Appl Phys Lett,2004,84:4768.
    [134] R.M. Costescu, Wall MA, Cahill DG. Thermal conductance of epitaxial interfaces[J].Phys Rev B,2003,67(5):054302.
    [135] M.L. Huberman, A.W. Overhauser, Electronic Kapitza conductance at a diamond-Pbinterface[J]. Phys Rev B,1994,50:2865.
    [136] Y.S. Ju, Hung MT, Usui T, et al Nanoscale heat conduction across metal-dielectricinterfaces[J]. J Heat Transfer,2006,128:919-925.
    [137] Y.S. Ju. Impact of nonequilibrium between electrons and phonons on heat transfer inmetallic nanoparticles suspended in dielectric media[J]. J heat transfer,2005,127:1400-1402.
    [138] R.Passler. Limiting Debye temperature behavior following from cryogenic heatcapacity data for group-IV,III-V,and II-VI materials[J]. Phys. Status Solidi B,2010,247:77-92
    [139]P.S. Turner. Thermal-expansion stresses in reinforced plastics[J]. J Res NBS1946;37:239–50.
    [140] E. Kerner. The elastic and thermo-elastic properties of composite media[J]. Proc PhysSoc B,1956,69:808–813
    [141] B.W. Rosen, Z. Hashin, Effective thermal expansion coefficient and specific heats ofcomposite materials[J]. Int. J. Eng. Sci,1970,8:157-173
    [142] M. Sternberg, W. R. L. Lambrecht. Molecular-dynamics study ofdiamond/silicon(001) interfaces with and without graphitic interface layers[J].Physical Rrview B,1997,56:1568-1580
    [143] C. Pantea, G. A. Voronin and T.W.Zerda. Kinetics of the reaction between diamondand silicon at high pressure and temperature[J]. Journal of applied physics,2005,98:512-517
    [144] Y. Tzou, J. Bruley, R. Raj. TEM study of the structure and chemistry of adiamond/silicon interface[J]. J. Mater. Res.,1994,6:1566-1572
    [145] O. Beffort, S. Vaucher, F.A. Khalid. On the thermal and chemical stability ofdiamond during processing of Al/diamond composites by liquid metal infiltration[J].Diam Relat Mater,2004,13:1834-1843
    [146] I. Hatta, Y.Q. Gu, L.X. Yu. Thermal diffusivity of diamond/Si composite filmsmeasured by an ac calorimetric method[J]. International Journal of Thermophysics,1997,18:515-523
    [147] C. Zhu, N. Ma, Y. Jin, H. Bai, Y. Ma, J. Lang.Thermal properties of Si(Al)/diamondcomposites prepared by in-situ reactive sintering[J]. Mater Des,2012,41:208-213
    [148] C. Zhu, J. lang, N. Ma.Preparation of Si-diamond-SiC composites by in-situ reactivesintering and their thermal properties[J]. Ceramics International,2012,38:6131-6136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700