用户名: 密码: 验证码:
表达FMDV-VP1重组PPRV的构建及生物学特性与免疫应答研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
口蹄疫(Foot and mouth disease, FMD)和小反刍兽疫(Peste des petits ruminants, PPR)是严重危害山羊、绵羊等家养和野生反刍动物的两种烈性病毒性传染病,分别由口蹄疫病毒(FMDV)和小反刍兽疫病毒(PPRV)引起。在我国,FMD和PPR均被列为一类动物传染病,疫苗免疫是防控此两种疫病的重要手段。灭活疫苗广泛应用于羊的FMD免疫预防,但其存在免疫期短、成本昂贵、不能完全阻止病毒在体内复制等不足。PPR弱毒疫苗N75/1株已被证明安全、有效,广泛应用于亚、非等PPR流行国家和地区。包括中国在内的广大发展中国家同时存在FMD和PPR流行,给养羊业造成重大经济损失。采用N75/1株为载体,研制表达FMDV保护性抗原的重组病毒活疫苗,有可能实现一种活疫苗预防PPR和FMD两种疫病,不仅有利于降低FMD防疫成本,提高FMD免疫覆盖率,而且弥补了灭活疫苗缺乏激活细胞介导免疫反应的不足。本研究旨在验证上述疫苗技术策略的可行性。
     为此,本研究首先以亚洲1型FMD疫苗毒株所提取的RNA为模板,以合成的VP1特异性引物进行RT-PCR扩增,获得了该毒株的VP1基因,并将其连接至pET-21a载体后进行表达。将纯化的VP1蛋白免疫大耳白兔制备了多克隆抗体,ELISA测定其抗体效价为1:8192。同时,应用表达纯化的VP1蛋白作为包被抗原建立了检测牛亚洲1型FMDV抗体的间接ELISA方法。
     再利用已经建立的PPRV/N75/1株反向遗传操作系统,构建了表达亚洲1型FMDV-VP1蛋白的重组PPRV。构建简要过程为先在pN75/1-insertion质粒载体的P和M基因之间插入了亚洲1型FMDV-VP1基因,构建了pN75/1-VP1重组质粒,再将pN75/1-VP1质粒、pCA-N、 pCA-P和pCA-L共转染入Vero细胞,获得了重组病毒,命名为rPPRV-VP1。rPPRV-VP1在Vero细胞上的生长曲线与PPRV/N75/1相似,病毒含量达107.7TCID50/mL; IFA和Western-blot分析证实VP1蛋白在rPPRV-VP1感染Vero细胞获得正确表达;将rPPRV-VP1在Vero细胞上连续传25代次,对不同代次病毒液的病毒含量测定和RT-PCR分析,证明rPPRV-VP1在传代过程中能够保持稳定表达重组VP1蛋白,显示出良好的遗传稳定性。
     为验证rPPRV-VP1对免疫靶动物的安全性和研究抗体持续期,采用6×107TCID50剂量颈部皮下接种5只山羊,持续观察28日。结果表明rPPRV-VP1对山羊具有良好的安全性;同时以6×106TCID50接种山羊后定期采血检测PPRV和FMDV中和抗体,结果表明,接种后第56日两种病毒中和抗体效价均达到峰值,并能够维持到接种后140日无明显下降。
     最后对rPPRV-VP1的免疫原性及其对FMDV的攻毒保护效力进行了评价。rPPRV-VP1和N75/1疫苗株分别按6×106TCID50剂量,分别颈部皮下接种健康易感山羊和牛,接种后定期采血检测PPRV和FMDV的中和抗体,并在免疫后接种亚洲1型FMDV强毒进行FMD攻毒保护效力测定。羊的试验结果为,接种后第14日,所有rPPRV-VP1接种羊PPRV和亚洲1型FMDV中和抗体均转为阳性;PPRV/N75/1接种照羊PPRV中和抗体全部转阳,但FMDV中和抗体保持阴性;两组羊的PPRV中和抗体滴度无显著差异。接种后第40日时进行攻毒,观察10日,接种PPRV/N75/1的4只羊均表现出典型FMD症状;接种rPPRV-VP1的6只羊中,4只羊观察期间无任何口蹄疫症状,另2只羊的发病时间延迟,且症状较PPRV/N75/1组羊明显较轻。
     牛的试验结果为,接种rPPRV-VP1的5头牛均诱导产生显著的亚洲1型FMDV中和抗体,而PPRV/N75/1接种的2头牛均未产生FMDV抗体。接种后第21日时进行攻毒,观察10日,接种PPRV/N75/1的2头牛均表现典型的FMD症状,接种rPPRV-VP1的5头牛中有2头未发现FMD症状,另3头牛和PPRV/N75/1接种牛相比FMD发病时间推迟,症状显著减轻。
     总结,本研究利用PPRV/N75/1株反向遗传系统,构建了表达亚洲1型FMDV-VP1的重组病毒rPPRV-VP1。rPPRV-VP1接种山羊安全性良好;接种山羊和牛均可诱导产生PPRV和FMDV中和抗体,并能够产生对亚洲1型FMDV强毒的攻击的免疫保护。结果证明,PPRV/N75/1株作为构建FMD活载体疫苗具有技术可行性,有可能实现一种活病毒疫苗同时预防PPR和FMD两种重大动物疫病。
Foot-and-mouth disease (FMD) and Peste-des-petits ruminants (PPR) are both severe and highly contagious diseases of domestic (goats and sheep) and wild ruminants, which caused by foot-and-mouth disease virus (FMDV) and peste-des-petits ruminants virus (PPRV) respectively, and both classified into list I of animal diseases in China. There are no effective medical therapies to treat the PPR and FMD, but only through vaccines inoculation to prevent and control. Inactivated vaccine is used widely to control FMD in goats and sheep, however, it is expensive and has a short immunity duration. PPR attenuated vaccine (N75/1strain) has been confirmed to be safe and effective potency to prevent the PPR disease in prevalent countries of Africa and Asia. In developing countries, including China, both FMD and PPR are epidemic and cause great losses every year. A recombinant live vaccine expressing protective antigen of FMDV with PPRV (N75/1strain) vector might prevent PPR and FMD at the same time. The combined vaccine could not only reduce prevention costs and increase immune coverage, but also make up the shortfall of inactivated vaccine to activate the cell-mediated immune response. This study would be aim to testify feasibility of the above strategy.
     For this object, total RNA was firstly extracted from the strain of FMD (type Asial) inactivated vaccine and the first strand cDNA were synthesized by reverse transcription. The VPl gene was obtained from the cDNA by PCR and cloned into the pET-21a plasmid for expressing in E. coli BL21. The purified recombinant VP1protein was inoculated rabbits to prepare polyclonal antibody for several times. The titer of the prepared antibody was1:8192in indirect ELISA. Furthermore, indirect ELISA was established using the expressed VP1protein as coating antigen to detect antibody against FMDV (type Asial) in bovine sera.
     Secondly, based on the established reverse genetics systems of PPRV (N75/1), the recombinant PPRV expressing VPl gene of FMDV (type Asial)was constructed. In brief, VP1gene was inserted between P and M gene of PPRV/N75/1clone, then inserted into pN75/1-insertion and named pN75/1-VP1. The pN75/1-VP1was transfected into Vero cells together with the helper plasmids of pCA-N, pCA-P and pCA-L is using lipofatamine2000. The recombinant virus was rescued and named rPPRV-VP1. The growth curves of rPPRV-VP1were similar to PPRV (N75/1) in Vero cells, up to107.7TCID50/mL. Analysis of IFA and Western-blot showed that the recombinant virus expressed antigens of PPRV and VP1of FMDV. During the25successive passages in Vero cells, the recombinant virus kept stably expression of VP1. In inoculated goats with rPPRV-VP1, the antibody against PPRV and FMDV were both detected, titers were up to peak in56dps, and kept stably to140dps. In inoculated goats with an overdose of rPPRV-VP1, all the goats were healthy in the28days, which indicated that rPPRV-VP1was safe for goats.
     Goats and bovines were inoculated subcutaneously with6×106TCID50doses of rPPRV-VP1, respectively. In the goat experiments, the sera were collected on different days after vaccination and VNA titers against PPRV and FMDV were determined. The results showed that antibody against PPRV and FMDV were both conversed to positive after14days inoculation in the rPPRV-VP1vaccine group. The VNA titers against PPRV among the four time points of the two groups were not significantly different. However, the VNA titers against FMDV among the four time points were very significantly different At the40th day, all of the two group goats were inoculated virulent FMDV strain to evaluate the challenge potency. In the rPPRV-VP1vaccines group, four of the six goats had no clinical symptoms of FMD in the end of observation periods and the other two had a less serious symptoms than the four PPRV/N75/1vaccines control goats. In the bovine experiments, the sera were also collected on different days after vaccination and VNA titers against PPRV and FMDV were tested, and at the21st day, all of the bovines were inoculated virulent FMDV strain. The results showed that the VNA titers against PPRV among the three time points of the two groups were either not significantly different, however, the VNA titers against FMDV were also very significantly different. In the challenge test, two of the five bovines(2/5) had no clinical symptoms of FMD in the end of observation periods and the other three had less serious symptoms than the two PPRV/N75/1vaccnined control bovines.
     In summary, the study constructed a recombinant rPPRV-VP1to express VP1protein of FMDV (type Asial) with the established reverse genetics systems of PPRV(N75/1). The recombinant rPPRV-VPl had a good safety and could stimulate vaccined goats or bovines to produce antibodies against PPRV and FMDV at the meantime, furthermore, it could protect them entirely or partly from a virulent FMDV challenge. The studies showed that the novel FMDV recombinant vector vaccine using PPRV(N75/1strain) was feasible and might be an attractive candidate vaccine for preventing PPR and FMD simultaneously.
引文
[1]Furley C W, Taylor W P, Obi T U. An outbreak of peste des petits ruminants in a zoological collection [J]. The Veterinary Record,1987,121(19):443-7.
    [2]Zheng M, Jin N, Zhang H, et al. Construction and immunogenicity of a recombinant fowlpox virus containing the capsid and 3C protease coding regions of foot-and-mouth disease virus [J]. Journal of Virological Methods,2006,136(1-2):230-7.
    [3]Chinsangaram J, Moraes M P, Koster M, et al. Novel viral disease control strategy:adenovirus expressing alpha interferon rapidly protects swine from foot-and-mouth disease [J]. Journal of Virology,2003,77(2): 1621-5.
    [4]Yao Q, Qian P, Huang Q, et al. Comparison of immune responses to different foot-and-mouth disease genetically engineered vaccines in guinea pigs [J]. Journal of Virological Methods,2008,147(1):143-50.
    [5]Berinstein A, Tami C, Taboga O, et al. Protective immunity against foot-and-mouth disease virus induced by a recombinant vaccinia virus [J]. Vaccine,2000,18(21):2231-8.
    [6]Ma W, Wei J, Wei Y, E et al. Immunogenicity of the capsid precursor and a nine-amino-acid site-directed mutant of the 3C protease of foot-and-mouth disease virus coexpressed by a recombinant goatpox virus [J]. Archives of Virology,2014,
    [7]Ren X G, Xue F, Zhu Y M, et al. Construction of a recombinant BHV-1 expressing the VP1 gene of foot and mouth disease virus and its immunogenicity in a rabbit model [J]. Biotechnology Letters,2009,31(8): 1159-65.
    [8]Gargadennee L L A. La peste des petits ruminants bull servzootepizoot [J]. Aof,1942,5(1):16-21.
    [9]El Hag Ali B, Taylor W P. Isolation of peste des petits ruminants virus from the sudan [J]. Research in Veterinary Science,1984,36(1):1-4.
    [10]Amjad H, Qamar Ul I, Forsyth M, et al. Peste des petits ruminants in goats in pakistan [J]. The Veterinary Record,1996,139(5):118-9.
    [11]Nanda Y P, Chatterjee A, Purohit A K, et al. The isolation of peste des petits ruminants virus from northern India [J]. Veterinary Microbiology,1996,51(3-4):207-16.
    [12]Shaila M S, Shamaki D, Forsyth M A, et al. Geographic distribution and epidemiology of peste des petits ruminants virus [J]. Virus Research,1996,43(2):149-53.
    [13]Kulkarni D D, Bhikane A U, Shaila M S, et al. Peste des petits ruminants in goats in India [J]. The Veterinary Record,1996,138(8):187-8.
    [14]Bao J, Wang Z, Li L, et al. Detection and genetic characterization of peste des petits ruminants virus in free-living bharals (pseudois nayaur) in Tibet, China [J]. Research in Veterinary Science,2011,90(2): 238-40.
    [15]Wang Z, Bao J, Wu X, et al. Peste des petits ruminants virus in Tibet, China [J]. Emerging Infectious Diseases,2009,15(2):299-301.
    [16]徐炳成.浅谈小反刍兽疫[J].中国畜禽种业,2014,(01):103.
    [17]李彦芳.小反刍兽疫的诊断与防控[J].新疆畜牧业,2014,(02):53-4.
    [18]刘淑梅.小反刍兽疫及其免疫预防[J].兽医导刊,2014,(03):57-9.
    [19]王清华等.新疆小反刍兽疫疫情诊断[J].中国动物检疫,2014,(01):72-5.
    [20]Griffin D E, Pan C H. Measles:Old vaccines, new vaccines [J]. Current Topics in Microbiology and Immunology,2009,330:191-212.
    [21]Scott G R. Global eradication of rinderpest. Yea or nay? [J]. Annals of the New York Academy of Sciences,1998,849:293-8.
    [22]Martella V, Elia G, Buonavoglia C. Canine distemper virus [J]. The Veterinary Clinics of North America Small Animal Practice,2008,38(4):787-97, Vii-Viii.
    [23]Di Guardo G, Marruchella G, Agrimi U, et al. Morbillivirus infections in aquatic mammals:a brief overview [J]. Journal of Veterinary Medicine A, Physiology, Pathology, Clinical Medicine,2005,52(2): 88-93.
    [24]Barrett T, Visser I K, Mamaev L, et al. Dolphin and porpoise morbilliviruses are genetically distinct from phocine distemper virus [J]. Virology,1993,193(2):1010-2.
    [25]信爱国,杨仁标,向文彬.小反刍兽疫研究进展[J].中国预防兽医学报,2003,(02):73-6.
    [26]印春生,支海兵.小反刍兽疫研究进展[J].中国兽药杂志,2007,(08):22-7+38.
    [27]郭凤花.小反刍兽疫研究进展[J].湖北畜牧兽医,2013,(01):74-7.
    [28]Osman N A, Me A R, Ali A S, et al. Rapid detection of peste des petits ruminants (PPR) virus antigen in Sudan by agar gel precipitation (AGPT) and haemagglutination (HA) tests [J]. Tropical Animal Health and Production,2008,40(5):363-8.
    [29]Bailey D, Banyard A, Dash P, et al. Full genome sequence of peste des petits ruminants virus, a member of the morbillivirus genus [J]. Virus Research,2005,110(1-2):119-24.
    [30]Moyer S A, Baker S C, Horikami S M. Host cell proteins required for measles virus reproduction [J]. The Journal of General Virology,1990,71 (Pt 4)(775-83.
    [31]Vainionpaa R, Hyypia T. Biology of parainfluenza viruses [J]. Clinical Microbiology Reviews,1994, 7(2):265-75.
    [32]Balamurugan V, Krishnamoorthy P, Raju D S, et al. Prevalence of peste-des-petits-ruminant virus antibodies in cattle, buffaloes, sheep and goats in India [J]. Virusdisease,2014,25(1):85-90.
    [33]Farougou S, Gagara M, Mensah G A. Prevalence of peste des petits ruminants in the Arid zone in the Republic of Niger [J]. The Onderstepoort Journal of Veterinary Research,2013,80(1):544.
    [34]Balamurugan V, Saravanan P, Sen A, et al. Prevalence of peste des petits ruminants among sheep and goats in India [J]. Journal of Veterinary Science,2012,13(3):279-85.
    [35]Delil F, Asfaw Y, Gebreegziabher B. Prevalence of antibodies to peste des petits ruminants virus before and during outbreaks of the disease in Awash Fentale district, Afar, Ethiopia [J]. Tropical Animal Health and Production,2012,44(7):1329-30.
    [36]Swai E S, Kapaga A, Kivaria F, et al. Prevalence and distribution of peste des petits ruminants virus antibodies in various districts of Tanzania [J]. Veterinary Research Communications,2009,33(8):927-36.
    [37]Singh R P, Saravanan P, Sreenivasa B P, et al. Prevalence and distribution of peste des petits ruminants virus infection in small ruminants in India [J]. Revue Scientifique Et Technique,2004,23(3):807-19.
    [38]Ozkul A, Akca Y, Alkan F, et al. Prevalence, distribution, and host range of peste des petits ruminants virus, Turkey [J]. Emerging Infectious Diseases,2002,8(7):708-12.
    [39]Al-Naeem A, Abu Elzein E M, Al-Afaleq A I. Epizootiological aspects of peste des petits ruminants and rinderpest in sheep and goats in Saudi Arabia [J]. Revue Scientifique Et Technique,2000,19(3):855-8.
    [40]Diallo A, Libeau G, Couacy-Hymann E, et al. Recent developments in the diagnosis of rinderpest and peste des petits ruminants [J]. Veterinary Microbiology,1995,44(2-4):307-17.
    [41]Libeau G, Diallo A, Colas F, et al. Rapid differential diagnosis of rinderpest and peste des petits ruminants using an immunocapture ELISA [J]. The Veterinary Record,1994,134(12):300-4.
    [42]Balamurugan V, Hemadri D, Gajendragad M R, et al. Diagnosis and control of peste des petits ruminants:a comprehensive review [J]. Virus Disease,2014,25(1):39-56.
    [43]Obi T U, Ojo M O, Durojaiye O A, et al. Peste des petits ruminants (PPR) in goats in Nigeria:clinical, microbiological and pathological features [J]. Zentralblatt Fur Veterinarmedizin Reihe B Journal of Veterinary Medicine Series B,1983,30(10):751-61.
    [44]Obi T U, Patrick D. The detection of peste des petits ruminants (PPR) virus antigen by agar gel precipitation test and counter-immunoelectrophoresis [J]. The Journal of Hygiene,1984,93(3):579-86.
    [45]Majiyagbe K A, Nawathe D R, Abegunde A. Rapid diagnosis of peste des petits ruminants (PPR) infection, application of immunoelectroosmophoresis (IEOP) technique [J]. Revue D'elevage Et De Medecine Veterinaire Des Pays Tropicaux,1984,37(1):11-5.
    [46]Obi T U, Mccullough K C, Taylor W P. The production pf peste des petits ruminants hyperimmune sera in rabbits and their application in virus diagnosis [J]. Zentralblatt Fur Veterinarmedizin Reihe B Journal of Veterinary Medicine Series B,1990,37(5):345-52.
    [47]Sumption K J, Aradom G, Libeau G, et al. Detection of peste des petits ruminants virus antigen in conjunctival smears of goats by indirect immunofluorescence [J]. The Veterinary Record,1998,142(16): 421-4.
    [48]Libeau G, Prehaud C, Lancelot R, et al. Development of a competitive ELISA for detecting antibodies to the peste des petits ruminants virus using a recombinant nucleoprotein [J]. Research in Veterinary Science, 1995,58(1):50-5.
    [49]Saliki J T, Libeau G, House J A, et al Monoclonal antibody-based blocking enzyme-linked immunosorbent assay for specific detection and titration of peste-des-petits-ruminants virus antibody in caprine and ovine sera [J]. Journal of Clinical Microbiology,1993,31(5):1075-82.
    [50]Balamurugan V, Singh R P, Saravanan P, et al. Development of an indirect ELISA for the detection of antibodies against peste-des-petits-ruminants virus in small ruminants [J]. Veterinary Research Communications,2007,31(3):355-64.
    [51]Raj G D, Rajanathan T M, Kumar C S, et al. Detection of peste des petits ruminants virus antigen using immunofiltration and antigen-competition ELISA methods [J]. Veterinary Microbiology,2008,129(3-4): 246-51.
    [52]Saravanan P, Sen A, Balamurugan V, et al. Rapid quality control of a live attenuated peste des petits ruminants (PPR) vaccine by monoclonal antibody based sandwich ELISA [J]. Biologicals:Journal of the International Association of Biological Standardization,2008,36(1):1-6.
    [53]Zhang G R, Yu R S, Zeng J Y, et al. Development of an epitope-based competitive ELISA for the detection of antibodies against tibetan peste des petits ruminants virus [J]. Intervirology,2013,56(1):55-9.
    [54]Diallo A, Barrett T, Barbron M, et al. Differentiation of rinderpest and peste des petits ruminants viruses using specific Cdna clones [J]. Journal of Virological Methods,1989.23(2):127-36.
    [55]Forsyth M A, Barrett T. Evaluation of polymerase chain reaction for the detection and characterisation of rinderpest and peste des petits ruminants viruses for epidemiological studies [J]. Virus Research,1995, 39(2-3):151-63.
    [56]Haas L. [A short history of the control and eradication of rinderpest] [J]. Berliner Und Munchener Tierarztliche Wochenschrift,2013,126(11-12):446-51.
    [57]Fournie G, Jones B A, Beauvais W, et al The risk of rinderpest re-introduction in post-eradication era [J]. Preventive Veterinary Medicine,2014,113(2):175-84.
    [58]Fournie G, Beauvais W, Jones B A, et al. Rinderpest virus sequestration and use in posteradication era [J]. Emerging Infectious Diseases,2013,19(1):151-3.
    [59]Parida S, Mahapatra M, Kumar S, et al. Rescue of a chimeric rinderpest virus with the nucleocapsid protein derived from peste-des-petits-ruminants virus:use as a marker vaccine [J]. The Journal of General Virology,2007,88(Pt 7):2019-27.
    [60]Das S C, Baron M D, Barrett T. Recovery and characterization of a chimeric rinderpest virus with the glycoproteins of peste-des-petits-ruminants virus:homologous F and H proteins are required for virus viability [J]. Journal of Virology,2000,74(19):9039-47.
    [61]Meyer R F, Knudsen R C. Foot-and-mouth disease:a review of the virus and the symptoms [J]. Journal of Environmental Health,2001,64(4):21-3.
    [62]Brooksby J B. Portraits of viruses:foot-and-mouth disease virus [J]. Intervirology,1982,18(1-2):1-23.
    [63]Kesy A. Global Situation of foot-and-mouth disease (FMD)--a short review [J]. Polish Journal of Veterinary Sciences,2002,5(4):283-7.
    [64]郎洪武,杨汉春.口蹄疫研究进展[J].中国兽药杂志,2005,39(10):16-21.
    [65]Uziumov V L. Structure and properties of foot-and-mouth disease virus (review) [J]. Veterinariia,1970, 9:36-8.
    [66]Sugimura T, Tsuda T, Suzuki T, et al. Preparation of virus-infection-associated (VIA) antigen of foot-and-mouth disease (FMD) virus from inactivated vaccine [J]. The Journal of Veterinary Medical Science /The Japanese Society of Veterinary Science,1996,58(6):599-601.
    [67]Pinto A A, Garland A J. Immune response to virus-infection-associated (VIA) antigen in cattle repeatedly vaccinated with foot-and-mouth disease virus inactivated by formalin or acetylethyleneimine [J]. The Journal of Hygiene,1979,82(1):41-50.
    [68]Pinto A A, Hedger R S. The detection of antibody to virus-infection associated (VIA) antigen in various species of African wildlife following natural and experimental infection with foot and mouth disease virus [J]. Archives of Virology,1978,57(4):307-14.
    [69]Kitching R P, Knowles N J, Samuel A R, et al. Development of foot-and-mouth disease virus strain characterisation--A Review [J]. Tropical Animal Health and Production,1989,21(3):153-66.
    [70]Fukai K, Onozato H, Kitano R, et al Availability of a fetal goat tongue cell line ZZ-R 127 for isolation of foot-and-mouth disease virus (FMDV) from clinical samples collected from animals experimentally infected with FMDV [J]. Journal of Veterinary Diagnostic Investigation:Official Publication of the American Association of Veterinary Laboratory Diagnosticians. Inc,2013,25(6):770-4.
    [71]Du J, Gao S, Chang H, et al Bactrian camel (Camelus Bactrianus) integrins alphavbeta3 and alphavbeta6 as FMDV receptors:molecular cloning, sequence analysis and comparison with other species [J]. Veterinary Immunology and Immunopathology,2009,131(3-4):190-9.
    [72]Moniwa M, Embury-Hyatt C, Zhang Z, et al. Experimental foot-and-mouth disease virus infection in white tailed deer [J]. Journal of Comparative Pathology,2012,147(2-3):330-42.
    [73]Forman A J, Gibbs E P, Baber D J, et al. Studies with foot-and-mouth disease virus in British deer (red, fallow and roe). II Recovery of virus and serological response [J]. Journal of Comparative Pathology,1974, 84(2):221-9.
    [74]Bukhtiiarov A I. Experimental foot-and-mouth disease in deer [J]. Veterinariia,1965,42(9):41-3.
    [75]Hughes G J, Mioulet V, Kitching R P, et al. Foot-and-mouth disease virus infection of sheep: implications for diagnosis and control [J]. The Veterinary Record,2002,150(23):724-7.
    [76]Heinritzi K, Bollwahn W. Clinical signs and differential diagnosis of foot and mouth disease in pigs] [J]. Dtw Deutsche Tierarztliche Wochenschrift,2001,108(12):504-7.
    [77]Ryan E, Gloster J, Reid S M, et al. Clinical and laboratory investigations of the outbreaks of foot-and-mouth disease in southern England in 2007 [J]. The Veterinary Record,2008,163(5):139-47.
    [78]Kitching R P, Alexandersen S. Clinical variation in foot and mouth disease:pigs [J]. Revue Scientifique Et Technique,2002,21(3):513-8.
    [79]Kitching R P, Hughes G J. Clinical variation in foot and mouth disease:sheep and goats [J]. Revue Scientifique Et Technique,2002,21(3):505-12.
    [80]Kitching R P. Clinical variation in foot and mouth disease:cattle [J]. Revue Scientifique Et Technique, 2002,21(3):499-504.
    [81]Longjam N, Deb R, Sarmah A K, et al A brief review on diagnosis of foot-and-mouth disease of livestock:conventional to molecular tools [J]. Veterinary Medicine International,2011,2011(90):576-8.
    [82]Nunez J I, Blanco E, Hernandez T, et al. RT-PCR in foot-and-mouth disease diagnosis [J]. The Veterinary Quarterly,1998,20 Suppl 2(S):34-6.
    [83]Scherbakov A, Lomakina N, Drygin V, et al. Application of RT-PCR and nucleotide sequencing in foot-and-mouth disease diagnosis [J]. The Veterinary Quarterly,1998,20 Suppl 2(S):32-4.
    [84]Paton D J, King D P. Diagnosis of foot-and-mouth disease [J]. Developments in Biologicals,2013, 135:117-23.
    [85]Farsang A, Frentzel H, Kulcsar G, et al. Control of the deliberate spread of foot-and-mouth disease virus [J]. Biosecurity and Bioterrorism:Biodefense Strategy, Practice, and Science,2013,11 Suppl 1(S):115-22.
    [86]Ding Y Z, Chen H T, Zhang J, et al. An overview of control strategy and diagnostic technology for foot-and-mouth disease in China [J]. Virology Journal,2013,10:78.
    [87]陆承平.最新动物病毒分类简介[J].中国病毒学,2005,20(6):682-688.
    [88]Kolakofsky D, Pelet T, Garcin D, et al. Paramyxovirus RNA synthesis and the requirement for hexamer genome length:the rule of six revisited [J]. Journal of Virology,1998,72(2):891-9.
    [89]Myers T M, Smallwood S, Moyer S A. Identification of nucleocapsid protein residues required for sendai virus nucleocapsid formation and genome replication [J]. The Journal of General Virology,1999,80 (Pt 6):1383-91.
    [90]Kho C L, Tan W S, Tey B T, et al. Regions on nucleocapsid protein of Newcastle disease virus that interact with it's Phosphoprotein [J]. Archives of Virology,2004,149(5):997-1005.
    [91]Kusumaningtyas E, Tan W S, Zamrod Z, et al. Existence of two forms of L protein of Newcastle disease virus isolates due to a compensatory mutation in domain V [J]. Archives of Virology,2004,149(9):1859-65.
    [92]Moran I S, Cuadrado-Castano S, Barroso I M, et al. Thermal stability of matrix protein from Newcastle disease virus [J]. International Journal of Biological Macromolecules,2013,61:390-5.
    [93]Iram N, Shah M S, Ismat F, et al. Heterologous expression, characterization and evaluation of the matrix protein from Newcastle disease virus as a target for antiviral therapies [J]. Applied Microbiology and Biotechnology,2014,98(4):1691-701.
    [94]Huang Z, Panda A, Elankumaran S, et al. The hemagglutinin-neuraminidase protein of Newcastle disease virus determines tropism and virulence [J]. Journal of Virology,2004,78(8):4176-84.
    [95]Kim S H, Wanasen N, Paldurai A, et al. Newcastle disease virus fusion protein is the major contributor to protective immunity of genotype-matched vaccine [J]. Plos One,2013,8(8):E74022.
    [96]Su B S, Shen P C, Hung L H, et al. Potentiation of cell-mediated immune responses against recombinant HN protein of Newcastle disease virus by recombinant chicken IL-18 [J]. Veterinary Immunology and Immunopathology,2011,141(3-4):283-92.
    [97]Ravindra P V, Tiwari A K, Sharma B, et al. HN protein of Newcastle disease virus causes apoptosis in chicken embryo fibroblast cells [J]. Archives of Virology,2008,153(4):749-54.
    [98]Chen W, Qu L, Hu S, et al. Recombinant goat pox virus expressing PPRV H protein [J]. Sheng wu gong cheng xue bao, Chinese journal of biotechnology,2009,25(4):496-502.
    [99]Mcginnes L W, Gravel K, Morrison T G. Newcastle disease virus HN protein alters the conformation of the F protein at cell surfaces [J]. Journal of Virology,2002,76(24):12622-33.
    [100]Boxer E L, Nanda S K, Baron M D. The rinderpest virus non-structural C protein blocks the induction of type linterferon [J]. Virology,2009,385(1):134-42.
    [101]Sparrer K M, Pfaller C K, Conzelmann K K. Measles virus C protein interferes with beta interferon transcription in the nucleus [J]. Journal of Virology,2012,86(2):796-805.
    [102]Liston P, Diflumeri C, Briedis D J. Protein interactions entered into by the measles virus P, V, and C proteins [J]. Virus Research,1995,38(2-3):241-59.
    [103]Radecke F, Billeter M A. Appendix:Measles virus antigenome and protein consensus sequences [J]. Current Topics in Microbiology and Immunology,1995,191(181-92.
    [104]Baron M D, Barrett T. Rescue of rinderpest virus from cloned cDNA [J]. Journal of Virology,1997, 71(2):1265-71.
    [105]Peeters B P, De Leeuw O S, Koch G, et al. Rescue of Newcastle disease virus from cloned cDNA: evidence that cleavability of the fusion protein is a major determinant for virulence [J]. Journal of Virology, 1999,73(6):5001-9.
    [106]De Leeuw O, Peeters B. Complete Nucleotide sequence of Newcastle disease virus:evidence for the existence of a new genus within the subfamily paramyxovirinae [J]. The Journal of General Virology,1999, 80 (Pt l)(131-6.
    [107]Gassen U, Collins F M, Duprex W P, et al. Establishment of a rescue system for canine distemper virus [J]. Journal of Virology,2000,74(22):10737-44.
    [108]Roth J P, Li J K, Barnard D L. Human parainfluenza virus type 3 (HPIV-3):Construction and rescue of an infectious, recombinant virus expressing the enhanced green fluorescent protein (EGFP) [J]. Current Protocols in Microbiology,2010, Chapter 15(Unit 15):1.
    [109]Hu Q, Chen W, Huang K, et al. Rescue of recombinant peste des petits ruminants virus:creation of a GFP-expressing virus and application in rapid virus neutralization test [J]. Veterinary Research,2012,43:48.
    [110]Plattet P, Rivals J P, Zuber B, et al. The fusion protein of wild-type canine distemper virus is a major determinant of persistent infection [J]. Virology,2005,337(2):312-26.
    [111]Agungpriyono D R, Yamaguchi R, Uchida K, et al. Green fluorescent protein gene insertion of sendai virus infection in nude mice:possibility as an infection tracer [J]. The Journal of Veterinary Medical Science /The Japanese Society of Veterinary Science,2000,62(2):223-8.
    [112]Iwadate Y, Inoue M, Saegusa T, et al Recombinant sendai virus vector induces complete remission of established brain tumors through efficient interleukin-2 gene transfer in vaccinated rats [J]. Clinical Cancer Research:An Official Journal of the American Association for Cancer Research,2005,11(10):3821-7.
    [113]Bukreyev A, Camargo E, Collins P L. Recovery of infectious respiratory syncytial virus expressing an additional, foreign gene [J]. Journal of Virology,1996,70(10):6634-41.
    [114]Bukreyev A, Whitehead S S, Bukreyeva N, et al. Interferon gamma expressed by a recombinant respiratory syncytial virus attenuates virus replication in mice without compromising immunogenicity [J]. Proceedings of the National Academy of Sciences of the United States of America,1999,96(5):2367-72.
    [115]Parks C L, Wang H P, Kovacs G R, et al. Expression of a foreign gene by recombinant canine distemper virus recovered from cloned DNAs [J]. Virus Research,2002,83(1-2):131-47.
    [116]Plattet P, Zweifel C, Wiederkehr C, et al. Recovery of a persistent canine distemper virus expressing the enhanced green fluorescent protein from cloned cDNA [J]. Virus Research,2004,101(2):147-53.
    [117]Zhao H, Peeters B P. Recombinant Newcastle disease virus as a viral vector:effect of genomic location of foreign gene on gene expression and virus replication [J]. The Journal of General Virology,2003,84(Pt 4): 781-8.
    [118]Conzelmann K K, Schnell M. Rescue of synthetic genomic RNA analogs of rabies virus by plasmid-encoded proteins [J]. Journal of Virology,1994,68(2):713-9.
    [119]Yoneda M, Georges-Courbot M C, Ikeda F, et al. Recombinant measles virus vaccine expressing the nipah virus glycoprotein protects against lethal nipah virus challenge [J]. Plos One,2013,8(3):E58414.
    [120]Stebbings R, Li B, Lorin C, et al. Immunogenicity of a recombinant measles HIV-1 subtype C vaccine [J]. Vaccine,2013,31(51):6079-86.
    [121]Brandler S, Ruffle C, Combredet C, et al. A recombinant measles vaccine expressing chikungunya virus-like particles is strongly immunogenic and protects mice from lethal challenge with chikungunya virus [J]. Vaccine,2013,31(36):3718-25.
    [122]Satoh M, Saito M, Tanaka K, et al. Evaluation of a recombinant measles virus expressing hepatitis C virus envelope proteins by infection of human PBI-Nod/Scid/Jak3null mouse [J]. Comparative Immunology, Microbiology and Infectious Diseases,2010,33(6):E81-8.
    [123]Cantarella G, Liniger M, Zuniga A, et al. Recombinant measles virus-HPV vaccine candidates for prevention of cervical carcinoma [J]. Vaccine,2009,27(25-26):3385-90.
    [124]Wang Z, Hangartner L, Cornu T I, et al. Recombinant measles viruses expressing heterologous antigens of mumps and simian immunodeficiency viruses [J]. Vaccine,2001,19(17-19):2329-36.
    [125]Singh M, Cattaneo R, Billeter M A. A Recombinant measles virus expressing hepatitis B virus surface antigen induces humoral immune responses in genetically modified mice [J]. Journal of Virology,1999,73(6): 4823-8.
    [126]Durbin A P, Skiadopoulos M H, Mcauliffe J M, et al. Human parainfluenza virus type 3 (PIV3) expressing the hemagglutinin protein of measles virus provides a potential method for immunization against measles virus and PIV3 in early infancy [J]. Journal of Virology,2000,74(15):6821-31.
    [127]Bukreyev A, Huang Z, Yang L, et al. Recombinant Newcastle disease virus expressing a foreign viral antigen is attenuated and highly immunogenic in primates [J]. Journal of Virology,2005,79(21):13275-84.
    [128]Dinapoli J M, Yang L, Suguitan A, Jr., et al. Immunization of primates with a Newcastle disease virus-vectored vaccine via the respiratory tract induces a high titer of serum neutralizing antibodies against highly pathogenic avian influenza virus [J]. Journal of Virology,2007,81(21):11560-8.
    [129]Nakaya T, Cros J, Park M S, et al Recombinant Newcastle disease virus as a vaccine vector [J]. Journal of Virology,2001,75(23):11868-73.
    [130]Swayne D E, Suarez D L, Schultz-Cherry S, et al. Recombinant paramyxovirus type 1 avian influenza H7 virus as a vaccine for protection of chickens against influenza and Newcastle disease [J]. Avian Diseases, 2003,47(3 Suppl):1047-50.
    [131]Huang Z, Elankumaran S, Yunus A S, et al. A recombinant Newcastle disease virus (NDV) expressing VP2 protein of infectious bursal disease virus (IBDV) protects against NDV and IBDV [J]. Journal of Virology,2004,78(18):10054-63.
    [132]Ge J, Deng G, Wen Z, et al. Newcastle disease virus-based live attenuated vaccine completely protects chickens and mice from lethal challenge of homologous and heterologous H5N1 avian influenza viruses [J]. Journal of Virology,2007,81(1):150-8.
    [133]Wang Y, Ge J, Xie X, et al. Impact of modification of cleavage site of fusion protein and foreign gene insertion on the virulence of Newcastle disease virus lasota vaccine strain] [J]. Wei Sheng Wu Xue Bao Acta Microbiologica Sinica,2008,48(3):362-8.
    [134]Baron M D, Foster-Cuevas M, Baron J, et al. Expression in cattle of epitopes of a heterologous virus using a recombinant rinderpest virus [J]. The Journal of General Virology,1999,80 (Pt 8):2031-9.
    [135]Picado A, Guitian F J, Pfeiffer D U. Space-time interaction as an indicator of local spread during the 2001 FMD outbreak in the Uk [J]. Preventive Veterinary Medicine,2007,79(1):3-19.
    [136]Sanz-Parra A, Blasco R, Sobrino F, et al. Analysis of the B and T cell response in guinea pigs induced with recombinant vaccinia expressing foot-and-mouth disease virus structural proteins [J]. Archives of Virology,1998,143(2):389-98.
    [137]Moraes M P, Mayr G A, Mason P W, et al. Early protection against homologous challenge after a single dose of replication defective human adenovirus type 5 expressing capsid proteins of foot-and-mouth disease virus (FMDV) strain A24 [J]. Vaccine,2002,20(11-12):1631-9.
    [138]Wu Q, Moraes M P, Grubman M J. Recombinant adenovirus co-expressing capsid proteins of two serotypes of foot-and-mouth disease virus (FMDV):in vitro characterization and induction of neutralizing antibodies against FMDV in swine [J]. Virus Research,2003,93(2):211-9.
    [139]Lu Z, Bao H, Cao Y, Et Al. Protection of guinea pigs and swine by a recombinant adenovirus expressing O serotype of foot-and-mouth disease virus whole capsid and 3C protease [J]. Vaccine,2008,26 (Suppl 6):48-53.
    [140]Guo C, Zhang C, Zheng H, Et Al. Recombinant adenovirus expression of FMDV P1-2A and 3C protein and it's immune response in mice [J]. Research in Veterinary Science,2013,95(2):736-41.
    [141]金宁一,张洪勇,尹革芬,等.共表达口蹄疫病毒衣壳蛋白前体P1-2A基因和蛋白酶3C基因重组鸡痘病毒的构建及其免疫原性[J].科学通报,2004,(06):576-9.
    [142]刘慧娟,金宁一,马鸣潇,等.共表达O型口蹄疫病毒3C、P1-2A基因和猪白细胞介素18基因的重组鸡痘病毒免疫原性研究[J].中国生物工程杂志,2007,(08):25-8.
    [143]谷长维,金宁一,霍晓伟,等.共表达口蹄疫病毒0型P1-2A-IL-18基因和Asia I型P1-2A-3C基因重组鸡痘病毒的构建[J].中国生物制品学杂志,2008,08):658-61.
    [144]Romero C H, Barrett T, Chamberlain R W, et al.. Recombinant capripoxvirus expressing the hemagglutinin protein gene of rinderpest virus:protection of cattle against rinderpest and lumpy skin disease Viruses [J]. Virology,1994,204(1):425-9.
    [145]Romero C H, Barrett T, Kitching R P, et al.. Protection of cattle against rinderpest and lumpy skin disease with a recombinant capripoxvirus expressing the fusion protein gene of rinderpest virus [J]. The Veterinary Record,1994,135(7):152-4.
    [146]张强.表达亚洲1型口蹄疫病毒P1-2A3C基因的山羊痘病毒弱毒株构建及其复制非必需区筛选[D];中国农业科学院,2007.
    [147]王芳.表达FMDV VP1基因的重组山羊痘病毒的构建及其生物学特性研究[D];中国农业科学院,2007.
    [148]海岗.表达FMDV VP1基因和山羊γ-干扰素基因的重组山羊痘病毒的构建及其生物学特性研究[D];中国农业科学院,2008.
    [149]Kit S, Kit M, Dimarchi R, et al. Modified-live infectious bovine rhinotracheitis virus (IBRV) vaccine expressing foot-and-mouth disease virus (FMDV) capsid protein epitopes on surface of hybrid virus particles [J]. Advances in Experimental Medicine And Biology,1991,303(211-20.
    [150]任宪刚.表达O型口蹄疫病毒VP1基因的重组牛疱疹病毒1型的构建及其在兔体内的免疫原性研究[D];中国农业科学院,2009.
    [151]朱远茂.表达口蹄疫病毒结构蛋白VP1重组牛疱疹病毒1型的构建及其免疫研究[D];东北农业大学,2010.
    [152]Li P, Bai X, Cao W, et al. Rescue and identification foot-and-mouth disease virus Asial/JS/China/2005 strain with Arg-Gly-Asp RGD receptor recognition site] [J]. Wei Sheng Wu Xue Bao Acta Microbiologica Sinica,2009,49(7):943-8.
    [153]Cao Y, Lu Z, Sun J, et al. Synthesis of empty capsid-like particles of Asia I foot-and-mouth disease virus in insect cells and their immunogenicity in guinea pigs [J]. Veterinary Microbiology,2009,137(1-2): 10-7.
    [154]Jeeva S, Lee J A, Park S Y, et al. Development of porcine respiratory and reproductive syndrome virus replicon vector for foot-and-mouth disease vaccine [J]. Clinical and Experimental Vaccine Research,2014, 3(1):100-9.
    [155]Bittle J L, Houghten R A, Alexander H, et al. Protection against foot-and-mouth disease by immunization with a chemically synthesized peptide predicted from the viral nucleotide sequence [J]. Nature, 1982,298(5869):30-3.
    [156]Dimarchi R, Brooke G, Gale C, et al. Protection of cattle against foot-and-mouth disease by a synthetic peptide [J]. Science,1986,232(4750):639-41.
    [157]Blanco E, Mccullough K, Summerfield A, et al. Interspecies major histocompatibility complex restricted Th cell epitope on foot-and-mouth disease virus capsid protein VP4 [J]. Journal of Virology,2000, 74(10):4902-7.
    [158]Blanco E, Garcia-Briones M, Sanz-Parra A, et al. Identification of T-cell epitopes in nonstructural proteins of foot-and-mouth disease Virus [J]. Journal of Virology,2001,75(7):3164-74.
    [159]Bachrach H L, Moore D M, Mckercher P D, et al. Immune and antibody responses to an isolated capsid protein of foot-and-mouth disease virus [J]. Journal of Immunology,1975,115(6):1636-41.
    [160]Rweyemamu M M, Terry G, Pay T W. Stability and immunogenicity of empty particles of foot-and-mouth disease virus [J]. Archives of Virology,1979,59(1-2):69-79.
    [161]Kupper H, Keller W, Kurz C, et al. Cloning of cDNA of major antigen of foot and mouth disease virus and expression in E. Coli [J]. Nature,1981,289(5798):555-9.
    [162]Kleid D G, Yansura D, Small B, et al. Cloned viral protein vaccine for foot-and-mouth disease: responses in cattle and swine [J]. Science,1981,214(4525):1125-9.
    [163]赵凯,张震宇,卢永干,等.抗口蹄疫蛋白疫苗与DNA疫苗混合物的免疫原性研究[J].中国人兽共患病杂志,2001,(05):5-8.
    [164]Balamurugan V, Renji R, Venkatesh G, et al. Protective immune response against foot-and-mouth disease virus challenge in guinea pigs vaccinated with recombinant PI polyprotein expressed in pichia pastoris [J]. Archives of Virology,2005,150(5):967-79.
    [165]Shi X J, Wang B, Zhang C, et al. Expressions of bovine IFN-gamma and foot-and-mouth disease VP1 antigen in P. pastoris and their effects on mouse immune response to find antigens [J]. Vaccine,2006,24(1): 82-9.
    [166]Li Z, Yi Y, Yin X, et al. Expression of foot-and-mouth disease virus capsid proteins in silkworm-baculovirus expression system and Iit's utilization as a subunit vaccine [J]. Plos One,2008,3(5): E2273.
    [167]袭莹,朱战波,金宁一,等.O型口蹄疫病毒VP1-2A基因及多表位片段在毕赤酵母中的表达[J].黑龙江八一农垦大学学报,2010,(05):60-3.
    [168]Li Z, Yi Y, Yin X, et al. Development of a foot-and-mouth disease virus serotype an empty capsid subunit vaccine using silkworm (Bombyx Mori) Pupae [J]. Plos One,2012,7(8):E43849.
    [169]Huang H, Yang Z, Xu Q, et al. Recombinant fusion protein and DNA vaccines against foot and mouth disease virus infection in guinea pig and swine [J]. Viral Immunology,1999,12(1):1-8.
    [170]常巧呈,霍晓伟,李太元,等.口蹄疫病毒多价DNA疫苗的构建及其免疫原性[J].中国生物制品学杂志,2008,(10):876-9.
    [171]Dory D, Remond M, Beven V, et al. Pseudorabies virus glycoprotein B can be used to carry foot and mouth disease antigens in DNA vaccination of pigs [J]. Antiviral Research,2009,81(3):217-25.
    [172]Chockalingam A K, Thiyagarajan S, Govindasamy N, et al. Study of a chimeric foot-and-mouth disease virus DNA vaccine containing structural genes of serotype O in a genome backbone of serotype Asia 1 in guinea pigs [J]. Acta Virologica,2010,54(3):189-95.
    [173]Borrego B, Argilaguet J M, Perez-Martin E, et al. A DNA vaccine encoding foot-and-mouth disease virus B and T-cell epitopes targeted to class II swine leukocyte antigens protects pigs against viral challenge [J]. Antiviral Research,2011,92(2):359-63.
    [174]Wigdorovitz A, Perez Filgueira D M, Robertson N, et al. Protection of mice against challenge with foot and mouth disease virus (FMDV) by immunization with foliar extracts from plants infected with recombinant tobacco mosaic virus expressing the FMDV structural protein VP1 [J]. Virology,1999,264(1): 85-91.
    [175]Santoso M, Yuliana M, Mujono W, et al. Pattern of diabetic foot at koja regional general hospital, Jakarta, from 1999 to 2004 [J]. Acta Medica Indonesiana,2005,37(4):187-9.
    [176]倪志华,张红心,王鸣刚,等.口蹄疫抗原决定簇融合基因转化水稻的研究[J].厦门大学学报(自然科学版),2005,(S1):158-61.
    [177]王炜,张永光,潘丽,等.口蹄疫病毒P12A-3C免疫原基因在百脉根中的遗传转化与表达[J].中国人兽共患病学报,2007,(03):236-9+47.
    [178]Pan L, Zhang Y, Wang Y, et al. Foliar extracts from transgenic tomato plants expressing the structural polyprotein, P1-2A, and protease,3C, from foot-and-mouth disease virus elicit a protective response in guinea pigs [J]. Veterinary Immunology and Immunopathology,2008,121(1-2):83-90.
    [179]Chen W, Yan W, Du Q, et al. RNA interference targeting VP1 inhibits foot-and-mouth disease virus replication in BHK-21 cells and suckling mice [J]. Journal of Virology,2004,78(13):6900-7.
    [180]De Los Santos T, Wu Q, De Avila Botton S, et al. Short hairpin RNA targeted to the highly conserved 2B nonstructural protein coding region inhibits replication of multiple serotypes of foot-and-mouth disease virus [J]. Virology,2005,335(2):222-31.
    [181]韩晓荣,柳纪省,杨彬,等.亚洲1型口蹄疫病毒反义核酸双向表达载体的构建[J].动物医学进展,2008,(03):1-5.
    [182]Joyappa D H, Sasi S, Ashok K C, et al. The plasmid constructs producing ShRNA corresponding to the conserved 3D polymerase of foot and mouth disease virus protects guinea pigs against challenge virus [J]. Veterinary Research Communications,2009,33(3):263-71.
    [183]Cong W, Jin H, Jiang C, et al. Attenuated salmonella choleraesuis-mediated RNAi targeted to conserved regions against foot-and-mouth disease virus in guinea pigs and swine [J]. Veterinary Research, 2010,41(3):30.
    [184]Peralta A, Maroniche G A, Alfonso V, et al. VP1 protein of foot-and-mouth disease virus (FMDV) impairs baculovirus surface display [J]. Virus Research,2013,175(1):87-90.
    [185]Fowler V, Bashiruddin J B, Belsham G J, et al. Characteristics of a foot-and-mouth disease virus with a partial VP1 G-H loop deletion in experimentally infected cattle [J]. Veterinary Microbiology,2014,169(1-2): 58-66.
    [186]Baxt B, Morgan D O, Robertson B H, et al. Epitopes on foot-and-mouth disease virus outer capsid protein VP1 involved in neutralization and cell attachment [J]. Journal of Virology,1984,51(2):298-305.
    [187]Marquardt O, Adam K H. foot-and-mouth disease virus subtyping by sequencing VP1 genes [J]. Veterinary Microbiology,1990,23(1-4):175-83.
    [188]Collen T, Dimarchi R, Doel T R. A T-cell epitope in VP1 of foot-and-mouth disease virus is immunodominant for vaccinated cattle [J]. Journal of Immunology,1991,146(2):749-55.
    [189]Volpina O M, Gelfanov V M, Yarov A V, et al. New virus-specific T-helper epitopes of foot-and-mouth disease viral VP1 protein [J]. Febs Letters,1994,337(3):315.
    [190]Van Lierop M J, Wagenaar J P, Van Noort J M, et al. Sequences derived from the highly antigenic VP1 region 140 To 160 of foot-and-mouth disease virus do not prime for a bovine T-cell response against intact virus [J]. Journal of Virology,1995,69(7):4511-4.
    [191]Surovoi A, Vol'pina O M, Snetkova E V, et al. Antigenic structure of the foot-and-mouth disease virus. Ⅰ. Synthesis of protective peptides from the major immunogenic region of VP1 protein of foot-and-mouth virus type O1K [J]. Bioorganicheskaia Khimiia,1988,14(10):1352-62.
    [192]Vol'pina O M, Surovoi A, Ul'iashin V V, et al. Antigenic structure of the foot-and-mouth disease virus. Ⅱ Synthesis of protective peptides from the major immunogenic region of VP1 protein of foot-and-mouth disease virus type A22] [J]. Bioorganicheskaia Khimiia,1988,14(10):1363-71.
    [193]Ling J, Liu Z, Tong T, et al. Construction and eukaryotic expression of recombinant plasmid encoding fusion protein of goat complement C3D and foot-and-mouth disease virus VP1] [J]. Sheng Wu Gong Cheng Xue Bao Chinese Journal of Biotechnology,2008,24(2):209-13.
    [194]Yang B, Lan X, Li X, et al. A novel bi-functional DNA vaccine expressing VP1 protein and producing antisense RNA targeted to 5'UTR of foot-and-mouth disease virus can induce both rapid inhibitory effect and specific immune response in mice [J]. Vaccine,2008,26(43):5477-83.
    [195]Wang G H, Du J Z, Cong G Z, et al. Establishment of indirect ELISA diagnose based on the VP1 structural protein of foot-and-mouth disease virus (FMDV) in pigs] [J]. Sheng Wu Gong Cheng Xue Bao Chinese Journal of Biotechnology,2007,23(5):961-6.
    [196]任宪刚,薛飞,朱远茂,等.O型FMDV VP1基因的表达鉴定及其多克隆抗休的制备[J].中国预 防兽医学报,2009,(07):568-71.
    [197]魏婕Asia I型FMDV VP1蛋白原核表达及条件优化[D];新疆农业大学,2009.
    [198]Knuchel M C, Marty R R, Morin T N, et al. Relevance of a pre-existing measles immunity prior immunization with a recombinant measles virus vector[J]. Human Vaccines & Immunotherapeutics,2013, 9(3).
    [199]Goff S P, Berg P. Construction of hybrid viruses containing SV40 and lambda phage DNA segments and their propagation in cultured monkey cells [J]. Cell,1976,9(42):695-705.
    [200]Racaniello V R, Baltimore D. Molecular Cloning of poliovirus cDNA and tetermination of the complete nucleotide sequence of the viral genome [J]. Proceedings of the national academy of sciences of the United States of America,1981,78(8):4887-91.
    [201]Schnell M J, Mebatsion T, Conzelmann K K. Infectious rabies viruses from cloned cDNA [J]. The Embo Journal,1994,13(18):4195-203.
    [202]Lawson N D, Stillman E A, Whitt M A, et al. Recombinant vesicular stomatitis viruses from DNA [J]. Proceedings of the national academy of sciences of the United States of America,1995,92(10):4477-81.
    [203]Durbin A P, Hall S L, Siew J W, et al. Recovery of infectious human parainfluenza virus type 3 from cDNA [J]. Virology,1997,235(2):323-32.
    [204]Romer-Oberdorfer A, Mundt E, Mebatsion T, et al. Generation of recombinant lentogenic newcastle disease virus from cDNA [J]. The Journal of General Virology,1999,80 (Pt 11):2987-95.
    [205]Neumann G, Feldmann H, Watanabe S, et al. Reverse genetics demonstrates that proteolytic processing of The ebola virus glycoprotein is not essential fr replication in cell culture [J]. Journal of Virology,2002, 76(1):406-10.
    [206]Naylor C J, Brown P A, Edworthy N, et al. Development of a reverse genetics system for avian pneumovirus demonstrates that the small hydrophobic (Sh) and attachment (G) genes are not essential for virus viability [J]. The Journal of General Virology,2004,85(Pt 11):3219-27.
    [207]Bailey D, Chard L S, Dash P, et al. Reverse genetics for peste-des-petits ruminants virus (PPRV): promoter and protein specificities [J]. Virus Research,2007,126(1-2):250-5.
    [208]薛青红,印春生,李宁,等.小反刍兽疫活疫苗的安全性评价试验[J].中国兽药杂志,2010,44(09):4-6.
    [209]印春生,支海兵,王乐元,等.小反刍兽疫活疫苗临床试验研究[J].中国兽药杂志,2010,44(07):1-5.
    [210]薛青红,印春生,李宁,等.小反刍兽疫活疫苗效力评价[J].中国兽医学报,2011,45(09):1276-8+326.
    [211]Laporte J, Grosclaude J, Wantyghem J, et al. Neutralization of the infective power of the foot-and-mouth disease virus in cell culture by using serums from pigs immunized with a purified viral protein] [J]. Comptes Rendus Hebdomadaires Des Seances De L'academie Des Sciences Serie D:Sciences Naturelles,1973,276(25):3399-401.
    [212]Meloen R H, Barteling S J. Epitope mapping of the outer structural protein VP1 of three different serotypes of foot-and-mouth disease virus [J]. Virology,1986,149(1):55-63.
    [213]Meloen R H, Barteling S J. An epitope located at the C terminus of isolated VP1 of foot-and-mouth disease virus type O induces neutralizing activity but poor protection [J]. The Journal of General Virology, 1986,67(Pt 2)(289-94.
    [214]Madhanmohan M, Nagendrakumar S B, Kumar R, et al.. Clinical protection, sub-clinical infection and persistence following vaccination with extinction payloads of O1 Manisa foot-and-mouth disease monovalent vaccine and challenge in goats and comparison with sheep [J]. Research in Veterinary Science,2012,93(2): 1050-9.
    [215]Orsel K, Dekker A, Bouma A, et al. Quantification of foot and mouth disease virus excretion and transmission within groups of lambs with and without vaccination [J]. Vaccine,2007,25(14):2673-9.
    [216]Orsel K, De Jong M C, Bouma A, et al. The effect of vaccination on foot and mouth disease virus transmission among dairy cows [J]. Vaccine,2007,25(2):327-35.
    [217]Parida S, Fleming L, Oh Y, et al. Emergency vaccination of sheep against foot-and-mouth disease: significance and detection of subsequent sub-clinical infection [J]. Vaccine,2008,26(27-28):3469-79.
    [218]Cox S J, Barnett P V, Dani P, et al. Emergency vaccination of sheep against foot-and-mouth disease: protection against disease and reduction in contact transmission [J]. Vaccine,1999,17(15-16):1858-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700