用户名: 密码: 验证码:
传感器网络中的信号分离与重构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随微传感器、处理器和无线通信技术的发展,由大量节点通过无线连接组成的无线传感器网络得到大家的关注,被广泛应用于工业、农业、医疗和军事等领域。无线传感器网络可以做很多信号处理方面的工作,例如数据收集、信号检测、信号估计以及目标追踪等。由于无线传感器网络节点的能量有限、通信带宽小、数据存储量少和处理能力弱的特点,我们在设计算法的时候需要考虑这个问题。
     平方根容积卡尔曼滤波器是一款性能优越的非线性滤波器,具有完整的理论基础,同时算法具有计算量小、估计精度高和稳定性好等优点,算法提出后很快被应用于各个领域的参数估计,成为当前非线性参数估计的一个热点。本文围绕平方根容积卡尔曼滤波算法展开研究,并将其应用于无线传感器网络中混沌信号的盲源分离和重构。论文主要内容包括:
     1.主要介绍了几种贝叶斯框架下的非线性滤波算法并对比分析他们的性能。从本质上来看,无先导卡尔曼滤波、平方根容积卡尔曼滤波和粒子滤波都是建立在贝叶斯滤波框架之上。无先导卡尔曼滤波器和平方根容积卡尔曼滤波算法属于次优近似高斯滤波器,他们都是使用采样点来近似状态向量的后验概率分布,不需要对非线性方程做线性化处理,有更高的参数估计精度。平方根容积卡尔曼滤波器有完整的理论推导过程,而且算法相对无先导卡尔曼滤波算法具有计算量小、参数估计精度高和更好的稳定性。粒子滤波器是一种适用范围更广的非线性非高斯滤波器,理论表明只要粒子的数量足够多,它能够以任意精度逼近状态向量的最优估计值。我们从高斯加权积分的近似来对比无先导卡尔曼滤波算法和平方根容积卡尔曼滤波算法,分析表明容积卡尔曼滤波是无先导卡尔曼滤波在参数为特定值下的一个特例,两种滤波方法的估计精度相当,使用传递方差平方根的平方根容积卡尔曼滤波器,保持方差的正定性和对称性,提高参数估计的数值精度。从数值稳定性分析可知,随着状态向量维度的增加,平方根容积卡尔曼滤波算法的数值稳定性要明显优于无先导卡尔曼滤波算法。最后我们分析了平方根容积卡尔曼粒子滤波器的收敛性问题。仿真结果表明,平方根容积卡尔曼滤波的参数估计精度要优于无先导卡尔曼滤波,以及有较少的算法运行时间。
     2.提出了使用平方根容积卡尔曼滤波器实现无线传感器网络中的信号盲源分离。算法首先根据传感器网络的拓扑结构以及主分量分析理论,推导出信号盲源分离的模型,使用平方根容积卡尔曼滤波器估计分离向量,通过分离向量和混合信号的乘积实现信号的盲源分离。同时我们也使用了经典的FastICA算法做了混沌信号的盲源分离,通过推导混沌信号的概率密度函数,求解出信号的峭度,通过独立分量分析理论我们证明了混合的混沌信号可以通过FastICA算法进行分离。仿真结果表明算法能够有效的分离混沌信号,基于平方根容积卡尔曼滤波的分离算法相对无先导卡尔曼滤波算法具有较高的参数估计精度和较少的运行时间。
     3.针对传感器网络中非线性非高斯信号的信号盲源分离,提出一种基于平方根容积卡尔曼粒子滤波的信号盲源分离算法。基本粒子滤波算法在多次迭代后,出现粒子贫乏现象,我们采用平方根容积卡尔曼滤波器来产生粒子滤波当中的重要性概率密度函数,缓解粒子滤波迭代过程的粒子贫化问题,提高参数估计精度。分离算法根据网络拓扑和主分量理论推导出分离向量的状态空间方程,在根据概率理论推导出观测信号的概率密度函数,在此基础上使用最优量化器量化观测信号,最后用平方根容积卡尔曼粒子滤波算法估计分离向量,实现混合混沌信号的盲源分离。算法和已有的无先导卡尔曼粒子滤波算法相比,具有参数估计精度更高和算法复杂度低的优点,仿真结果证实了理论分析。
     4.研究传感器网络中的非线性非高斯信号的重构问题,传感器观测同一个信号,将观测信号发送到融合中心进行信号重构。算法首先根据网络拓扑构建信号重构模型,由于节点能量有限,观测信号经过量化后传输,我们同样在估计观测信号概率密度的基础上,采用最优量化器量化观测信号,融合中心收集观测信号并采用平方根容积卡尔曼粒子滤波算法估计源信号。仿真结果表明算法能够有效的重构源信号,同时算法在信号重构精度和计算量上优于无先导卡尔曼粒子滤波算法。
     5.研究传感器网络中的信号一致性重构问题。使用融合中心拓扑结构的信号重构需要所有传感器节点将观测数据发给融合中心,这样会有很大的通信开销,而通信的能量消耗又是节点能量消耗的最重要部分。通过研究无线传感器网络的分布式估计问题,提出一种基于一致性的平方根容积卡尔曼滤波的信号重构算法,节点之间通过交换状态向量的预测值,将预测值融入到卡尔曼滤波的状态向量更新中,达到所有节点对状态向量估计的一致。仿真结果表明算法相对无先导卡尔曼的一致性滤波算法具有计算量小和参数估计精度高的优点,同时状态向量的参数估计精度和基于融合中心的算法具有相当的性能。
With the development of micro sensor, processor and wireless communication,wireless sensor networks which composed of large number of nodes become a hot researchissue recently. It has been widely used in industy, agriculture, medical, military and otherfields. Wireless sensor networks can do many signal processing jobs, such as signaldetection, signal estimation, target tracking, etc. Since the node has limited energy, smallcommunication bandwidth, less storage and processing ability, we need to consider thesefactors when design a algorithm that applied on Wireless sensor networks.
     Square root cubature Kalman fitler (SRCKF) is a nonlinear filter which is proposedrecently with superior performance, it has complete theoretical derivation and manyadvantages, such as less computational complexity, estimation with higher precision andmore stabe when iteration. It has been applied in many fields after its proposed and becomesa hot issue. We focus on the research of SRCKF, and apply it in the source separation andsignal recnstruction in wireless sensor networks. The main content of this paper is asfollows:
     1. Introducing some nonlinear filters and analysis their percormance. UnscentedKalman filter (UKF), SRCKF and particle fitler (PF) are based on Bayesian filteringframework. UKF and SRCKF are both belong to the suboptimal Gaussian filter, they usethe sample points to approximate the posterior probability distribution of the state vectorand don’t need linearization of nonlinear equation, having higher precision of parameterestimation. SRCKF has a complete theoretical derivation, and the algorithm has the merit ofless computation overhead, higher parameter estimation accurary and better stability whencompared to the UKF. PF is a nonlinear filter for nonlinear non-Gaussian signal and has awider range of application. Theory suggests that as long as the number of particles isenough, it can approximate the state vector with any degree of accuracy. We compare theUKF and cubature Kalman filter (CKF) via the gaussian weighted integral, analysis showsthat the CKF is a special case of UKF when the parameters chose a special value. The twofilter has almost the same estimation accuracy. SRCKF uses the square root of variance foriteration; it keeps the variance Positive definite and symmetry, having better parameter estimation accuracy than the CKF and UKF. Numerical stability analysis shows that withthe increase of state vector dimensions, the performance of SRCKF is obviously better thanthe UKF. We analyze the convergence of the square root cubature Kalman particle filter inthe end. Simulation results show that the SRCKF has better parameter estimation accuracyand less run time than the UKF.
     2. We use SRCKF to realize the source separation in WSNs. The algorithm derives thesource separation model firstly according the topology of the networks and PCA criterion;Separation vector is estimated by SRCKF and source signal is obtained by themultiplication of separation vector and the mixed signals. Meanwhile, we use FastICAalgorithm to separate the mixed chaotic signal. The kurtosis of the signal is obtained afterwe derive the probability density function of the chaotic signal, then we prove that themixed chaotic signal can be separated by the FastICA algorithm through principalcomponent analysis theory. Simulation results show that the algorithm can separate thesource signal effectively; the SRCKF based algorithm is superior than the UKF basedalgorithm on estimation accuracy and computational complexity.
     3. In order to solve the blind source separation of nonlinear and non-Gaussian signal inWSNs, we proposed a source separation algorithm based on square root cubature Kalmanparticle filter. Standard particle filter will suffer the problem of particle degradation afterseveral iterations. We use SRCKF to generate the proposal distributions in particle filter, itcan alleviate the particle degradation problem and improve the estimation accuracy. Thesource separation algorithm derives the source separation model according to the topologyof networks and PCA criterion, and then we derive the probability density function of theobserved signal; and use the optimal quantizer to quantify the observed signal, reducing thequantization error. The separation vector is estimated by the square root cubature Kalmanparticle filter and the source signal is obtained by multiplying the separation vector and themixed signals. The algorithm is outperforme the unscented Kalman particle filter basedalgorithm on estimation accuracy and computational complexity. Simulation results confirmthe theoretical analysis.
     4. Solve the signal reconstruction of nonlinear non-Gaussian signal in WSNs. All of thenodes observe a signal and send the observed signal to fusion center for signal reconstruction. We derive the signal reconstruction model and use the optimal quantizer toquantify the observed signal, realizing the minimum distortion when quantify. The fusioncenter collects the observed signals and uses the square root cubature Kalman particle filterto estimate the signal. Simulation results show that the algorithm can reconstruct the sourcesignal effectively, it has higher estimation accuracy and less running time compared to theunscented Kalman particle filter counterpart.
     5. Investigation on the problem of signal reconstruction based on consensus filter. In centerbased signal reconstruction algorithm, all of the nodes need to send the observed signal tothe fusion center; wireless communication is an energy hungry operation in WSNs and willconsume a lot of energy. We invest the distributed estimation problem in sensor networkand proposed a signal reconstruction algorithm based on consensus square root cubatureKalman filter. Nodes exchange the predictive value of the state vector and integrate thevalue into the update of the estimation, so all of the nodes will converge to the same value.Simulation results show that the algorithm can reconstruct the source signal effectively andhave better performance than the one based on the consensus UKF.
引文
[1] Akyildiz I F, Su W, Sankarasubramaniam Y, Cayirci E. A survey on sensor networks[J]. IEEE Communications,2002,40(8):102–114.
    [2] Islam K, Shen W M, Wang X B. Wireless sensor network reliability and security infactory automation: A survey [J]. IEEE Transactions on Systems, Man andCybernetics Part C: Applications and Reviews,2012,42(6):1243-1256.
    [3] Sudevalayam S, Kulkarni P. Energy Harvesting Sensor Nodes: Survey andImplications [J]. IEEE Communications Surveys&Tutorials,2011,13(3):443-461.
    [4] Demigha O, Hidouci W, Ahmed T. On Energy Efficiency in Collaborative TargetTracking in Wireless Sensor Network: A Review [J]. IEEE Communications Surveys&Tutorials,2012,15(3):1210-1222.
    [5] Diallo O, Rodrigues J, Sene M. Real-time data management on wireless sensornetworks: A survey [J]. Journal of Network and Computer Applications,2012,35(3):1013-1021.
    [6] Dhasian H R, Balasubramanian P. Survey of data aggregation techniques using softcomputing in wireless sensor networks [J]. IET Information Security,2013,7(4):336-342.
    [7] O'Grady P D, Pearlmutter B A, Rickard S T. Survey of sparse and non-sparsemethods in source separation [J]. International Journal of Imaging Systems andTechnology,2005,15(1):18-33.
    [8] Zheng G S, Wang J D, Yu Y C, Gu B. A survey on algorithms of incrementalnon-negative matrix factorization [J]. Journal of Computational Information Systems,2010,6(12):3867-3874.
    [9] Jadhav S D, Bhalchandra A S. Blind Source Separation: Trends of New Age-aReview [A]. IET International Conference on Wireless, Mobile and MultimediaNetworks[C],2008.2008:251–254.
    [10] Douglas S C, Gupta M, Sawada H, Makino S. Spatio–Temporal FastICA Algorithmsfor the Blind Separation of Convolutive Mixtures [J]. IEEE Transactions on Audio,Speech, and Language Processing,2007,15(5):1511-1520.
    [11] Thomas J, Deville Y, Hosseini S. Fast Blind Separation of Long Mixture RecordingsUsing Multivariate Polynomial Identification [J]. IEEE Transactions on SignalProcessing,2008,56(11):5704-5709.
    [12] Rivet B, Girin L, Jutten C. Mixing Audiovisual Speech Processing and Blind SourceSeparation for the Extraction of Speech Signals From Convolutive Mixtures [J].IEEE Transactions on Audio, Speech, and Language Processing,2007,15(1):96-108.
    [13] Kun Q, Dogandzic A. Variance-Component Based Sparse Signal Reconstruction andModel Selection [J]. IEEE Transactions on Signal Processing,2010,58(6):2935-2952.
    [14] Banani S A, Vaughan R G. Blind channel estimation for equalisation in dispersivefading channel [J]. IET Communications,2011,5(11):1577-1586.
    [15] Jutten C, Herault J. Blind separation of sources, Part I: An adaptive algorithmbased on neuromimetic architecture [J]. Signal Processing,1991,24(1):1-10.
    [16] Taleb A, Jutten C. Source separation in post-nonlinear mixtures [J]. IEEETransaction on Signal processings,1999,47(10):2807-2820.
    [17] Buchner H, Aichner R, Kellermann W. A generalization of blind source separation algorithms for convolutive mixtures based on second-order statistics [J].IEEE Transaction on Speech and Audio Processings,2005,13(1):120-134.
    [18] He Z, Xie S, Ding S, et al. Convolutive blind source separation in the frequencydomain based on sparse representation [J]. IEEE Transaction on Audio, Speech andLanguage Processings,2007,15(5):1551-1563.
    [19] Peng D Z, Xiang Y. Underdetermined blind source separation based on relaxedsparsity condition of sources [J]. IEEE Transactions on Signal Processing,2009,57(2):809-814.
    [20] Cardoso J F. Super-symmetric decomposition of the fourth-order cumulant tensor.Blind identification of more sources than sensors [A]. In International Conference onAcoustics, Speech, and Signal Processing [C],1991.1991:3109-3112.
    [21] Ollila E. The Deflation-Based FastICA Estimator: Statistical Analysis Revisited [J].IEEE Transactions on Signal Processing,2010,58(3):1527-1541.
    [22] Li Y Q, Andrzej C, Amari S. Analysis of sparse representation and blind sourceseparation [J]. Neural Computation,2004,16(6):1193-1234.
    [23] Li Y, Amari S I, Cichocki A. Underdetermined blind source separation based onsparse representation [J], Signal Processing,2006,54(2):423-437.
    [24] Bofill P, Zibulevsky M. Underdetermined blind source separation using sparserepresentations [J], Signal Processing,2001,81(11):2353-2362.
    [25] Li Y, Amari S I, Cichocki A. Underdetermined blind source separation based onsparse representation [J], Signal Processing,2006,54(2):423-437.
    [26] Theis F J, Lang W E, Puntonet C G. A geometric algorithm for overcomplete linearICA [J]. Neurocomputing,2004,56(0):381-398.
    [27] Mohimani H, Babaie-Zadeh M, Jutten C. A fast approach for overcomplete sparsedecomposition based on smoothed0norm [J]. IEEE Transactions on SignalProcessing,2009,57(1):289-301.
    [28] Took C C, Sanei S, Chambers J, et al. Underdetermined blind source separation oftemporomandibular joint sounds [J]. IEEE Transactions on Biomedical Engineering,2006,53(10):2123-2126.
    [29] Li Y Q, Amari S I, Cichocki A, et al. Probability estimation for recoverabilityanalysis of blind source separation based on sparse representation [J]. IEEETransactions on Information Theory,2006,52(7):3139-3152.
    [30] Li X, Zhong W D, Alphones A, et al. Channel equalization using independentcomponent analysis in PDM-CO-OFDM [J]. IEEE Photonics Technology Letters,2014,26(5):497-500.
    [31] Cardoso J F, Laheld B H. Equivariant adaptive source separation [J]. IEEETransaction on Signal Processing,1996,44(12):3017-3030.
    [32] Karhunen J, Oja E, Wang L, et al. A class of neural networks for independentcomponent analysis [J]. IEEE Transaction on Neural Networks,1997,8(3):486-504.
    [33] Cardoso J F. Infomax and maximum likelihood for blind source separation [J]. IEEESignal Processing Letter,1997,4(4):112-114.
    [34] Bell A J, Sejnowski T J. An information-maximization approach to blind separationand blind deconvolution [J]. Neural Computation,1995,7(6):1129-1159.
    [35] Hyvarinen A, Oja E. A fast fixed-point algorithm for independent componentanalysis [J]. Neural Computation,1997,9:1483-1492.
    [36] Amari S I. Natural gradient works efficiently in learning [J]. Neural Computation,1998,10(2):251-276.
    [37] Cruces-Alvarez S, Cichocki A, Castedo-Ribas L. An iterative inversion approach toblind source separation [J]. IEEE Trans. Neural Networks,2000,11(6):1423-1437.
    [38] Belouchrani A, Abed-Meraim K, Cardoso J F, et al. A blind source separationtechnique using second-order statistics [J]. IEEE Transaction on Signal Processing,1997,45(2):434-444.
    [39] Li Y, Wang J. Sequential blind extraction of instantaneously mixed sources [J]. IEEETransaction on Signal Processing,2002,50(5):997-1006.
    [40] Lo T, Leung H, Litva J. Separation of a mixture of chaotic signals [A]. IEEEInternational Conference on Acoustics, Speech and Signal Processing-Proceedings[C], Atlanta, USA,1996:1798-1801.
    [41] Hu W, Liu Z. Partially blind source separation of continuous chaotic signals fromlinear mixture [J]. IET Signal Processing,2008,2(4):424-430.
    [42] Liu K, Li H, Dai X, et al. Particle filtering based separation of chaotic signals [J].Journal of Information and Computational Science,2005,2(2):283-287.
    [43] Wang B, Zheng W X. Blind extraction of chaotic signal from an instantaneous linearmixture [J]. IEEE Transaction on Circuit and System–II,2006,53(2):143-147.
    [44]胡志辉,冯久超.基于无先导卡尔曼滤波的卷积混沌信号的盲提取[J].西南大学学报(自然科学版),2011,32(7):146-150.
    [45]李雪霞,冯久超.一种混沌信号的盲分离方法[J].物理学报,2007,56(2):701-706.
    [46]王世元,冯久超.一种新的参数估计方法及其在混沌信号盲分离中的应用[J].物理学报,2012,61(17):170508.
    [47] Chen H B, Tse C K, Feng J C. Source Extraction in Bandwidth Constrained WirelessSensor Networks [J]. IEEE Transactions on Circuits and Systems-II: Express Briefs,2008,55(9):947-951.
    [48] Chen H B, Tse C K, Feng J C. Performance Evaluation of Source Extraction inWireless Sensor Networks [J]. Computer Communications,2008,31(16):3870-3875.
    [49] Chen H B, Tse C K, Feng J C. Impact of Topology on Performance and EnergyEfficiency in Wireless Sensor Networks for Source Extraction [J]. IEEE Transactionson Parallel and Distributed Systems,2009,20(6):886-897.
    [50] Sato Y. A method of self-recovering equalization for multilevel amplitudemodulation systems [J]. IEEE Transaction on Communication,1975,23(6):679-682.
    [51] Godard D N. Self-recovering equalization and carrier tracking in two-dimensionaldata communication systems [J]. IEEE Transaction on Communication,1980,28(11):1867-1875.
    [52] Treichler J R, Larimore M G. New processing techniques based on the constantmodulus adaptive algorithm [J]. IEEE Transactions on Acoustics, Speech, and SignalProcessing,1985,33(2):420-431.
    [53] Benveniste A, Goursat M. Blind equalizers [J]. IEEE Transaction on Communication,1984,32(8):871-888.
    [54] Picchi G, Prati G. Blind equalization and carrier recovery using a stop-and-godecision-directed algorithm [J]. IEEE Transaction on Communication,1987,35(9):877-887.
    [55] Hatzinakos D, Nikias C L. Blind equalization using a tricepstrum based algorithm [J].IEEE Transaction on Communication,1991,39(5):669-682.
    [56] Porat B, Friedlander B. Blind equalization of digital communication channels usinghigh-order moments [J]. IEEE Transactions on Signal Process,1991,39(2):522-526.
    [57] Cadzow J. A blind deconvolution via cumulant extrema [J]. IEEE Transactions onSignal Processing.1996,13(3):24-42.
    [58] Mo S and Shafai B. Blind equalization using higher order cumulants and neuralnetwork [J]. IEEE Traits. Signal Processing,1994,42(11):3209-3217.
    [59] Kechriotis G, Zervas E. Using recurrent neural network for adaptive communicationchannel equalization [J]. IEEE Trans on Neural Network,1994,5(2):267-278.
    [60]何振亚.自适应信号处理[M].北京:科学出版,2001.
    [61] Feng J C, Tse C K, Lau F C M. Reconstruction of chaotic signals with application tochannel equalization in chaos-based communication systems [J]. InternationalJournal of Communication Systems,2004,17(3):217-232.
    [62]王世元,冯久超.基于混沌的通信系统的盲信道均衡[J].西南师范大学学报,2004,29(3):373-378.
    [63]王世元,冯久超.多用户混沌通信系统的盲均衡算法[J].吉林大学学报,2008,38(6):1469-1473.
    [64] Haykin S. Adaptive Filter Theory (4th Edition)[M]. New Jersey, Prentice Hall,2001.
    [65] Hu Z H, Feng J C. Blind Channel Equalization Algorithm Based on Dual UnscentedKalman Filter for Chaotic Multi-Input Multi-Output Communication Systems [J].Transactions of Tianjin University,2012,18(1):033-037.
    [66] Chen H B, Feng J C, Tse C K. Reconstruction of chaotic signals in wireless sensornetworks [A]. International Conference on Communications, Circuits and Systems
    [C],2009:187-190.
    [67] Kalman R E. A new approach to linear filtering and prediction problems [J].Transactions of the ASME–Journal of Basic Engineering.1960,82(D):34-45.
    [68] Simon D. Kalman filtering with state constraints: A survey of linear and nonlinearalgorithms [J]. IET Control Theory and Applications,2010,4(8):1303-1318.
    [69] Stano P, Lendek Z, Braaksma, J, et al. Parametric bayesian filters for nonlinearstochastic dynamical systems: A survey [J]. IEEE Transactions on Cybernetics,2013,43(6):1607-1624.
    [70] Julier S, Uhlmann J. A new extension of the Kalman filter to nonlinear systems [C].Proceedings of SPIE-The International Society for Optical Engineering. Orlando,FL: Society of Photo-Optical Instrumentation Engineers,1997:182-193.
    [71] Julier S, Uhlmann J, Durrant-Whyte H F. New method for the nonlineartransformation of means and covariances in filters and estimators [J]. IEEETransactions on Automatic Control,2000,45(3):477-482.
    [72] Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation [C].Proceedings of the IEEE. Institute of Electrical and Electronics Engineers Inc.,2004:401-422.
    [73] Ienkaran A, Simon H. Cubature Kalman filters [J]. IEEE Transactions on AutomaticControl,2009,54(6):1254-1269.
    [74] Ienkaran A, Simon H. Cubature Kalman smoothers [J]. Automatica,2011,47(10):2245-2250.
    [75] Gadsden S A, Al-Shabi M, Arasaratnam I, et al. Combined cubature Kalman andsmooth variable structure filtering: A robust nonlinear estimation strategy [J]. SignalProcessing,2014,96(B):290-299.
    [76] Zhang X C, Guo C J. Cubature Kalman filters:Derivation and extension [J]. ChinesePhysics B,2013,22(12):128401.
    [77] Kumar P B C, Gu D W, Ian P. Square Root Cubature Information Filter [J]. IEEESensors Journal,2013,13(2):750-758.
    [78] Van Der Merwe R,Wan E A. The square-root unscented Kalman filter for state andparameter estimation [C]. IEEE Interntional Conference on Acoustics, Speech, andSignal Processing. Salt Lake, UT: Institute of Electrical and Electronics EngineersInc.,2001:3461-3464.
    [79] Yuanxin Wu, Dewen Hu, Meiping W, et al. A numerical-integration perspective onGaussian filters [J]. IEEE Transactions on Signal Processing,2006,54(8):2910-2921..
    [80] Davis P J, Rabinowitz P. Methods of Numerical Integration [M]. New York:Academic Press,1975.
    [81] Genz A, Keister B D. Fully symmetric interpolatory rules for multiple integrals overinfinite regions with Gaussian weight [J]. Journal of Computational and AppliedMathematics,1996,71(2):299-309.
    [82] Capstick S, Keister B D. Multidimensional quadrature algorithms at higher degreeand/or dimension [J]. Journal of Computational Physics,1996,123(2):267-273.
    [83] Arasaratnam I, Haykin S. Square-Root Quadrature Kalman Filtering [J]. IEEETransactions on Signal Processing,2008,56(6):2589-2593.
    [84] Wang S Y, Feng J C, Tse C K. Spherical simplex-radial cubature Kalman filter [J].IEEE Signal Processing Letters,2014,21(1):43-46.
    [85] Tang X J, Liu Z B, Zhang J S. Square-root quaternion cubature Kalman filtering forspacecraft attitude estimation [J]. Acta Astronautica,2012,76:84-94.
    [86] Leong P H, Arulampalam S, Lamahewa T A, et al. A Gaussian-sum based cubatureKalman filter for bearings-only tracking [J]. IEEE Transactions on Aerospace andElectronic Systems,2013,49(2):1161-1176.
    [87] Arasaratnam I, Haykin S, Hurd T R. Cubature Kalman filtering for continuous-discrete systems: Theory and simulations [J]. IEEE Transactions on SignalProcessing,2010,58(10):4977-4993.
    [88] Gadsden S A, Al-Shabi M, Arasaratnam I, et al. Combined cubature Kalman andsmooth variable structure filtering: A robust nonlinear estimation strategy [J]. SignalProcessing,2014,96(B):290-299.
    [89] Li W L, Jia Y M. Location of mobile station with maneuvers using an IMM-basedcubature Kalman filter [J]. IEEE Transactions on Industrial Electronics,2012,59(11):4338-4348.
    [90] Wang S Y, Feng J C, Tse C K. Analysis of the characteristic of the kalman gain for1-d chaotic maps in cubature kalman filter [J]. IEEE Signal Processing Letters,2013,20(3):229-232.
    [91] Ge Q B, Xu D X, Wen C L. Cubature information filters with correlated noises andtheir applications in decentralized fusion [J]. Signal Processing,2014,94(1):434-444.
    [92] Song Y, Li Q L, Kang Y F, et al. Effective cubature FastSLAM: SLAM withRao-Blackwellized particle filter and cubature rule for Gaussian weighted integral [J].Advanced Robotics,2013,27(17):1301-1312.
    [93] Havlicek M, Friston K J, Jan J, et al. Dynamic modeling of neuronal responses infMRI using cubature Kalman filtering [J]. Neuroimage,2011,56(4):2109-2128.
    [94] Jia B, Xin M. Vision-based spacecraft relative navigation using sparse-gridquadrature filter [J]. IEEE Transactions on Control Systems Technology,2013,21(5):1595-1606.
    [95] Zarei J, Shokri E. Robust sensor fault detection based on nonlinear unknown inputobserver [J]. Measurement: Journal of the International Measurement Confederation,2014,48(1):355-367.
    [96] Hammersley J M, Morton K W. Poor Man’s Monte Carlo [J]. Jounal of the RoyalStatistical Society B,1954,16(1):23-38.
    [97] Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non-gaussianBayesian state estimation [J]. IEE Proceedings, Part F: Radar and Signal Processing.1993,140(2):107-113.
    [98] Crisan D, Doucet A. A survey of convergence results on particle filtering methods forpractitioners [J]. IEEE Transactions on Signal Processing,2002,50(3):736-746.
    [99] Ng W, Chan T C T, So H C, et al. Particle filtering based approach for landminedetection using ground penetrating radar [J]. IEEE Transactions on Geoscience andRemote Sensing,2008,46(11):3739-3755.
    [100] Gustafsson F. Particle filter theory and practice with positioning applications [J].IEEE Aerospace and Electronic Systems Magazine,2010,25(7):53-81.
    [101] Zhang P, Li M, Wu Y, et al. An improved particle filter algorithm based on MarkovRandom Field modeling in stationary wavelet domain for SAR image despeckling[J]. Pattern Recognition Letters,2012,33(10):1316-1328.
    [102] Ye Z R, Zhang Y L. Speed estimation from single loop data using an unscentedparticle filter [J]. Computer-Aided Civil and Infrastructure Engineering,2010,25(7):494-503.
    [103] Donovan G T. Position error correction for an autonomous underwater vehicleinertial navigation system (INS) using a particle filter [J]. IEEE Journal of OceanicEngineering,2012,37(3):431-445.
    [104] Li T, Ser W. Three dimensional acoustic source localization and tracking usingstatistically weighted hybrid particle filtering algorithm [J]. Signal Processing,2010,90(5):1700-1719.
    [105] Xu X Y, Li B X. Adaptive Rao-Blackwellized particle filter and its evaluation fortracking in surveillance [J]. IEEE Transactions on Image Processing,2007,16(3):838-849.
    [106] Chen P, Qian H, Wang W, et al. Contour tracking using Gaussian particle filter [J].IET Image Processing,2011,5(5):440-447.
    [107] Zuo J Y, Liang Y, Zhang Y Z, et al. Particle filter with multimode sampling strategy[J]. Signal Processing,2013,93(11):3192-3201.
    [108] Koller D, Fratkina R. Using Learning for Approximation in Stochastic Processes [A].Proceedings of the Fifteenth International Conference on Machine Learning [C],Madison, Wisconsin.1998:287-295.
    [109] Fox D. Adapting the Sample Size in Particle Filters Through KLD-Sampling [J].International Journal of Robotics Research,2003,22(12):985-1003.
    [110] Kwok C, Fox D, Meila M. Real-Time Particle Filters [J]. Proceedings of the IEEE,2004,92(3):469-484.
    [111] Hong S J, Lee J, Athalye A, et al. Design methodology for domain specificparameterizable particle filter realizations [J]. IEEE Transactions on Circuits andSystems I: Regular Papers,2007,54(9):1987-2000.
    [112] K. Murphy, S. Russell. Rao-Blackwellised Particle Filtering for Dynamic BayesianNetworks. Sequential Monte Carlo Methods in Practice. New York: Springer,2001
    [113] Boers Y, Driessen J N. Interacting Multiple Model Particle Filter [J]. IEEEProceedings on Radar Sonar and Navigation,2003,150(5):344-349.
    [114] Doucet A. On Sequential Simulation-Based Methods for Bayesian Filtering [R].Technical report CUED/F-INFENG/TR.310, University of Cambridge,1998
    [115] Gordon N J, Salmond D J, Smith A F M. A novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proceeding F on Radar and SignalProcessing,1993,140(2):107-113.
    [116] Pitt M K, Shephard N. Filtering via simulation: Auxiliary particle filters [J]. Journalof the American Statistical Association,1999,94(446):590-599.
    [117] Kong A, Liu J S, Wong W H. Sequential imputations and Bayesian missing dataproblems [J]. Journal of the American Statiatical Association,1994,89(426):278-288.
    [118] Kitagawa G. Monte Carlo filter and smoother for non-Gaussian nonlinear state spacemodels [J]. Journal of Computational and Graphical Statistics,1996,5(1):1-25.
    [119] Musso C, Oudjane N, Legland F. Improving Regularized Particle Filters [M].In:Sequential Monte Carlo Methods in Practice. Springer-Verlag,2001,247-271.
    [120] Higuchi T. Monte Carlo filtering using the genetic algorithm operators [J]. Journal ofStatistical Computation and Simulation,1997,59(1):1-23
    [121]杜正聪,唐斌,李可.混合退火粒子滤波器[J].物理学报,2006,55(3):999-1003.
    [122]方正,徐国峰,徐心和.基于粒子群优化的粒子滤波定位方法[J].控制理论与应用,2008,23(3):533-537.
    [123]莫以为,萧德云.进化粒子滤波算法及其应用[J].控制理论与应用,2005,22(2):269-272.
    [124]张琪,王鑫,胡昌华等.人工免疫粒子滤波算法的研究[J].控制与决策,2008,23(3):293-301.
    [125] Doucet A, Godsill S, Andrieu C. On Sequential Monte Carlo Sampling Methods forBayesian Filtering [J]. Statistics and Computing,2000,10(3):197-208.
    [126] van der Merwe R, de Freitas J F G, Doucet A, et al. The Unscented Particle Filter [R].Cambridge: Cambridge University Engineering Department,2000.
    [127] Li W, Jia Y. Rao-Blackwellised unscented particle filtering for jump Markovnon-linear systems: An H approach [J]. IET Signal Processing,2011,5(2):187-193.
    [128] Bell A, Sejnowski T J. An information-maximization approach to blind separationand blind deconvolution [J]. Neural Computation,1995,7(6):1129-1159.
    [129] Amari S, Chen T P, Cichocki A.Stability analysis of learning algorithms for blindsource separation [J]. Neural Networks,1997,10(8):1345-1351.
    [130] Vigario R. Extraction of ocular artifacts from EEG using independentcomponentanalysis [J]. Electroencephalography and Clinical Neurophysiology,1997,103(3):395-404.
    [131] McKeown M J, Makeig S, Brown G G, et al. Analysis of fMRI by blind separationinto independent spatial components [J]. Human Brain Mapping,1998,6(3):160-88.
    [132] Vetter R, Virag N, Vesin J M, et al. Observer of autonomic cardiacoutflow based onblind source separation of ECG parameters [J]. IEEE Trans.on BiomedicalEngineering,2000,47(5):578-582.
    [133] van der Veen A J. Blind separation of BPSK sources with residual carriers [J].SignalProcessing,1999,73(1-2):67-79.
    [134] Honig M, Madhow U, Verdu, S. Blind adaptive multiuser detection [J]. IEEETransactions on Information Theory,1995,41(4):944-960.
    [135] Ristaniemi T, Joutsensalo J. Advanced ICA-based receivers for block fadingDS-CDMA channels [J]. Signal Processing,2002,82(3):417-431.
    [136] Ho Y C,Lee R C K. A Bayesian Approach to Problems in Stochastic Estimation andControl [J]. IEEE Transactions on Automatic Control,1964, AC-9(4):333-339.
    [137] Arasaratnam I, Haykin S, Elliott R J. Discrete-time nonlinear filtering algorithmsusing Gauss-Hermite quadrature [J]. Proceedings of the IEEE,2007,95(5):953-977.
    [138] Wan E A, Merwe R V D. The unscented Kalman filter, in Kalman filtering andneural networks [DB/OL]. http://www.cse.ogi.edu/PacSoft/projects/sec/wan01b.ps,2004-03-10.
    [139] Bin J, Ming X, Yang C. High-degree cubature Kalman filter [J]. Automatica,2013,49(2):510-518.
    [140] Genz A, Keister B D. Fully symmetric interpolatory rules for multiple integrals overinfinite regions with Gaussian weight [J]. Journal of Computational and AppliedMathematics,1996,71(2):299-309.
    [141] Crisan D, Doucet A. A Survey of Convergence Results on Particle Filtering Methodsfor Practitioners [J]. IEEE Transactions on Signal Processing,2002,50(3):736-746.
    [142] Chen Z. Bayesian Filtering: From Kalman Filters to Particle Filters, and Beyond [R].Hamilton: McMaster University,2003.
    [143]程水英,张剑云.粒子滤波算法中的有限收敛界[J].数据采集与处理,2008,23(4):481-485.
    [144] Kamensky M, Kovac K, Valky G. Improvement in spectral properties of quantizationnoise of harmonic signal using multiresolution quantization [J]. IEEE Transactionson Instrumentation and Measurement,2012,61(11):2888-2895.
    [145] Lv Q, Zhang X D, Jia Y. Kalman filtering algorithm for blind source separation [A].IEEE International Conference on Acoustics, Speech, and Signal Processing [C],2005,5:257-260.
    [146] Hyvarinen A, Oja E. A Fast fixed-point algorithm for independent componentanalysis [J]. Neural Computation,1997,9(7):1483-1492.
    [147] Hyvarinen A. Fast and robust fixed-point algorithms for independent componentanalysis [J]. IEEE Trans. on Neural Networks,1999,10(3):626-634.
    [148] Freitas J F G, Niranjan M, Gee A H, et al. Sequential Monte Carlo Methods to TrainNeural Network Models [J]. Neural Computation,2000,12(4):955-993.
    [149] Holopainen R. Logistic map with a first order filter[J]. International Journal ofBifurcation and Chaos,2011,21(6):1773-1781.
    [150]徐正光,田清,田立.一类可以产生独立同分布密钥流的混沌系统[J].物理学报,2013,62(12):120501.
    [151]何振亚,李克杨,绿溪.具有良好安全性能的混沌映射二进制序列[J].电子科学学刊,1999,21(5):646-651.
    [152] Mukherjee A, Sengupta A. Estimating the probability density function of anonstationary non-gaussian noise [J]. IEEE Transactions on Industrial Electronics,2010,57(4):1429-1435.
    [153] Tsumura K. Optimal quantization of signals for system identification [J]. IEEETransactions on Automatic Control,2009,54(12):2909-2915.
    [154] Zhu Z, Leung H. Adaptive blind equalization for chaotic communication systemsusing extended-Kalman filter [J]. IEEE Transactions on Circuits and System–I,2001,48(8):979-989.
    [155] Feng J C, Tse C K, Lau F C M. A neural-network-based channel-equalizationstrategy for chaos-based communication systems [J]. IEEE Transactions on Circuitsand Systems–I,2003,50(7):954-957.
    [156] Tsakonas E, Jalden J, Sidiropoulos N D, et al. Sparse conjoint analysis throughmaximum likelihood estimation [J]. IEEE Transactions on Signal Processing,2013,61(22):5704-5715.
    [157]杨文,侍洪波,汪小帆.卡尔曼一致滤波算法综述[J].控制与决策,2011,26(4):481-488.
    [158] Spanos D P, Saber R O, Murray M R. Approximate distributed Kalman filtering insensor networks with quantifiable performance [C]. Proc of the4th Int Symposiumon Information Processing in Sensor Networks. Los Angeles: IEEE Press,2005:133-139.
    [159] Saber R O. Distributed Kalman filtering for sensor networks [C]. Proc of IEEE Confon Decision and Control. New Orleans: IEEE Press,2007:5492-5498.
    [160] Saber R O. Kalman-consensus filter: Optimality, stability and performance [C]. Procof IEEE Conf on Decision and Control. Shanghai: IEEE Press,2009:7032-7046.
    [161] Saber R O. Distributed Kalman filter with embedded consensus filters [C]. Proc ofIEEE Conf on Decision and Control. Seville: IEEE Press,2005:8179-8184.
    [162] Stankovi′c S S, Siljak D D. Contractibility of overlapping decentralized control [J].System&Control Letters,2001,44(3):189-200.
    [163] Stankovi′c S S, Stankovi′c M S, Stipanovi′c D M. Consensus based overlappingdecentralized estimation with missing observations and communications faults [J].Automatica,2009,45(6):1397-1406.
    [164]席峰,刘中.基于信息矩阵加权一致策略的分布式Kalman滤波器[J].信息与控制,2010,39(2):194-199.
    [165] Xi F, He J, Liu Z. Adaptive fast consensus algorithm for distributed sensor fusion [J].Signal Processing,2010,90(5):1693-1699.
    [166] Yu W W, Chen G R, Wang Z D, et al. Distributed consensus filtering in sensornetworks [J]. IEEE Trans on Systems, Man and Cybernetics―Part B: Cynernetics,2009,39(6):1568-1577
    [167] Horn R and Johnson C. Matrix Analysis. Cambridge, U.K.: Cambridge UniversityPress,1985.
    [168] Olfati S R, Fax J A, Murray R M. Consensus and cooperation in networkedmulti-agent systems [J]. Proceedings of the IEEE,2007,95(1):215-233.
    [169] Olfati S R, Murray R M. Consensus problems in networks of agents with switchingtopology and time-delays [J]. IEEE Transactions Automatic Control,2004,49(9):1520-1533.
    [170] Li W L, Jia Y M. Consensus-Based Distributed Multiple Model UKF for JumpMarkov Nonlinear Systems [J]. IEEE Transactions on Automatic Control,2012,57(1):227-233.
    [171] Riehardson T J, Kwong R H. On positive definite solutions to the algebraie Riccatiequation [J]. Systems and Conirol Letters,1986,7(1):99-104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700