用户名: 密码: 验证码:
无线传感器网络中目标追击问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线传感器网络作为一种全新的计算模式,利用众多分布在物理环境中具有感知、计算和通信能力的微小节点近距离地观察环境,改变了人类与环境的交互方式,在环境监测、工业过程控制、战场监视、灾后救援等场合有着广泛的应用。
     由于可被直接置于物理环境中实现对目标的近距离监视,无线传感器网络在目标跟踪应用中有着得天独厚的优势。逃跑者-追击者问题是目标跟踪应用的一种,该问题假设在监视区域中存在一组同类目标和一个或几个追击者,要求追击者在最短时间内捕获所有的目标。该问题包括四个子问题:(1)传感器网络通过数据采集与协同计算获得各局部区域的目标信息(个数及位置);(2)追击者查询传感器网络获得全局目标信息;(3)追击者利用全局目标信息修正目标位置和预测运动轨迹;(4)追击者利用目标位置和轨迹制定追击方案。本论文研究前三个问题。
     多目标计数和定位是无线传感器网络的一个难题,目前这方面的研究工作还不多。典型的方法是先根据节点检测到的信号强度对节点进行分簇,尽可能将检测到相同目标的节点划分到同一个簇中,然后每个簇各自计算其覆盖范围内的目标个数和位置。不同算法的差异主要体现在节点分簇、目标个数估计和位置估计上。目前尚没有很好的办法解决这个问题,一方面,使用简单的强度传感器或二元传感器在目标接近时计数和定位精度不高;另一方面,提高精度又需要复杂的算法或高代价的传感器设备。本论文针对目标信号影响范围有限、信号强度分布在空间连续渐变的特点,提出了一个基于能量的目标计数算法EBTN。首先根据节点检测到的信号强度对节点进行分簇,然后每个簇头使用一个多项式函数拟合簇内的信号分布并计算信号总能量,除以单个目标的信号能量即得到簇内目标个数。在得到目标个数后,簇头在簇内寻找与目标个数相同、具有局部最大值的节点作为目标的估计位置。该算法具有计算复杂度小、通信代价低、分布式实现的优点,当节点空间分辨率足够时,计数和定位目标的精度较高。
     信息存储和查询是无线传感器网络的一个研究热点,但是目前还没有针对逃跑者-追击者应用的信息分布研究。逃跑者-追击者应用的数据类型单一、数据量少,但对信息查询和获取的实时性要求很高。目前一些以数据为中心的信息存储与查询系统适合用来管理传感器网络中大量的、多种类型的数据,并可为用户提供灵活多样的查询方式,但对节点的软硬件要求较高,而且不能保证查询的实时性。本论文首次提出了在同构网络中面向追击者-逃跑者应用的信息发布与查询问题,设计并实现了一个基于网络单覆盖的目标信息分布算法SCUS。簇头利用该算法将局部目标信息随机均匀地发布到网络中的一组节点上,保证追击者在网络中的任何一个位置都可以在自己的通信范围内高概率地得到该目标信息的一份拷贝。SCUS算法在保证快速获取目标信息的同时还尽量均匀使用节点,以最大化网络的连通寿命。
     目标轨迹计算与预测是目标跟踪的一个重要内容,这方面已经有了很多成熟的工作。然而,在目标机动性强、数量较多、定位精度较低的情况下,传统方法往往需要使用复杂的模型,计算复杂度大,延迟长。在前两项工作的基础上,本论文针对追击者-逃跑者问题的特点和需要提出了由追击者执行的数据关联和目标状态预测算法DASE。追击者利用从传感器网络收到的目标信息(可能不准确)计算数据和已有目标轨迹的关联概率,将数据与目标进行关联。考虑到目标追击应用中目标的机动性较强,算法仅使用较近的位置信息进行分段拟合,对目标状态进行修正和预测。相比于传统跟踪应用中的数据关联和状态预测方法,DASE实时性强,计算简单高效,可以较好地处理目标定位中的虚警和漏检现象,能够满足目标追击的信息要求。
     以上三个算法均在MatLab仿真平台上进行了实现与性能测试。这三个算法的有机结合可以为逃跑者-追击者应用提供准确而及时的决策信息。
As a brand new computation paradigm, wireless sensor networks (WSN) employ numerous small-sized sensor nodes which are capable of sensing, computing and communication and distributed in a large area of physical world, which offer an inspiring new way for interaction between human being and the environment. WSN can be applied into various scenarios such as environment monitoring, industry process control, battlefield surveillance, after-disaster rescue, etc.
     Since sensor nodes can be directly deployed in the physical environment and have a close watch over targets, WSN is especially beneficial to targets tracking problems. Evader-Pursuer problem is an application based on targets tracking, in which a certain number of pursuers aim to capture a set of targets within minimum time. This problem comprises the following four sub-problems: (1) a set of sensor nodes acquire local targets information such as their number and positions through detection and collaborative computation; (2) the pursuers query the network to obtain global targets information; (3) pursuers update and predict the trajectories of targets based on the global targets information; (4) based on the result of the above steps, pursuers choose the optimum scheme to finish the capturing task. The first three sub-problems are studied in this thesis.
     Enumeration and localization of multi-target is by no means an easy task in wireless sensor networks. And existing researches have not delved into this problem either. A typical solution is to form nodes into uncorrelated clusters around the targets according to their measurements. Each cluster covers one or more targets, self-organizes and counts. The numeration algorithms differ mainly in the methods to form clusters and the way to compute the number of targets. The dilemma is: on the one hand, it is hard to achieve high precision with only binary or intensity-aware nodes when targets crowd; on the other hand, both multi-modal sensor nodes and more complex algorithms will either heighten the construction price of WSN or impose heavy computation and communication burden on WSN. This thesis explores energy attenuation characteristics such as limited influence range, continuous and gradual energy intensity change, etc. and proposes an energy-based target numeration algorithm EBTN. ETBN firstly clusters sensor nodes into groups according to their measurements, which depends much on the distance between sensors and targets, and elects a center node as the leader of the cluster. Then it is the leader's task to fit the energy distribution of its cluster into a polynomial function and integrate to get the total energy of the whole cluster. Dividing the total energy by the unit energy of each target, the cluster leader will obtain the number of targets in its cluster. Based on this information, leader selects a set of nodes with local maximum measurements and uses their positions as the positions of the targets.
     Information storage and query has already been intensively studied in wireless sensor networks, however, information dissemination for evader-pursuer problems has not yet been investigated. Evader-pursuer problems require timely report of single typed and sketchy target information, while existing distributed data storage methods and systems aim to offer a large amount and multi-typed data, and flexible query interfaces for users, without guaranteeing real time query. Therefore these methods are not suitable for data query in evader-pursuer problems. The thesis is the first to explore the dissemination problem for evader-pursuer problems, and designs a single coverage based target information dissemination algorithms SCUS. Based on the work of EBTN, each cluster distributes the local targets information to a set of selected storage nodes, ensuring that the pursuers can get the global targets information within its communication range regardless of their position. Besides the high query success rate, SCUS makes sure that the nodes are uniformly employed as storage nodes, therefore to maximize the lifetime of network.
     The computation and prediction of target trajectories is a significant part of target tracking problem. And many methods have been proposed and practiced. However, when targets are of high mobility, high density and low localization precision, traditional methods would employ complex models, resulting in computation burden and long delay. With the help of EBTN and SCUS, a third algorithm DASE is proposed for pursuers to compute the target trajectory and predict new position. DASE focuses on the specific requirement of evader-pursuer problems, and computes the data association probability of imprecise target location with the existing trajectories. Since evaders are always with high mobility, DASE uses only recent history information for a linear least square fitting. Compared with traditionally used data association and state predication methods, DASE distinguishes with its simple computation, real time manner and satisfactory performance. Besides, DASE could handle false alarms and detection failures in target localization, thus meet the requirement of evader-pursuer problem.
     The above three algorithms have all been simulated on Matlab, and they work together to offer accurate and timely information for decision-making in evader-pursuer application.
引文
[1]任丰原,黄海宁,林闯,2003.无线传感器网络(J).软件学报.14(7):1282-1291.
    [2]曾鹏,于海斌,梁英等.2004.分布式无线传感器网络体系结构及应用支撑技术研究[J].信息与控制.33(3):307-313.
    [3]李建中,李金宝,石胜飞.2003.传感器网络及其数据管理的概念、问题与进展[J].软件学报.14(10):1717-1727.
    [4]马祖长,孙怡宁,梅涛.2004.无线传感器网络综述(J).通信学报.25(4):114-124
    [5]于海滨,曾鹏.2006.智能无线传感器网络系统[M].北京,科学出版社
    [6]崔莉,鞠海玲,苗勇.2005.无线传感器网络研究进展(J).计算机研究与发展.42(1):163-274.
    [7]Lin R.Z.,Wang Zh,Sun Y.X.2004.Wireless Sensor Networks Solutions For Real Time Monitoring of Nuclear Power Plant[A].Proceedings of the 5th IEEE World Congres son Intelligent Control and Automation[C].6,15,Hangzhou,China.3663-3667.
    [8]Akyildiz I.E,Su W.,Sankarasubramaniam Y.2002.Wireless Sensor Networks:A Survey on Computer Networks.38(4):393-422.
    [9]Oh S.,Schenato L,Chen P,et.al.2007."Tracking and cordination of multiple agents using sensor networks:systems design,algorithm and experiments",Proceedings of the IEEE,Vol.95,No.1,Jan.234-254
    [10]Oh S.,Russell S.and Sastry S.2005,"Markov chain monte carlo data association for multiple-target tracking," Univ.California Berkeley,Tech.Rep.UCB//ERL M05/19
    [11]Tolle G.2005.A network management system for wireless sensor networks.Master's thesis,Univ.California.
    [12]Oh S.Multiple target tracking for surveillance.2003.Univ.California,Berkeley.Tech.Rep.UCB/ERL MO3/54.
    [13]Oh S.,Schenato L,Chen P,et al.2005.A scalable real-time multiple-target tracking algorithm for sensor networks.Univ.California,Berkeley,Tech.Rep.UCB/ERL MO5/9.
    [14]Brooks R.R.,Friedlander D.,Koch,J,et al.2006.Tracking Multiple targets with self-organizing distributed ground sensors,[J],Parallel Distrib.Comput.,vol,64,874-884
    [15]Arora A.,Dutta,P.,and Bapat,S.2004.A line in the sand:a wireless sensor network for target detection,classification and tracking.Computer Networks:The International Journal of Computer and Telecommunication Networking, 46(5):605-634, 12
    [16]Hespanha J.,Kim H., Hespanha J., et al. 1999. A Multiple-agent probabilistic pursuit-evasion games, in Proc. IEEE Int. Conf. Decision and Control, pp. 2432-2437.
    [17] Shah R.C, Rabaey J. M. 2002. Energy aware routing for low energy ad hoc sensor networks. In: proc IEEE wireless Communication and Networking Conference (WCNC,02) IEEE, Volume 1, 17-21
    [18]YU Y, Govindan R., Estrin D., 2001. Geographical and energy aware routing: a recursive data disseminationi protocol fore wireless sensor networks. UCLA Computer Science Department Technical Report, UCLA/CSD-TR-01-0023
    [19] Karp B. and Kung, H. 2000. "GPSR: Greedy perimeter stateless routing for wireless sensor networks", Proc. Of the ACM/IEEE International Conference on Mobile Computing and Networking, pp 243-254
    [20] Kumar R., Wolenetz M, Agarwalla B., et al. 2003. A framework for distributed data fusion. In" Proc 1st ACM Conf on Embedded Networked Sensor Systems (SenSys'03), Los Angeles, CA. November, 114-125
    [21]Cardei M., Du D. 2005. Improving Wireless Sensor Network Lifetime through Power Aware Organization. Wireless Networks, 11 (3):333-340.
    [22] Tia D. and Georganas N. 2003. A node scheduling scheme for energy conservation in large Wireless Sensor Networks. Wireless Communication and Mobile Computing. 3(2):271-290.
    [23] Deng J., Han Y. S., Heinzelman W.B., et al. 2004. Balanced-energy sleep scheduling scheme for high density cluster-based sensor networks". Computer Communications :special issue on ASWN04,28:1631-1642.
    [24] Sharp C, Schaffert S., Woo A., et al. 2005. Design and implementation of a sensor network system for vehicle tracking and autonomous interception, in Proc. 2nd Europe Workshop on Wireless Sensor Networks. pp. 93-107.
    [25] Liu J., Reich J., Cheung P., et al. 2003. Distributed group management for track initiation and maintenance in target localization applications, in Proc.2nd Workshop Information Processing in Sensor Networks, pp. 113-128.
    [26] Liu J., Reich J., and Zhao F. 2003. Collaborative in-network processing for target tracking, J. Applied Signal Processing.
    [27] Guo Y, Hua B., and Yue L. H. 2007. "Energy based target enumeration in wireless sensor networks", Future Generation of Communication and Networking, Vol.2, 380-385
    [28] Brooks R., Ramanathan P., and Sayeed A. M., 2003. Distributed Target Classification and Tracking in Sensor Networks. Special Issue on Sensor Networks
    [30] Li D., Wong K., Hu Y. H., et al. 2002. Detection, classification and tracking of targets. IEEE Signal Process, vol. 19, no. 2, pp. 17-29, Mar. 2002.
    [31] Zhao F., Liu J., Guibas L., et al. 2003. Collaborative signal and information processing: An Information Directed Approach. Proc. IEEE, vol. 91, no. 8, pp. 1999-1209.
    [32] McErlean D., and Narayanan S. 2002. Distributed detection and tracking in sensor networks, in Proc. 36th Asilomar Conf. Signal, System and Computers, pp. 1174-1178.
    [33] Aslam J., Butler Z., Crespi V., et al. 2003. Tracking a moving object with a binary sensor network, in ACM Int. Conf. Embedded Networked Sensor Systems. pp. 150-161.
    [34] Chen W., Hou J., and Sha L. 2003. Dynamic clustering for acoustic target tracking in wireless sensor networks, in Proc. of the 11th IEEE Int. Conf. Network Protocols, pp. 284-294.
    [35] Coates M.. 2004. Distributed particle filters for sensor networks. In Proc. 3rd Workshop Information Processing in Sensor Networks pp. 99-107.
    [36] Oh S.and and Sastry S. 2005. Tracking on a graph in Proc. 4th Int. Conf. Information Processing in Sensor Networks, LosAngeles, CA, pp. 195-202.
    [37] Coy P. and Gross N. 2003. 21 ideas for the 21 st century, Business Week, Pages 78-167.
    [38] Zhao F. and Guibas L. 2004. Wireless Sensor Networks: An Information Processing Approach. Morgan Kaufmann.
    [39] Shin J., Zhao F. and Reich J. 2002. Information-driven dynamic sensor collaboration for tracking applications. IEEE signal Processing Magazine.
    [40] Estrin D., Girod L., Pottie G, et al. 2002. "Instrumenting the world with wireless sensor networks", presented in the Int. Conf. Acoustics, Speech and signal Processing (ICASSP), Salt Lake City, UT.
    [41] Culler D., Estrin D., and Srivasava M., 2004. Guest Editors' Introductions: Overview of Sensor Networks, IEEE Computer (special Issue in Sensor Network), vol. 106, no. 1, pp.41 -49.
    [42]Megerian S, Koushanfar F, Potkonjak M, et al. Srivastava MB. Worst and best-case coverage in sensor networks. IEEE Trans.on Mobile Computing,2005,4(1):84-92.
    [43] Pasula H., Russell S. J., Ostland M., et al. 1999. Tracking many objects with many sensors. In Proc. Of the International Joint Conference on Artificial Intelligence, Stockholm.
    [44] Pasula H., Identity Uncertainty. 2003. PH.D. Thesis, Computer Science Division: Univ. of California, Berkeley, CA.
    [45] Cong S., Hong L., and Wicker D.. 2004. Markov Chain Monte-Carlo approach for association probability evaluation. IEEE Proceedings of Control, Theory and Applications, vol. 151, no. 2, pp. 185-193
    [46] Ratnasamy S., Karp B., Shenker S., et al. 2003. Data-Centric Storage in Sensornets with GHT, A Geographic Hash Table. Mobile Networks and Applications, Special Issue on Wireless Sensor Networks, 8(4):427-442
    [47] Gil T. M. and Madden S.. 2006. Scoop: a hybrid, adaptive storage policy for sensor networks. MIT CSAIL Technical Report.
    [48] Li X., Kim Y.J., Govindan R. and Hong W.. 2003. Multi-dimensional Range Queries in Sensor Networks. The 1st ACM Conference on Embedded Networked Sensor Systems (SenSys'03), Los Angeles, California, USA. 63-75.
    [49] Ganesan D., Estrin D. and Heidemann J.. 2003. DIMENSIONS: Why do we need a new Data Handling architecture for Sensor Networks? Computer Communication Review, 33(1): 143-148.
    [50] Greenstein B., Estrin D., Govindan R., et al. 2003, DIFS: A Distributed Index for Features in Sensor Networks, In Proc. of the 1st IEEE International Workshop on Sensor Network Protocols and Applications (SNPA'03), Anchorage, Alaska, USA, 163-173
    [51] Desnoyers P., Ganesan D. and Shenoy P. 2005. TSAR: a two tier sensor storage architecture using interval skip graphs. In Proc. of the 3rd ACM Conference on Embedded Networked Sensor Systems (SenSys'05), San Diego, California, USA.39-50
    [52] Liu X., Huang Q. and Zhang Y.. 2004. Combs, needles, haystacks: Balancing push and pull for discovery in large scale sensor networks. In Proc. of the 2nd ACM Conf. on Embedded Networked Sensor Systems (SenSys'04).Baltimore, MD, USA,122-133.
    [53] Sarkar R., Zhu X., and Gao J. 2006. Double rulings for information brokerage in sensor networks. In Proc. of the 12th Annual International Conference on Mobile Computing and Networking (MobiCom'06). Los Angeles, California, USA.,286-297.
    [54] Fang Q., Gao J. and Guibas L.J. 2006. Landmark-based Information Storage and Retrieval in Sensor Networks. In Proc. of the 25th Conference of the IEEE Communication Society (INFOCOM'06), Barcelona, Catalunya, SPAIN, 1-12
    [55] Bonnet P., Gehrke J. and Seshadri P.. 2001. Towards Sensor Database Systems. In Proc. of the 2nd International Conference on Mobile Data Management (MDM'Ol), Hong Kong, China, 3-14.
    [56] Yao Y. and Gehrke J. 2002. The Cougar Approach to In-Network Query Processing in Sensor Networks. SIGMOD Record, 31(3):9-18.
    [57] Yao Y. and Gehrke J.. 2003. Query Processing for Sensor Networks. In Proc. of the 1st Biennial Conference on Innovative Data Systems Research (CIDR'03), Asilomar, California, USA.
    [58] Govindan R., Hong W., Madden S., et al. 2002. The sensor network as a database. Number TR02-02-771.
    [59] Madden S., Franklin M. J., Hellerstein J.M., et al. 2005. TinyDB: an Acquisitional Query Processing System for Sensor Networks . ACM Transactions on Database Systems (TODS), 30(1):122-173.
    [60] Madden S., Franklin M.J., Hellerstein J. M., et al. 2002. TAG: a Tiny AGgregation Service for Ad-Hoc Sensor Networks. In Proc. of the 5th Symposium on Operating System Design and Implementation (OSDI). Boston, Massachusetts, USA.
    [61] Madden S.. The Design and Evaluation of a Query Processing Architecture for Sensor Networks. PhD Thesis, UC Berkeley, Fall 2003.
    [62] Mechitov K., Sundresh S., Kwon Y. et al. 2003 Cooperative tracking with binary-detection sensor networks, Proceedings of the first international conference on Embeded networked sensor systems [c] 332-333
    [63] Kim W., Yong W., Mechitov K., et al. 2005, On target tracking with binary proximity sensors. Fourth International Conference on Information Processing. Sensor Networks (IPSN05), 125-129
    [64] Rabbat M., and Nowak R. 2004. Decentralized Source Localization and Tracking. IEEE International Conference on Acoustics, Speech, and Signal Processing Montreal. 921-924
    [65] Sheng X.B and Hu Y. H, 2005, Maximum Likelihood Multiple-Source Localization Using Acoustic Energy Measurements with Wireless Sensor Networks, IEEE Transactions on Signal Processing, vol. 53, NO.1, January, 44-53
    [66] Aslam J., Butler Z., Constantin F., et al.2003. Tracking a moving target using binary sensor network, ACM Sensys,03.
    [67] Shrivastava N., Mudumbai R., Madhow U., et al. 2006. Target Tracking with Binary Proximity Sensors: Fundamental Limits, Minimal Descriptions, and Algorithms Sensys, 06
    [68] Yu X.B. Adaptive Target Tracking in Sensor Networks[A]. 2004 Communication Networks and Distributed Systems Modeling and Simulation Conference[C]. San Diego: 253-258.
    [69] Friedlander D., Griffin C, Jacobson N., et al. 2002. Dynamic Agent Classification And Tracking Using An Ad Hoc Mobile Acoustic Sensor Network[A]. European Journal on Applied Signal Processing [C] 215-220.
    [70] Sheng X. H, Hu Y. H, Ramanathan P, 2005, Distributed particle filter with GMM approximation for multiple targets localization and tracking in wireless sensor network.. IEEE
    [71] Banerjee T., Agrawal D., and French D. 2006. Extracting critical attributes n wireless sensor networks using modified regression olynomial. In ICNSC '06. Proceedings of the 2006 IEEE International Conference on Networking, Sensing and Control, pages 762-767. IEEE CS press.
    [72] Banerjee T., Chowdhury K., and Agrawal D.. 2005. GHT: A geographic ash table for data-centric storage in sensornets. In 8th International Conference on Information Fusion. IEEE CS press.
    [73] Banerjee T., Chowdhury K. R., and Agrawal D. P. 2005. Distributed data aggregation in sensor networks by regression based compression. In IEEE International Workshop on Resource Provisioning and Management in Sensor Networks (RPMSN05). IEEE CS Press.
    [74] Sljepcevic S, Potkonjak M, 2001. Power efficient organization of wireless sensor networks, In Proc of the Int'l Conf. on Communications. Helsinki: IEEE Communication Society, 472-476
    [75] Tian D, Georganas N. 2002. A coverage-preserving node scheduling scheme for large wireless sensor networks. Proc. Of the 1~(st) ACM Int'l Workshop on Wireless Sensor Networks and Applications. 32-41
    [76] Zhang H, Hou J C. 2005. Maintaining sensing coverage and connectivity in large sensor networks [J].Ad Hoc & Sensor Networks, 1:89-124.
    [77] Xing GL, Wang X.R, Zhang Y.F et al. 2005. Integrated coverage and connectivity configuration for energy conservation in sensor networks. ACM Trans. On Sensor Networks. ](1): 36-72
    [78] Dhillon S S, Chakrabarty K. Sensor placement for effective coverage and surveillance in distributed sensor networks[A]. 2003. Wireless Communications and Networking [c]. IEEE, 16-20,1609-1614.
    [79] Ekman M, Davstad K, Sjoberg L. 2007. Ground target tracking using acoustic sensors. IEEE Information, Decision and Control, 182-197
    [80] Berteskas D. 1990 :The Auction Algorithm for Assignment and Other Network Flow Problems : a Tutorial interfaces 20(4): 133-149.
    [81] Nagarajan V., Childambara M, Sharma R. 1987. New Approach to Improved Detection and Tracking Performance in tracking-while-Scanning Radars, in IEEE, Proceedings, 89-112
    [82] Castanon D. 1992. New Assignment Algorithms for Data Association. In Proc SPIE: 313-323.
    [83] Mainwaring A., Piastre J., Szewczyk R., et al. 2002. Wireless sensor networks for habitat monitoring. In Proc. 1st ACM international Workshop on Wireless Sensor Networks and Applications, pages 88-97, Atlanta
    [84] Oh S, and Sastry S. 2005. An efficient Algorithm for tracking multiple maneuvering targets.
    [85] S. Dhillon. 2003. Sensor Placement for Effective Coverage and Surveillance in Distributed Sensor Networks. in proceedings of IEEE
    [86] Bar-Shalom Y. Multi-target multi-sensor tracking [M]. [S.1.]: Artech House, 1990.
    [87] Zhao F., Liu J., Liu J., et al. 2003. Collaborative signal and information processing: An information directed approach," Proceedings of the IEEE, 2003.
    [88]D'Costa A, and Sayeed, A. 2003. Collaborative signal processing for distributed classification in sensor networks, The 2nd International Workshop on Information Processing in Sensor Networks (IPSN '03), pp. 193-208.
    [89] Li D., Wong K, Hu Y, et al. 2002. Detection, classification and tracking of targets in distributed sensor networks," IEEE Signal Processing Magazine, vol. 19, no. 2, pp. 17-29.
    [90] Liu J., Reich J., and Zhao F.. 2002. Collaborative in-network processing for target tracking," Journal on Applied Signal Processing.
    [91] McErlean D. and Narayanan S., 2002. Distributed detection and tracking in sensor networks," 36~(th) Asilomar Conf. Signals, Systems and Computers.
    [92] Zhao F., Shin J., and Reich J.. 2002. nformation-driven dynamic sensor collaboration for tracking applications," IEEE Signal Processing Magazine.
    [93] Singh J., Kumar R., Madhow U., et al. 2007, Tracking Multiple targets using binary proximity sensors.IPSN'07, 527-538
    [94] Shrivastava N., Mudumbai R., Madhow U., and Suri S.. 2006 Target tracking with binary proximity sensors: Fundamental limites, minimal descriptions, and algorithms, In Proc. Of ACM SenSys.
    [95] Kim W., Mechitov K., Choi J.-Y. et al. 2005. On target tracking with binary proximity sensors. In Proc. IPSN
    [96] Zhao F, Fang Q, and Guibas, L. 2002. Counting targets:Building and managing aggregates in wireless sensornetworks. In Palo Alto Research Center (PARC) Technical Report.
    [97] Sharp C, Schaffert S., Woo A., et al. Design and Implementation of a Sensor Network System for Vehicle Tracking and Autonomous Interception
    [98] Fang Q., Zhao F., Guibas L.. 2003, Lightweight Sensing and Communication Protocols for Target Enumeration and Aggregation MobiHoc 03
    [99] He T., Vicaire P., Yan T., et al. 2006. Achieving long-term surveillance in vigilnet. In Proceedings of the INFOCOM
    [100] Liu J., Cheung P., Zhao F, et al. 2002. A dual-space approach to tracking and sensor management in wireless sensor networks. Palo Alto Research Center Technical Report
    [101] Benedict T. and Bordner G., "Synthesis of an Optimal Set of Radar Track-While-Scan Smoothing Equations", IRE Trans, on AC, vol.7, July 1962, p27-32
    [102] Simpson H. R.. 1983. Performance Measures and Optimization Conditions for a Third-Order Sampled Data Tracker, IEEE Trans. AC, vol.8 , p182
    [103] Kalman R. E., 1960. A New Approach to Linear Filtering and Prediction Problems, Journal of Basic Engineering (ASME), vol. 82D P35-45
    [104] Kalman R. E. and Bucy R.. 1961. New Results in Linear Filtering and Prediction, Journal of Basic Engineering (ASME), vol.83D, p95-108
    [105] Blackman S. S., Broida T. J., and Cartier M.F.. 1981. Applications of a Phased Array Antenna in a Multiple Maneuvering target environment, in Proc. IEEE conf. on Decision and Control, p1414-1418
    [106] MacAulay R. and Denlinger E.. 1973. A Decision-directed Adaptive Tracker, IEEE Trans. Aerospace and Elect. Systems. Vol. AES-9, p229-236
    [107] Bar-Shalom Y. and Birmiwal K.. 1982. "Variable Dimension Filter for Maneuvering target Tracking", IEEE Trans. On AES, vol.18, p621-629
    [108] Bar-Shalom Y. and Li X. R.. 1993. Estimation and Tracking: Principles, Techniques and Software. Artech House,
    [109] Jazwinsk A. H.. 1970. Stochastic Processes and Filtering Theory: New York: Academic.
    [110] Maybeek P. S.. 1982. Stochastic Models Estimation and Control: Academic.
    [111] Ristic B., Arulampalam S., and Gordon N.. 2004. Beyond the Kalman Filter: Particle Filters for Tracking Application. Boston London: Artech House.
    [112] Bar-Shalom Y. and Li. X. R. 1995. Multitarget-Multisensor Tarcking: Principles and Techniques, Storrs, CT: YBS Publishing.
    [113] Bar-Shalom Y., Tes E.. 1975. Tracking a Cluttered Envoronment with Probabilistic Data Association, Automation, 11: 451-460
    [114] Sittler R. N.. 1964. An Optimal Data Association Problem in Surveillance Theory. IEEE Trans on Mil 8(2):125-139,
    [115] Simth P.. Buechler G 1975. A branching Algorithm for discriminating and tracking multiple objects. IEEE Transactions on Automatic Control, AC-20(2): 101 -104
    [116] Singer R. A., Sea R. G., Housewright, K. 1974. Derivation and Evaluation and Improved Tracking Filters for Use in Dense Multitarget Environment. IEEE Trans Inform Theory, 1974, IT-20: 423-432
    [117] Blackman S. S., Propli R.. 1999. Design and Analysis of Modern Tracking System. Norwood: MA: Arctech House
    [118] Fortman T. E., Bar-Shalom Y., Scheffe. M. 1980. Multi-Target Tracking Using Joint Probabilistic Data Association. In Proc 1980 IEEE Conf Decision and Control
    [119] Reid D. B, 1979. An Algorithm for Tracking Multiple Targets. IEEE Trans On AC 1979, 24(6): 843-854
    [120] Mori S., Chong C. Y, Wishnor R. P., et al. 1983. Multi-target Multi-Sensor Tracking Problems: a General Approach. In Proc 1983 American Control Conf

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700