用户名: 密码: 验证码:
毛竹林水土保持耕作体系下土壤侵蚀预测模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤侵蚀是在水力、风力、冻融、重力等营力作用下,土壤、母质及其它地面组成物质被破坏、剥蚀、转运和沉积的全部过程。水土流失是全球性的环境和灾害问题,并且已经对人类的生存与发展构成了威胁。中国是世界上水土流失最严重的国家之一,我国东南红壤丘陵区,由于长期的不合理的开发利用,土壤侵蚀退化严重,水土流失面积达800 000km~2,其中,严重侵蚀地占165 000 km~2。东南红壤丘陵区是我国仅次于黄土高原的严重水土流失区,其中土壤侵蚀已成为引起土壤退化的重要原因。
     土壤侵蚀模型是研究土壤侵蚀学科的前沿领域和土壤侵蚀过程定量研究的有效手段。土壤侵蚀模型按建模的方法可分为经验模型和物理模型等,其中经验模型是根据已掌握的先验资料,采用统计分析的方法拟合、预测小流域土壤侵蚀量与降雨侵蚀力指标、植被覆盖率、土壤有机质含量、土壤粘粒含量、坡度、坡长之间的关系。土壤侵蚀过程中影响因子较多、过程错综复杂,以过程为基础的土壤侵蚀模型可操作性差,有些指标在大面积应用时难以获取。为了进一步提高经验模型拟合和预测的精度,克服经验模型固有的地域性强,外延精度差等不足,本文提出三种非线性土壤侵蚀建模方法,为土壤侵蚀建模提供了新的思路。
     利用福建省天宝岩保护区内毛竹林内所得的实测数据,以立地条件、林分密度、竹龄结构、经营措施一致的毛竹林不同坡度、不同垦复方式、不同施肥方式、不同清理方式、不同施肥处理、不同的笋收获方式为预报因子,建立了基于核函数主元分析的非线性岭回归毛竹林土壤侵蚀拟合和预测模型,取得了较好的模拟精度,因子用常规方法即可获得,因而可以用来预测不同耕作体系下毛竹林土壤侵蚀总量,为进一步研究毛竹林耕作体系的革新与新耕作方法的实施提供了参考依据。
     基于单变量高维指数非线性GWS (n,1)模型及其参数搜索、辨识原理,以复相关系数最大为判别准则、将多变量分为主变量和辅助变量,进而构建出多变量高维指数非线GWS ( n,m)模型, GWS (n,1)及GWS ( n,m)模型具有非周期、非线性、非正态振荡递减行为特征。各自变量的弹性系数呈振荡递减趋势并渐近与零,这是本文模型与常规模型的最重要区别。经过计算机编程,模型参数搜索、辨识较为简便易行。利用闽东南地区土壤侵蚀数据建立扩展模型,利用该模型对闽东南地区红壤小流域坡地土壤侵蚀进行预测相关系数达到0.986,精度明显高于USLE模型,并将该模型应用于水土保持耕作体系下毛竹林土壤侵蚀预报,精度达到0.968,为极显著水平。以总体离差平方和最小为判别准则,其中最优化算法是采用实数编码的自适应遗传算法,搜索出模型参数,模型的参数选取最大程度的避免了人为因素,不同与人工神经网络模型中繁琐而缓慢的“黑箱式寻优”,数据关系更加的透明化,在样本数量较多的情况下也具有很强的适应性,以复相关系数最大为判别准则、将多变量分为主变量和辅助变量,模型的精度也满足在实际工程中的应用,具有很强的指导意义。
     建立多元回归预测模型,并且要取得相当的逼近和预报精度,其前提是:影响因子与预报因子之间确切存在模型所假定方法的相关关系,可以是线性的或非线性的,这样才能根据样本的情况估计其中的参数,由于各个预测因子之间的相关关系并不是一致的线性或非线性,存在各种相关形式,因此采用一致线性或非线性形式建立的回归模型不能真实的反映回归关系,影响预报和逼近的精度,为了协调考虑这些不均衡的相关关系,引入加权的思想,使影响重要的关系在回归方程中所占的权重较大,从而对模型精度的改善起到一定的作用。投影寻踪结合约束优化遗传算法对雷竹园和茶园土壤侵蚀模数进行拟合和预测,取得了较为理想的效果,相关系数达到0.99用精度较高,原文献中采用线性回归和线性逐步回归的方法对土壤侵蚀进行预测,相关系数为0.90和0.84,精度明显较低,利用投影寻踪结合多目标约束优化遗传算法对土壤侵蚀模数进行拟合和预测能显著的提高模型的精度,并将该模型应用于毛竹林水土保持耕作体系下土壤侵蚀预测,取得了理想的模拟结果。同时,避免出现样本数量较多情况下产生的“维数祸根”、“精度与复杂度互不相容”等问题,模型建立之前无需对样本做任何假设,减少了模型的主观人为性,将高维数据映射到了低维,为在低维空间中研究高维数据提供了便利。
Soil erosion is the process of soil and other composition materials be destroyed, denuded, taken away and deposition that caused by the power of water, wind, frozen and gravity. Soil erosion is a problem of environment and disaster all over the world, the problem has affected the existence and development of human kind. China is one of the countries that bearing the problem of soil erosion. The area of soil erosion has reached 800 000km~2 in red soil regions of southeast part of China, the most serious area has reached 165 000 km~2 .The red soil regions of southeast part of China has become the most serious soil erosion area except loess plateau of our country.
     The studies on modeling of soil erosion are the most effective method in the field of soil erosion. There two kinds of model of soil erosion: Empirical model and Physical model. Empirical model is using the former information by the method of statistics to forecast soil erosion and find out the relations of the Rainfall erosion index, vegetation cover, soil organic matter content, soil clay content, degree of slope, slope length. The process of soil erosion is complicated and has too many factors, the model of soil erosion based on process is hard to manipulate, some factors are difficult to get is the model is used in extensive areas, so it may have limited value. For the studies on modeling of soil erosion based on process is a new field, so the studies on empirical model play an important role in the study of soil erosion. So in such conditions empirical model is the most effective method. We aimed to enhance the empirical model fitting and prediction accuracy, to overcome lack of extension and poor accuracy, we use three methods of nonlinear of modeling, given three kinds of model for soil erosion forecast, provide new ideas for the modeling of soil erosion:
     According to the data collected from TianBaoYan Protected Areas FuJian Province, we use the different gradient, different way of cultivation, different way of fertilization, different way of clearing, different way of dealing with fertilization, different way of bamboo shoots harvest under the same conditions of local condition, forestry density, structure of the age, the way of cultivation as the factors of soil erosion forecast, established a model of nonlinear ridge regression based on kernel function principal component analysis, the model is effective and superior, factors can be got easily, so it can be used in soil erosion forecast under different way of cultivation, at the same time it also provide directions both to the renovation of traditional cultivation and new methods.
     Based on the univariate non-linear high-dimensional index model GWS (n,1), according to the largest multiple correlation coefficient, we divide variables into auxiliary variables and main variables, another model was established multivariate non-linear high-dimensional index model GWS ( n,m), the two models have a character of nonlinear, non-periodic, non-normal. We get a series of parameters easily; the model can be widely used. The data for modeling is collected from the southeast part of FuJian province, the correlation coefficient reached 0.986, accuracy was significantly higher than USLE model and the model was applied to soil erosion forecast under the system of soil and water conservation cultivation in Phyllostachy Heterocycla, the correlation coefficient reached 0.968, for a very significant level.
     we use optimization algorithm adaptive real-coded genetic algorithm to find out a series of parameters, we select the parameters avoid the man-made factors, it’s different from artificial network model in the“black box-style optimization”, the relationship between the data is more transparent, in the case of a large number of samples it also adaptive to a maximum correlation coefficient criterion , we divide variables into auxiliary variables and main variables, the model is accuracy to meet engineering applications in practical, it has a strong guiding significance.
     If we want to set up multiple regression prediction model, and to achieve considerable accuracy of approximation and prediction, we should confirmed that the impact factor and prediction factors is exist between the exact models is correct between assumes methods, which can be linear or non-linear. According to the estimate of samples to get a series of parameters, as the correlation between predictors is not a consistent relationship between the linear or nonlinear, the existence of a variety of related forms, so a consistent form of linear or non-linear regression model should not reflect the true regression relationship between the impact of forecasting and affect the accuracy of approximation, considering the uneven correlation between the introduction of thought-weighted, so that the impact of the important relations in the regression equation in a larger share of the weight, thus accuracy of the model can be improved. Projection Pursuit combined with multi-objective genetic algorithm used in soil erosion prediction have achieved better results and have higher accuracy in bamboo garden and tea garden the correlation coefficient reached 0.99, in the original literature, the use of linear regression and linear regression methods to predict soil erosion on a correlation coefficient of 0.90 and 0.84, significantly lower in accuracy, the model was applied to soil erosion forecast under the system of soil and water conservation cultivation in Phyllostachy Heterocycla stands to obtain the ideal simulation results. At the same time, it also avoid the situation "dimension curse" that have a large number of samples and the”precision and complexity can’t coexistence", the model was set up without any assumptions reduce the man-made factors , high dimensional data will be mapped to a low-dimensional, it provide facilitates to study high-dimensional data in low-dimensional space.
引文
[1]农业大词典编辑委员会农业大词典[M].北京:中国农业出版社,1998 1687
    [2]杨艳生,史德明长江三峡区土壤侵蚀研究[M].南京:东南大学出版社,1994:22-27
    [3]史德明我国热带、亚热带区土壤侵蚀及其防治研究的进展[M]。见:中国科学院南京土壤研究所:席承藩与我国土壤地理。陕西人民出版社,1994.52-58
    [4]赵其国中国东部红壤地区土壤退化的时空变化、机理及调控[M].北京:科学出版社,2002 12-15
    [5]景可,王万忠,郑粉莉中国土壤侵蚀与环境[M].北京:科学出版社2005 196
    [6]江忠善、王志强、刘志黄土丘陵区小流域土壤侵蚀空间变化定量研究[J].土壤侵蚀与水土保持学报,1996,(1):1-9
    [7]江忠善、王志强、刘志应用地理信息系统评价黄土丘陵区小流域土壤侵蚀的研究[A].见:第二届全国泥沙基本理论研究学术讨论会论文集,北京:中国建材工业出版社,1995:205-207
    [8]蔡强国、陆兆熊、王贵平黄土丘陵沟壑区典型小流域土壤侵蚀产沙过程模拟[J]地理学报,1996,51(2):108-116
    [9]蔡强国、王贵平、陈永宗黄土高原小流域侵蚀产沙过程与模拟[M].北京:科学出版社,1998.190-196
    [10] Liu Baoyuan,Zhang Keli,Xie Yun.An Empirical Soil Loss Equation[A].In: Process of soil erosion and its environment effect volume II 12th ISCO[C].Beijing: Tsinghua Press,2002.21-25.
    [11]江忠善,王志强,刘志.黄土丘陵区小流域土壤侵蚀空间变化定量研究[J].土壤侵蚀与水土保持学报,1996,2(1): 1-9.
    [12]蔡强国,王贵平,陈永宗.黄土高原小流域侵蚀产沙过程与模拟[M].北京:科学出版社,1998.190-196.
    [13] Wisehmeier W H. Smith D D.Palliating rainfall eros1on losses.USDA AgriculturalHandbook.1978:537
    [14] Renard K G,foster G R,Weesies G A,et al. RUSLE a guide to conservation planning with the revised universal soil loss equation.USDA Agricultural Handbook,1997:703。
    [15] Laflen J M,Lwonard J L,Foster G R.WEPP a new generation of erosion prediction technology.Journal of Soil and Water Cons,1991,46(1):34-38,
    [16] Foster G R,Lane L J.User requirements.USDA-water erosion prediction project(WEPP).NSERL report No.1,USDA-ARS national soil erosion research laboratory.W est Lafayette,1987
    [17] Yang CT.Unit stream power and sediment transport.Journal of the Hydraulics Division,ASAE,98(HY10),RIDc Paper 9295.1972:1905—1826
    [18] ANSWERS:A model for watershed planning.Transactions of the ASAE,l980(23):938--944
    [19] Huggins L F,llonke E J. The mathematical simulation of the hydrology of small watersheds.Technical Report Water Resource Research Center,Purdue University,1966(1):130
    [20] Beadey D B,Huggins L F. Monke E J.ANSWERS:a model for watershed planning.Transactions of the ASAE,1980,23 (4):938--944。
    [21] Jetten V,DeRooA P J, Favis-MortlockD. Evaluation of field-scale and catchments-scale soil erosion models[J]. Catena, 1999, 37: 521-541.
    [22] Jetten V , GoversG , HesselR. Erosion models: quality of spatial predictions [J].Hydrological Processes. 2003, 17: 887-900.
    [23] Parsons A J, Wainwright J. A process-based evaluation of a process based soil erosion model[A]: In: Soil erosion: application of physically-based models[C] (Schmidt J, ed. ), Springer- Verlag, Berlin. 2000, 181-197.
    [24] Schulze R. Transcending scales of space and time in impact studies of climate and climate change on agro hydrological responses [J].Agriculture,Ecosystems and Environment.2000, 82: 185-212.
    [25] Favis-Mortlock D T, Boardman J, et a.l The limits of erosion modeling[A]: In: Landscape erosion and evolution modeling[C].New York: Kluwer Academic/Plenum Publishers. 2001, 477 -516.
    [26] Croke J,MocklerS. Gully initiation and road-to-stream linkage in a forested catchments, south-eastern Australia[J]. Earth Surface Processes and Landforms. 2001, 26: 205-217.
    [27] Pickup G,MarksA. Regional scale sedimentation process models from airborne gamma ray remote sensing and digital elevation data[J]. Earth Surface Processes and Landforms. 2001, 26: 273 -293.
    [28]王德、傅伯杰、赵文武等土壤侵蚀模型研究中的几个问题[J].干旱区地理2007 (30)3,407-413
    [29] Beck M B. Water quality modeling: a review of uncertainty [J].Water Resources Research, 1987, 23 (8): 1 393-1 442.
    [30] Rudra R P,DickinsonW T, WallG J. Problems regarding the use of soil erosion models[A].In: Boardman J, Favis-MortlockD T,eds. Modeling Soil Erosion by Water [C]. Springer-Verlag NATO-ASI seriesⅠ-55. Berlin: 1998, 175-190.
    [31] De Roo A P J. Validation problems of hydrologic and soil-erosion catchments models: examples from a Dutch erosion project[A].In: Advances in Hill slope Processes[C]. (Anderson MG,Brooks SM, eds. ),Wiley, Chichester,UK: 1996, 669-683.
    [32] Rykiel JE J. Testing ecological models: the meaning of validation[J].Ecological modeling, 1996, 90: 229-244.
    [33] Foster G R. Keynote: Soil erosion prediction technology for conservation planning: in sustaining the globle farm[M]. (Selected paper from the 10th International Soil Conservation Organization Meeting), 2001.
    [34] MerrittW S, Croke B FW, Jakeman A J. Sensitivity testing of a model for exploring water resources utilization and management options [J]. Environmental Modeling &Software, 2005, 20: 1 013
    [35] De Roo A P J, Jetten V G. Calibrating and validating the LISEM model for two data sets from the Netherlands and South Africa[J].Catena, 1999, 37: 477-493.
    [36] Nash J E, Sutcliffe J V. River flow forecasting through conceptual models. I. Discussion of principles[J]. J. Hydro.l, 1970, 10:282-290.
    [37] Quinton J N. Reducing predictive uncertainty in model simulations: a comparison of two methods using the European Soil Erosion Model(EUROSEM)[J].Catena, 1997, 30: 101-117.。
    [38] Beven K. A discussion of distributed hydrological modeling[A].In: AbbottM B, Refgaard JC, Eds. Distributed Hydrological Modeling[C].Kluwer Academic, 1996, 255-278.
    [39] GoversG. Soil erosion process research: a state of art[J]. Academy ie voor Wetenschappen, Letteren en Schone Kunsten van Belgie,Klasse derwettenschappen, 1996(1): 58.
    [40] Morgan R P C, Quinton JN. Erosion modeling [A]: In: Landscape erosion and evolution modeling[C].New York: Kluwer Academic/Plenum Publishers. 2001, 118-126.
    [41]贾媛媛、郑粉莉、杨勤科国内水蚀预报模型述评[J].水土保持通报2004,(1)
    [42]李世玲.基于投影寻踪和遗传算法的一种非线性系统建模方法[J].系统工程理论与实践,2005. 25(4):22—28.
    [43]杨武德、王兆骞、眭国平等红壤坡地不同土地利用方式土壤侵蚀的时空分布规律研究[J].应用生态学报1998,9(2)∶155-158
    [44]李占斌朱冰冰李鹏土壤侵蚀与水土保持研究进展[J].土壤学报45(5):801-809
    [45]梁煜峰投影寻踪法和遗传算法在三峡入库洪水预报中的应用四川大学硕士学位论文2006
    [46]郑粉莉,杨勤科,王占礼.水蚀预报模型研究[J].水土保持研究,2004,(11)4,13-23
    [47]杨武德,王兆骞.红壤坡地不同利用方式土壤侵蚀模型研究[J].土壤侵蚀与水土保持学报,1999,(5)1:50-59
    [48]牛振华,王占礼,孙全敏,等.高次指数组合非线性模型在土壤侵蚀中的应用[J].土壤学报,2007, (44)2:350-353
    [49]孙全敏,王占礼,马春艳,等.土壤侵蚀高维指数非线性模型及其参数辨识[J].系统工程理论与实践,2007,(11):171-176
    [50] Jolliffe I T. Principal Component Analysis [M].Germany:Springer,2002.
    [51] Scholkopf B,Smola A,Muller K R.Nonlinear component analysis as a kernel eigenvalue problem [J].Neural Computation,1998,10(5):1299-1319.
    [52]杨希,钱锋,张兵.基于核函数主元分析的SVM建模及应用[J].华东理工大学学报(自然科学版), 2007,(33)2:259-270
    [53] B SchEolkopf, A Smola,K M Euller, Nonlinear component analysis as a kernel eigenvalue problem[J].Neural Compute.(S0899-7667).1998,10(5):1299-1319.
    [54]吴诚鸥,秦伟良,等近代实用多元统计分析[M].北京:气象出版社,2007
    [55] Vapnik V N.The nature of Statistical Learning Theory[M].NY:Spring-Verlag Press,1998.
    [56]吴涛.核函数的性质、立法及其在障碍检测中的应用[D].长沙:国防科技大学,2003.
    [57]贾明兴,牛大鹏,王福利,等.基于RBF神经网络的非线性主元分析新方法[J].系统仿真学报,2007,(19)24:5684-5687
    [58]洪伟、吴承祯.闽东南土壤流失人工神经网络预报研究[J].土壤侵蚀与水土保持学报,1997,3(3):52-57
    [59]黄炎和闽东南土壤流失预报研究水土保持学报[J],1993,7(4):13-18
    [60]卢程隆.闽东南花岗岩侵蚀区土壤侵蚀与治理(I).福建农学院学报[J],1989,18(4):504-509
    [61]李敏强,寇纪淞,林丹,李书全,遗传算法的基本理论与应用[M].科学出版社,2004:66-69
    [62]雷英杰,MATLAB遗传算法工具箱及应用[M].西安电子科技大学出版社2005:31-33
    [63]付强.投影寻踪模型原理及应用[M].北京:科学出版社.2006:131-139
    [64]陈守煜.模糊水文学与水资源模糊优化原理.大连:大连理工大学出版社.1990
    [65]杨武德.红壤坡地土壤侵蚀定位土芯Eu示踪法研究.土壤侵蚀与水土保持学报,1998,4(1):61-65
    [66]徐涛,杨勤科,赵米金.区域土壤侵蚀模型参数选择水土保持研究2006 12(6):122-127

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700