用户名: 密码: 验证码:
相变蓄冷建筑围护结构性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相变蓄能技术在建筑中的应用,可以减小室内热环境的波动,同时通过对过剩热量/冷量的吸收/释放可达到建筑节能的目的。本文旨在研究一种与建筑围护结构结合的新型相变蓄冷体系:研发新型的相变材料、封装方法及与围护结构结合的合理方式,并测试其实际的蓄冷效果,最后建立其传热模型。
     本文采用熔融共混法,以高级脂肪酸和高碳醇为原料,差示扫描量热法(DSC)为测试手段,研制出了一系列具有较高潜热可适用于我国温带大陆季风气候的夏季蓄冷相变材料。研究了以高分子材料为支撑包覆材料、微粒径铝粉为导热系数增强剂的定型相变材料及其制备方法,而且对其进行了泄露性测试、SEM微观形态特征扫描、红外波普测试、DSC相变热物性测试,并测试了添加铝粉后的蓄放热效率提高情况。研究分析了另一种封装方式—相变蓄能板,将相变材料用铝制板材封装成坚固、安全、无泄漏的板状结构,且相变蓄能板内部带有肋片,在加固板材的同时提高了相变材料的吸放热速率。搭建了空心砖结构的三间大尺寸房间,将相变蓄能板与围护结构相结合,实验研究了两套相变蓄冷系统(PCMOW,相变蓄能板与围护结构外侧结合;PCMIW,相变蓄能板与围护结构内侧结合)相比较于没有相变材料的普通房间(Reference)的蓄冷情况,且实验过程采用三个操作策略:自然蓄冷策略、夜间自然对流策略和夜间强制排风策略。
     对实验结果采用对比方法进行了分析。夜间自然对流策略和夜间强制排风策略运行效果要好于自然蓄冷策略;夜间强制排风策略的结果并不优于夜间自然对流策略,而且消耗了排风扇的功耗;因此三个策略中,夜间自然对流策略最优。对于相变蓄能系统,PCMIW在三个阶段的测试结果均优于PCMOW,而PCMIW和PCMOW的室内温度都低于Reference。在实测数据的基础上,建立了相变围护结构的传热模型,并采用相对误差分析法及Bland-Altman一致性分析法验证了模型的正确性。
Phase change material (PCM) used in the building not only can decrease the indoorthermal environment fluctuations, but also reduce the building energy consumptionthrough absorbing surplus heat/cold and releasing the heat/cold in need. The studyaims to research a new type of passive PCM cold storage system combined withbuilding envelops. Objectives of the study included the development of new PCM,encapsulation, the methods to combine with building envelops, the experiment of coldstorage, and the establishment of heat-transfer model.
     This research has developed a series of high latent heat PCMs that is workable forthe temperate continental monsoon climate of China, based on the testing instrumentof differential scanning calorimetry (DSC) and the raw materials of higher fatty acidand high alcohols. A new kind of form-stable PCM has been prepared in this study,which was supported and stabilized by high polymer materials (HDPE and EVA), andwhose thermal conductivity was enhanced by aluminum powder. Tests have beenconducted to verify the properties of form-stable PCM, namely, leakage test, SEMtest, infrared spectrum test, DSC test, enhancement test of heat releasing/absorbingefficiency. Another encapsulating method, PCM panel, has been researched. ThePCMs were firmly and securely contained in the PCM panel without leakage. Finswere fixed in the internal structure to strengthen the panel and increase the efficiencyof heat releasing/absorbing. Three full-scale perforated brick test rooms were built totest the cold storage performance. Two systems: PCMOW-PCM panel combined withthe outside surface of building envelop, and PCMIW-PCM panel combined with theinside surface of building envelop, were conducted in the two rooms, and theremaining room was the reference with no PCMs. Three strategies were adopted inthe test, including free cooling, open window and door in night and forced ventilationin night.
     Results have been compared in the analysis process. It was found that, free coolingstrategy had a worse-performing and the results of the two strategies of open windowand door in night and forced ventilation in night showed almost the same level, butthe strategy of forced ventilation in night consumed energy for air exhauster. It is concluded that open window and door in night is the best strategy. Compared thePCMOW and PCMIW system, PCMIW showed a better cold storage performance inall the three strategies, and the indoor temperatures of both PCMOW and PCMIWwere lower than that of reference. Based on the measured value, the heat-transfermodel of PCM building envelops were established, which has been verified at last.
引文
[1]张平.中华人民共和国国民经济和社会发展第十二个五年规划纲要[M].北京:人民出版社,2011.
    [2]中国国家统计局.中国统计年鉴-2012[M].北京:中国统计出版社,2012.
    [3]清华大学建筑节能研究中心.中国建筑节能年度发展研究报告2011[M].北京:中国建筑工业出版社,2011.
    [4] Lombard L P, Jose O, Christine P. A review on buildings energy consumptioninformation[J]. Energy and Building,2008,40(3):394-398.
    [5] Zhao J, Zhu N, Wu Y. Implementing effect of energy efficiency supervisionsystem for government office buildings and large-scale public buildings inChina[J]. Energy Policy,2009,37(6):2079-2086.
    [6] Lv S, Zhu N, Wu Y, et al. Pattern analysis and suggestion of energy efficiencyretrofit for existing region residential buildings in China‘s northern heating[J].Energy Policy,2009,37(6):2102-2105.
    [7] Zhao J, Zhu N, Wu Y. Technology line and case analysis of heat metering andenergy efficiency retrofit of existing residential buildings in Northern heatingareas of China[J]. Energy Policy,2009,37(6):2106-2112.
    [8] Zhao J, Zhu N, Wu Y. The analysis of energy consumption of a commercialbuilding in Tianjin, China[J]. Energy Policy,2009,37(6):2092-2097.
    [9]陈会标.重庆市建筑节能政策研究[D].重庆:重庆大学建设管理与房地产学院,2012.
    [10]薛一冰,杨倩苗,王崇杰.建筑节能及节能改造技术[M].北京:中国建筑工业出版社,2012.
    [11]张永娟,张雄.建筑节能技术与节能材料[M].北京:化学工业出版社,2009.
    [12]张寅平,胡汉平,孔祥冬,等.相变贮能-理论和应用[M].合肥:中国科学技术大学出版社,1996.
    [13]崔海亭,杨锋.蓄热技术及其应用[M].北京:化学工业出版社,2004.
    [14]樊栓狮,梁德青,杨向阳,等.储能材料与技术[M].北京:化学工业出版社,2004.
    [15]王晓伍,吕恩荣,高文峰.多元醇二元体系相变贮热的经验公式[J].新能源,1996,18(9):5-10.
    [16] Benson D K, Burrows R W, Webb J D. Solid state transitions in pentaerythritoland related polyhydric alcohols[J]. Solar Energy Materials,1986,13(2):133-152.
    [17]邢登清,迟广山,阮德水,等.多元醇二元体系固-固相变贮能地研究[J].太阳能学报,1995,16(2):131-137.
    [18]樊耀峰,张兴祥.有机固-固相变材料的研究进展[J].材料导报,2003,17(7):50-53.
    [19]阮德水,张圣道,张太平,等.固-固相变贮热得研究[J].华中师范大学学报,1995,29(2):193-196.
    [20] Ksiaiczak A, Moorthi K, Nagata I. Solid-solid transition and solubility of evenn-alkanes[J]. Fluid Phase Equilibria,1994,95(8):15-29.
    [21] Farid M, Khalaf A N. Performance of direct contact latent heat storage unit withtwo hydrated salts[J]. Solar Energy,1994,52(2):179-189.
    [22] Ryu H, Woo S, Shin B, et al. Prevention of supercooling and stabilization ofinorganic salt hydrates as latent heat storage materials[J]. Solar Energy Materialsand Solar Cells,1992,27(2):161-172.
    [23] Lane G A. Phase change materials for energy storage nucleation to preventsupercooling[J]. Solar Energy Materials and Solar Cells,1992,27(2):135-160.
    [24] Cabeza L F, Illa J, Roca J, et al. Middle term immersion corrosion tests onmetal-salt hydrate pairs used for latent heat storage in the32to36oC temperaturerange[J]. Material and Corrosion,2001,52(10):748-754.
    [25] Zalba B, ar n J M, Cabeza L F, et al. Review on thermal energy storage withphase change: materials, heat transfer analysis and applications[J]. AppliedThermal Engineering,2003,23(3):251-283.
    [26] Sharma S D, Sagara K. Latent heat storage materials and systems: a review[J].International Journal of Green Energy,2005,2(1):1-56.
    [27] Li H, Liu X, Fang G. Preparation and characteristics of n-nonadecane/cementcomposites as thermal energy storage materials in buildings[J]. Energy andBuildings,2010,42(10):1661-1665.
    [28]王华,王胜林,饶文涛.高性能复合相变蓄热材料的制备与蓄热燃烧技术[M].北京:冶金工业出版社,2006.
    [29] Hawes D W, Banu D, Feldman D. Latent heat storage in concrete[J]. SolarEnergy Materials,1989,19(3-5):335-348.
    [30]崔海亭,袁修干,侯欣宾.蓄热技术的研究进展与应用[J].化工进展,2002,21(l):23-25.
    [31] Hadjipaschalis I, Poullikkas A,Efthimiou V. Overview of current and futureenergy storage technologies for electric power applications[J]. Renewable andSustainable Energy Reviews,2009,13(6/7):1513-1522.
    [32] Biswas D R. Thermal energy storage using sodium sulfate deca-hydrate andwater[J]. Solar Energy,1977,19(1):99-110.
    [33] Telkes M. Thermal storage for solar heating and cooling[C]//Proceedings of theWorkshop on Solar Energy Storage Subsystems for the Heating and Cooling ofBuildings. Charlottesville,1975:17-20.
    [34] Barkmann H G, Wessling F C. Use of buildings structural components forthermal storage[C]//Proceedings of the Workshop on Solar Energy StorageSubsystems for the Heating and Cooling of Buildings. Charlottesville,1975:136-137.
    [35]刘来宝,赵冬梅.相变蓄能建筑材料的发展[J].山西建筑,2009,35(30):164-166.
    [36]李栋,孙国梁,况慧芸,等.相变储能材料的研究进展及其在建筑领域的应用[J].佛山陶瓷,2008,137(4):37-40.
    [37]孟多.定形相变材料的制备与建筑节能应用[D].大连:大连理工大学市政工程学院,2010.
    [38] Lane G A. Solar Heat Storage: Latent Heat Materials[M]. Florida: CRC Press,1983.
    [39]张兴祥,王馨,吴文建.相变材料胶囊制备与应用[M].北京:化学工业出版社,2009.
    [40]葛新石,龚堡,陆维德,等.太阳能工程-原理和应用[M].北京:学术期刊出版社,1988.
    [41] Lane G A, Glew D N, Clarke E C, et al. Heat of fusion systems for solar energystorage[C]//Proceedings of Workshop on Solar Energy Storage Subsystems forthe Heating and Cooling of Buildings. Charlottesville,1975:43-55.
    [42] Petri R J, Claar T D, Ong E T. High-temperature salt/ceramic thermal storagephase-change media[C]//Proceedings of Intersociety Energy ConversionEngineering Conference. Orlando,1983:1769-1774.
    [43] Petri R J, Ong E T. High temperature composite thermal storage system forindustrial application[C]//Proceedings of20th Energy Technology Conference.Washington D C,1985:1206-1222.
    [44] Claar T D, Ong E T, Petri R J. Composite salt/ceramic media for thermal energystorage applications[C]//Proceedings of the Seventeenth Intersociety EnergyConversion Engineering Conference. Los Angeles,1982:2043-2048.
    [45] Kedl R J, Stovall T K. Activities in support of the wax-impregnated wallboardconcept[R]. USA: Oak Ridge National Laboratory,1989.
    [46] Feldman D, Banu D, Hawes D. Low chain esters of stearic acid as phase changematerials for thermal energy storage in buildings[J]. Solar Energy Materials andSolar Cells,1995,36(3):311-322.
    [47] Athienitis A K, Liu C, Hawes D, et al. Investigation of the thermal performanceof a passive solar test-room with wall latent heat storage[J]. Building andEnvironment,1997,32(5):405-410.
    [48] Neeper D A. Thermal dynamics of wallboard with latent heat storage[J].SolarEnergy,2000,68(5):393-403.
    [49] Sari A, Kaygusuz K. Some fatty acids used for latent heat storage: thermalstability and corrosion of metals with respect to thermal cycling[J]. RenewableEnergy,2003,28(6):939-948.
    [50] Baran G, Sari A. Phase change and heat transfer characteristics of a eutecticmixture of palmitic and stearic acids as PCM in a latent heat storage system[J].Energy Conversion and Management,2003,44(20):3227-3246.
    [51] Sari A, Karaipekli A. Preparation and thermal properties of capric acid/palmiticacid eutectic as a phase change energy storage material[J]. Materials Letters,2008,62(6/7):903-906.
    [52] He B, Martin V, Fredrik S. Phase transition temperature ranges and storagedensity of paraffin wax phase change materials[J]. Energy,2004,29(11):1785-1804.
    [53] Hammou Z A, Lacriox M. A new PCM storage system for managingsimultaneously solar and electric energy[J]. Energy and Buildings,2006,36(3):258-265.
    [54] Teixeira A C T, Goncalves da Silva A M P S, Fernandes A C. Phase behaviour ofstearic acid–stearonitrile mixtures A thermodynamic study in bulk and at theair–water interface[J]. Chemistry and Physics of Lipids,2006,144(2):160-171.
    [55] Akgün M, Aydin O, Kaygusuz K. Experimental study on melting/solidificationcharacteristics of a paraffin as PCM[J]. Energy Conversion and Management,2007,48(2):669-678.
    [56] Shukla A, Buddhi D, Sawhney R L. Thermal cycling test of few selectedinorganic and organic phase change materials[J]. Renewable Energy,2008,33(12):2606-2614.
    [57] Ho C J, Gao J Y. Preparation and thermophysical properties ofnanoparticle-in-paraffin emulsion as phase change material[J]. InternationalCommunications in Heat and Mass Transfer,2009,36(5):467-470.
    [58] Kousksou T, Jamil A, Rhafiki T E, et al. Paraffin wax mixtures as phase changematerials[J]. Solar Energy Materials and Solar Cells,2010,94(12):2158-2165.
    [59] Aydin A A, Okutan H. High-chain fatty acid esters of myristyl alcohol with evencarbon number: Novel organic phase change materials for thermal energystorage-1[J]. Solar Energy Materials and Solar Cells,2011,95(10):2752-2762.
    [60] Aydin A A, Okutan H. High-chain fatty acid esters of myristyl alcohol with oddcarbon number: Novel organic phase change materials for thermal energystorage-2[J]. Solar Energy Materials and Solar Cells,2011,95(8):2417-2423.
    [61] Aydin A A, Okutan H. High-chain fatty acid esters of1-hexadecanol for lowtemperature thermal energy storage with phase change materials[J]. Solar EnergyMaterials and Solar Cells,2012,96(1):93-100.
    [62] Royon L, Guiffant, G. Investigation on heat transfer properties of slurry ofstabilized paraffin during a melting process[J]. Energy Conversion andManagement,2011,52(2):1073-1076.
    [63] Harikrishnan S, Kalaiselvam S. Preparation and thermal characteristics ofCuO–oleic acid nanofluids as a phase change material[J]. Thermochimica Acta,2012,533(10):46-55.
    [64]阮德水,张道圣,张太平,等.添加剂对三水合醋酸钠结晶速率的影响[J].华中师范大学学报,1989,23(1):60-63.
    [65]阮德水,张太平,张道圣,等.水合盐相变热长期贮存的研究[J].太阳能学报,1993,14(1):16-22.
    [66]阮德水,张太平,张道圣,等.相变贮存材料的DSC研究[J].太阳能学报,1994,15(1):19-24.
    [67]张曙光,多穷.西藏太阳能储热材料世界领先[J].科技文萃,1997(4):23-25.
    [68]马慈光,易昌练,张永,等.一种新型相变储热材料:中国,CN1357593A[P].2002-07-10.
    [69]丁益民,阎立诚,薛俊慧.水合盐储热材料的成核作用[J].化学物理学报,1996,9(1):83-86.
    [70]胡大为,胡小方,林丽莹.环氧树脂基含水定型相变材料[J].塑料工业,2006,34(5):63-65.
    [71]叶宏,葛新石,王军,等.定型相变材料及其制备方法:中国,CN1506434A[P].2002-12-07.
    [72]张仁元,柯秀芳,李爱菊.显热/潜热复合储能材料的研究[J].新能源,2000,22(12):29-31.
    [73]叶宏,葛新石.一种定形相变材料的结构和理化分析[J].太阳能学报,2000,21(4):417-421.
    [74]王海鸥,缪春燕,姚有为,等.相变储能材料研究进展[J].功能材料,2007,38(4):1577-1581.
    [75]肖力光,孙昊.相变储能材料的研究进展[J].吉林建筑工程学院学报,2010,27(1):1-6.
    [76]陈传福,潘增富.一种新型贮能材料的研制及其应用前景[J].中国空间科学技术,1995,15(5):31-36.
    [77]张正国,邵刚,方晓明.石蜡/膨胀石墨复合相变储热材料的研究[J].太阳能学报,2005,26(5):698-702.
    [78]于永生,井强山,孙雅倩.低温相变储能材料研究进展[J].化工进展,2010,29(5):896-900.
    [79]张晓行,宋健,冯荣秀.石蜡类复合定形相变材料及其制备方法:中国,CN101434832A[P].2009-05-20.
    [80]张寅平,王馨,林坤平,等.一种相变材料:中国,CA1460702A[P].2003-12-10.
    [81] Arkar C, Medved S. Free cooling of a building using PCM heat storageintegrated into the ventilation system[J]. Solar Energy,2007,81(9):1078-1087.
    [82] Farid M M, Khudhair A M, Razack S A K, et al. A review on phase changeenergy storage: materials and applications[J]. Energy Conversion andManagement,2004,45(9/10):1597-1615.
    [83] Regin A F, Solanki S C, Saini J S. Heat transfer characteristics of thermal energystorage system using PCM capsules: A review[J]. Renewable and SustainableEnergy Reviews,2008,12(9):2438-2458.
    [84] Fan L, Khodadadi J M. Thermal conductivity enhancement of phase changematerials for thermal energy storage: a review[J]. Renewable and SustainableEnergy Reviews,2011,15(1):24-46.
    [85] Kenisarin M, Mahkamov K. Solar energy storage using phase changematerials[J]. Renewable and Sustainable Energy Reviews,2007,11(9):1913-1965.
    [86] Jegadheeswaran S, Pohekar S D, Kousksou T. Exergy based performanceevaluation of latent heat thermal storage system: A review[J]. Renewable andSustainable Energy Reviews,2010,14(9):2580-2595.
    [87]湛立智,李素平,张正国,等.添加碳素复(混)合相变储热材料的研究及应用进展[J].化工进展,2007,26(12):1733-1737.
    [88] Alva L H, Gonzalez J E, Dukhan N. Initial analysis of PCM integrated solarcollectors[J]. Journal of Solar Energy Engineering,2006,128(5):173-177.
    [89] Xavier P, Olives R, Sylvain M. Paraffin/porous-graphite-matrix composite as ahigh and constant power thermal storage material[J]. International Journal ofHeat and Mass Transfer,2001,44(14):2727-2737.
    [90] Mettawee E B S, Assassa G M R. Thermal conductivity enhancement in a latentheat storage system[J]. Solar Energy,2007,81(7):839-845.
    [91] Karaipekli A, Sari A, Kaygusuz K. Thermal conductivity improvement of stearicacid using expanded graphite and carbon fiber for energy storage applications[J].Renewable Energy,2007,32(13):2201-2210.
    [92] Zhang Y, Ding J, Wang X, et al. Influence of additives on thermal conductivity ofshape-stabilized phase change material[J]. Solar Energy Materials and SolarCells,2006,90(11):1692-1702.
    [93]王永川.相变储热热泵热水器及其关键技术研究[D].杭州:浙江大学机械与能源工程学院,2006.
    [94]李晓燕.常规空调工况用相变材料的研制与应用基础研究[D].哈尔滨:哈尔滨工业大学市政环境工程学院,2009.
    [95] Wang J, Xie H, Xin Z. Thermal properties of paraffin based compositescontaining multi-walled carbon nanotubes[J]. Thermochimica Acta,2009,488(1):39-42.
    [96] Arasu A V, Mujumdar A S. Numerical study on melting of paraffin wax withAl2O3in a square enclosure[J]. International Communications in Heat and MassTransfer,2012,39(1):8-16.
    [97] Choi S U S, Zhang Z G, Yu W, et al. Anomalous thermal conductivityenhancement in nanotube suspensions[J]. Applied Physics Letters,2001,79(14):2252-2254.
    [98]吴淑英.纳米复合蓄热材料强化相变传热实验与数值模拟研究[D].广州:华南理工大学化学与化工学院,2010.
    [99]张仁元.相变材料与相变储能技术[M].北京:科学出版社,2009.
    [100]傅浩,欧阳东,宁博,等.相变储能建筑材料的最新研究进展[J].混凝土,2012,267(1):55-57.
    [101]王毅坚.相变蓄能材料在建筑节能中的应用[J].化学建材,2009,25(5):25-27.
    [102]施韬,孙伟.相变储能建筑材料的应用技术进展[J].硅酸盐学报,2008,36(7):1031-1036.
    [103] Shapiro M M, Feldman D, Hawes D, et al. PCM thermal storage in drywallusing organic phase change material[J]. Passive Solar Journal,1987,4(4):419-438.
    [104] Banu D, Feldman D, Haghighat F, et al. Energy-storing wallboard: flammabilitytests[J]. Journal of Materials in Civil Engineering,1998,10(2):98-105.
    [105] Hawes D W, Feldman D, Banu D. Latent heat storage in building materials[J].Energy and Buildings,1993,20(1):77-86.
    [106] Zhou D, Zhao C Y, Tian Y. Review on thermal energy storage with phasechange materials (PCMs) in building applications[J]. Applied Energy,2012,92(4):593-605.
    [107] Lv S, Feng G, Zhu N. Eutectic mixtures of capric acid and lauric acid applied inbuilding wallboards for heat energy storage[J]. Energy and Buildings,2006,38(6):708-711.
    [108] Lv S, Feng G, Zhu N, et al. Experimental study and evaluation of latent heatstorage in phase change materials wallboards[J]. Energy and Buildings,2007,39(10):1088-1091.
    [109] Lv S, Zhu N, Feng G. Impact of phase change wall room on indoor thermalenvironment in winter[J]. Energy and Buildings,2006,38(1):18-24.
    [110] Karaipekli A, Sari A. Capric–myristic acid/expanded perlite composite asform-stable phase change material for latent heat thermal energy storage[J].Renewable Energy,2008,33(12):2599-2605.
    [111] Karaipekli A, Sari A. Capric–myristic acid/vermiculite composite as form-stablephase change material for thermal energy storage[J]. Solar Energy,2009,83(3):323-332.
    [112]Sari A, Bi er A. Preparation and thermal energy storage properties of buildingmaterial-based composites as novel form-stable PCMs[J]. Energy andBuildings,2012,51(4):73-83.
    [113] Zhang D, Tian S, Xiao D. Experimental study on the phase change behavior ofphase change material confined in pores[J]. Solar Energy,2007,81(5):653-660.
    [114] Feldman D, Banu D, Hawes D W. Development and application of organicphase change mixtures in thermal storage gypsum wallboard[J]. Solar EnergyMaterials and Solar Cells,1995,36(2):147-157.
    [115] Fang X, Zhang Z. A novel montmorillonite-based composite phase changematerial and its applications in thermal storage building materials[J]. Energy andBuildings,2006,38(4):377-380.
    [116]郑立辉,宋光森,韦一良,等.石膏载体定形相变材料的制备及其热性能[J].新型建筑材料,2006,33(1):49-50.
    [117] Zhang Z, Fang X. Study on paraffin/expanded graphite composite phase changethermal energy storage material[J]. Energy Conversion and Management,2006,47(3):303-310.
    [118]张东,吴科如.多孔结构对有机相变物质相变行为的调节作用[J].同济大学学报,2007,32(9):1163-1167.
    [119] Hawlader M N A, Uddin M S, Zhu H J. Encapsulated phase change materialsfor thermal energy storage: experiments and simulation[J]. International Journalof Energy Research,2002,26(2):159-171.
    [120]杨帆,方贵银,邢琳.微胶囊相变蓄能技术研究现状与进展[J].制冷技术,2006,34(5):386-389.
    [121] Hawlader M N A, Uddin M S, Khin M M. Microencapsulated PCMthermal-energy storage system[J]. Applied Energy,2003,74(1):195-202.
    [122] Cho J S, Kwon A, Cho C G. Microencapsulation of octadecane as aphase-change material by interfacial polymerization in an emulsion system[J].Colloid and Polymer Science,2002,280(3):260-266.
    [123]王学晨,张兴祥,张晓春,等.PH值对正十八烷微胶囊合成与性能的影响[J].应用化学,2005,22(9):942-945.
    [124] Sari A, Alkan C, Karaipekli A. Preparation, characterization and thermalproperties of PMMA/n-heptadecane microcapsules as novel solid–liquidmicroPCM for thermal energy storage[J]. Applied Energy,2010,87(5):1529-1534.
    [125] Ni P, Zhang M, Yan N. Effect of operating variables and monomers on theformation of polyurea microcapsules[J]. Journal of Membrane Science,1995,103(1):51-55.
    [126] Bayés-García L, VentolàL, Cordobilla R, et al. Phase change materials (PCM)microcapsules with different shell compositions: preparation, characterizationand thermal stability[J]. Solar Energy Materials and Solar Cells,2010,94(7):1235-1240.
    [127] Su J F, Wang L X, Ren L. Synthesis of polyurethane microPCMs containingn-octadecane by interfacial polycondensation: Influence of styrene-maleicanhydride as a surfactant[J]. Colloids and Surfaces A: Physicochemical andEngineering Aspects,2007,299(1):268-275.
    [128]王立新,苏峻峰,任丽.一种蜜胺树脂为壁材的相变储热微胶囊致密性研究[J].精细化工,2003,20(12):705-708.
    [129] Inaba H, Tu P. Evaluation of thermophysical characteristics on shape-stabilizedparaffin as a solid-liquid phase change material[J]. Heat and Mass Transfer,1997,32(4):307-312.
    [130] Ye H, Ge X S. Preparation of polyethylene–paraffin compound as a form-stablesolid-liquid phase change material[J]. Solar Energy Materials and Solar Cells,2000,64(1):37-44.
    [131] Kaygusuz A S K. Thermal energy storage system using some fatty acids aslatent heat energy storage materials[J]. Energy Sources,2001,23(3):275-285.
    [132] Sari A, Kaygusuz K. Studies on poly (vinyl chloride)/fatty acid blends asshape-stabilized phase change material for latent heat thermal energy storage[J].Indian Journal of Engineering and Materials Sciences,2006,13(3):253-258.
    [133] Zhang Y P, Lin K P, Yang R, et al. Preparation, thermal performance andapplication of shape-stabilized PCM in energy efficient buildings[J]. Energy andBuildings,2006,38(10):1262-1269.
    [134]王澜,李鑫,赵子,等.聚烯烃石蜡复合相变储能材料的研究[J].中国塑料,2008,22(4):25-27.
    [135]张贵锋,黄昊.固态相变原理及应用[M].北京:冶金工业出版社,2011.
    [136]王晓颖.非均质材料控制加热过程的组织演变与熔化行为[D].西安:西北工业大学材料科学与工程系,2003.
    [137] Tzimas E, Zavaliangos A. Evolution of near-equiaxed microstructure in thesemisolid state[J]. Materials Science and Engineering: A,2000,289(1):228-240.
    [138] Ludwig A, Schadt R, Sahm P R. In-situ observation of cellular growth underrapid solidification conditions[J]. Materials Science and Engineering: A,1997,228(6):124-128.
    [139]宫秀敏.相变理论基础及应用[M].武汉:武汉理工大学出版社,2004.
    [140]张联盟,黄学辉,宋晓岚.材料科学基础[M].武汉:武汉理工大学出版社,2004.
    [141]方维平,陈秉辉.广义相变[M].厦门:厦门大学出版社,2010.
    [142]张均林,严彪,王德平,等.材料科学基础[M].北京:化学工业出版社,2006.
    [143] Jackson K A. Progress in solid state chemistry[M]. New York: Pergamon Press,1967.
    [144] Jackson K A. Nucleation phenomena[M].Washington: American ChemicalSociety,1965.
    [145] Crank J. Free and moving boundary problems[M]. Oxford: Clarendon Press,1984.
    [146]奥齐西克,俞昌铭译.热传导[M].北京:高等教育出版社,1983.
    [147] Peippo K, Kauranen P, Lund P D. A multicomponent PCM wall optimized forpassive solar heating[J]. Energy and Buildings,1991,17(4):259-270.
    [148]刘宇宁.复合相变蓄热墙体应用于北方住宅建筑的节能特性研究[D].北京:北京工业大学,2007.
    [149] Felix R A, Solanki S C, Saini J S. An analysis of a packed bed latent heatthermal energy storage system using PCM capsules: Numerical investigation[J].Renewable Energy,2009,34(7):1765-1773.
    [150] Fang M, Chen G. Effects of different multiple PCMs on the performance of alatent thermal energy storage system[J]. Applied Thermal Engineering,2007,27(5):994-1000.
    [151]叶宏,何汉峰,葛新石,等.利用焓法和有效热容法对定形相变材料熔解过程分析的比较研究[J].太阳能学报,2004,25(4):488-491.
    [152]王勇,赵庆珠.冰蓄冷系统的优化控制分析[J].暖通空调,1996,26(3):3-6.
    [153]方贵银.蓄冷空调工程使用技术[M].北京:人民邮电出版社,2005.
    [154]方贵银,邢琳,杨帆.蓄冷空调技术的现状及发展趋势[J].制冷与空调,2006,6(1):1-5.
    [155]闫全英,王威,于丹.相变储能材料应用于建筑围护结构中的研究[J].材料导报,2005,19(8):102-105.
    [156] Stritih U, Butala V. Energy saving in building with PCM cold storage[J].International Journal of Energy Research,2007,31(15):1532–1544.
    [157]沈学忠,张仁元.相变储能材料的研究和应用[J].节能技术,2006,24(5):460-463.
    [158] Voelker C, Kornadt O, Ostry M. Temperature reduction due to the applicationof phase change materials[J]. Energy and Buildings,2008,40(5):937-944.
    [159] Kousksou T, Bruel P, Cherreau G, et al. PCM storage for solar DHW, from anunfulfilled promise to a real benefit[J]. Solar Energy,2011,85(9):2033-2040.
    [160] Varol Y, Koca A, Oztop H, et al. Forecasting of thermal energy storageperformance of Phase Change Material in a solar collector using soft computingtechniques[J]. Expert Systems with Applications,2010,37(4):2724-2732.
    [161] Al-Hinti I, Al-Ghandoor A, Maaly A, et al. Experimental investigation on theuse of water-phase change material storage in conventional solar water heatingsystems[J]. Energy Conversion and Management,2010,51(8):1735-1740.
    [162] Sarier N, Onder E. Organic phase change materials and their textileapplications,An overview[J]. Thermochimica Acta,2012,540(20):7-60.
    [163] Zuo J, Li W, Weng L. Thermal properties of lauric acid/1-tetradecanol binarysystem for energy storage[J]. Applied Thermal Engineering,2011,31(6):1352-1355.
    [164] Zuo J, Li W, Weng L. Thermal performance of caprylic acid/1-dodecanoleutectic mixture as phase change material (PCM)[J]. Energy and Buildings,2011,43(1):207-210.
    [165] Canik G, Alkan C. Hexamethylene dilauroyl, dimyristoyl, and dipalmytoylamides as phase change materials for thermal energy storage[J]. Solar Energy,2010,84(4):666-672.
    [166] Carreto L, Almeida A R, Fernandes A C, et al. Thermotropic mesomorphism ofa model system for the plant epicuticular wax layer[J]. Biophysical Journal,2002,82(1):530-540.
    [167] Dimaano M N R,Watanabe T. Performance investigation of the capric andlauric acid mixture as latent heat energy storage for a cooling system[J]. SolarEnergy,2002,72(3):205-215.
    [168]张寅平,苏跃红,葛新石.准共晶系相变材料融点及融解热的理论预测[J].中国科学技术大学学报,1995,25(4):474-478.
    [169] Gandolfo F G, Bot A, Floter E. Phase diagram of mixtures of stearic acid andstearyl alcohol[J]. Thermochim Acta,2003,404(1/2):9-17.
    [170]王越.空调系统冷凝热回收石蜡基相变材料的实验研究[J].流体机械,2004,32(10):57-59.
    [171]张林.脂肪酸混合物的配制及其定形相变墙体的实验研究[D].北京:北京建筑工程学院,2010.
    [172]卢柯,生红卫,金朝晖.晶体的熔化和过热[J].材料研究学报,2009,11(6):658-665.
    [173] Zhang X, Fan Y, Tao X, et al. Crystallization and prevention of supercooling ofmicroencapsulated n-alkanes[J]. Journal of Colloid and Interface Science,2005,281(2):299-306.
    [174] Fan Y F, Zhang X X, Wang X C, et al. Super-cooling prevention ofmicroencapsulated phase change material[J]. Thermochimica Acta,2004,413(1):1-6.
    [175]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T24513.1-2009金属和合金的腐蚀[S].北京:中国标准出版社,2010.
    [176]左景伊.腐蚀数据手册[M].北京:化学工业出版社,1982.
    [177]中国气象局.天气预报[EB/OL].http://www.cma.gov.cn/2011qxfw/2011qtqyb/.html.2011-09-30.
    [178]中华人民共和国建设部.GB50176-93民用建筑热工设计规范[S].北京:中国计划出版社,1993.
    [179] Diaconu B, Cruceru M. Novel concept of composite phase change material wallsystem for year-round thermal energy savings[J]. Energy and Buildings,2010,42(10):1759-1772.
    [180] Zukowski M. Mathematical modeling and numerical simulation of a short termthermal energy storage system using phase change material for heatingapplications[J]. Energy Conversion and Management,2007,48(1):155-165.
    [181] Pasupathy A, Athanasius L, Velraj R, et al. Experimental investigation andnumerical simulation analysis on the thermal performance of a building roofincorporating phase change material (PCM) for thermal management[J]. AppliedThermal Engineering,2008,28(5):556-565.
    [182] Koo J, So H, Hong S W, et al. Effects of wallboard design parameters on thethermal storage in buildings[J]. Energy and Buildings,2011,43(8):1947-1951.
    [183]朱令宇,李永杰,张蒙生,等. Bland-Altman法在烟草测量仪器一致性评价中的应用[J].中国仪器仪表,2009(5):82-84.
    [184] Eken C. Bland-Altman analysis for determining agreement between twomethods[J]. The Journal of Emergency Medicine,2009,36(3):307-310.
    [185] Bland J M, Altman D G. Measuring agreement in method comparison studies[J].Statistical Methods in Medical Research,1999,8(2):135-160.
    [186]陈卉. Bland-Altman分析在临床测量方法一致性评价中的应用[J].中国卫生统计,2009,24(3):308-315.
    [187] Bland J M, Altman D G. Statistical methods for assessing agreement between
    two methods of clinical measurement[J]. The Lancet,1986,327(8):307-310.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700