用户名: 密码: 验证码:
工业滤布抗污染动态膜的制备、表征及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜生物反应器(Membrane Bio-Reactors,MBRs)是污水处理和中水回用领域最有前途的工艺。它把膜分离过程与生物降解结合起来,取得高效的固液分离和出水效果。然而,膜组件昂贵的价格和其运行过程中难以控制的膜污染现象,导致MBR的投资和运行费用增加,最终限制了该技术的广泛应用。因此研究制备廉价的高抗污染性能的过滤膜对MBR在我国的推广应用具有重要的意义。近年,利用具有一定特性的颗粒物质在廉价的大孔径过滤介质的表面和内部形成动态膜的技术成为该研究的热点。
     本研究利用廉价易得的工业滤布作为膜基质,形成多种抗污染预涂动态膜,并对它们的制备、表征和性能进行了深入研究,同时利用气泡与平板的作用模型对平板膜组件的外形结构进行优化设计。
     首先,利用平均粒径为22.8μm的粉末活性炭(Powder Activated Carbon,PAC)作为预涂剂,在工业滤布表面形成预涂PAC动态膜。通过清水过滤和标准浊度溶液的截留实验,考察不同厚度PAC动态膜清水阻力和截留能力的变化,结果表明预涂PAC动态膜属于滤饼过滤型动态膜,其最佳厚度为0.3±0.05 mm。但是,浸没式膜生物反应器(Submerged Membrane Bio-Reactor,SMBR)中由下方曝气产生的膜面剪切作用能够在一定程度上破坏滤饼过滤型动态膜的稳定运行,研究发现MLSS低于8000 mg·L~(-1)时的活性污泥混合液可以近似看作牛顿流体,试验证明利用湍流边界层理论计算滤饼过滤型动态膜的稳定曝气量的实用性,因此PAC动态膜在SMBR中的稳定运行采用由供氧曝气量逐渐调节到稳定曝气量的操作方式。
     通过预涂PAC动态膜与自生生物动态膜(Self-Forming Dynamic Membrane,SFDM),以及中空纤维膜(Hollow Fiber Membrane,HFM)组成的SMBR系统在处理模拟生活污水的对比试验,发现PAC动态膜具备较好的性能,其操作压力在43天内上升到42 kPa,出水效果和中空纤维膜相当,COD和氨氮的去除率分别为97.1%和76.1%。污染后的PAC动态膜只需进行干燥处理即可脱落,进行再生,无需消耗化学试剂,特别是PAC动态膜的造价不超过每平方米25元的价格优势,能保证其在实际应用中的潜力。另外,如果利用具有强负电性的阴离子表面活性剂或具有强亲水性的SiO_2和TiO_2等物质进一步吸附在预涂PAC动态膜表面和内部,将会取得更优质的运行效果。
     其次,本论文针对导致膜污染主要物质溶解性有机物(Soluble Microbial Products,SMP)和胞外聚合物(Extracellular Polymeric Substances,EPS)所具有的高疏水性和高电负性,制备一种新型的预涂剂——聚乙烯醇微球(Poly-Vinyl Alcohol Microsohere,PVA-MS)。通过PVA和戊二醛乳化交联所制备的PVA-MS具有良好的分散性,平均粒径为1.2±0.1μm。通过红外光谱分析和Zeta-电位测量结果发现PVA-MS表面富含羟基,具有很强的亲水性和电负性,其Zeta-电位受PH值得影响明显,在pH=11时最小为-87.25mV。
     随后,分别利用静电自组装和过滤预涂的方法在工业滤布表面和内部制备对称无滤饼标准型、不对称标准过滤型、对称完全堵塞型三种类型的PVA-MS动态膜。静态亲水接触角的测量证明PVA-MS动态膜均具有较好的亲水性,它们的清水过滤阻力分别为1.02×10~(10)m~(-1)、2.76×10~(10)m~(-1)、1.07×10~(11)m~(-1),三种PVA-MS动态膜在浓度0.01 mol·L~(-1)的KCl电解质溶液中测量的相对流动电位分别为-26.2 mV、-35.3 mV、-65.1 mV。无滤饼标准型、标准过滤型以及完全堵塞型PVA-MS动态膜对上清液浊度为21.34NTU的截留率分别为78%、93.7%、98.9%,对上清液TOC为17.1 mg·L~(-1)的截留率分别为6.56%,37.16%,48.63%。
     对工业滤布以及三种PVA-MS动态膜不可逆污染的再生性能研究表明,化学清洗法均能完全去除膜的不可逆污染,物理反冲洗的效果随着PVA-MS预涂量的增加得到不断改善。综合对比,自组装和完全堵塞型PVA-MS动态膜显示出一定的竞争优势,前者利用化学清洗后能维持大部分PVA-MS的存在,可以经历多次运行清洗周期后再生,后者仅利用物理反冲洗即可去除不可逆膜污染,经再次预涂后即可应用。
     最后,对目前广泛应用的平板膜竖直结构提出改进,设计具有一定的倾斜角度θ的梯型平板膜结构,使其在保持膜面附近气泡错流速度的同时增加气泡与膜面弹性碰撞的强度与次数,提高曝气减缓膜污染的效率。通过对Vries建立的气泡与竖直平板相互碰撞的数学模型进行改进,利用计算机迭代运算技术得到不同曝气条件下的最佳倾斜角度θ。结合SMBR的实际应用,对膜组件和曝气的最佳设计方案如下:梯形膜组件间间隔为10~15mm,曝气位置为组件间5~7 mm,梯型膜设计角度在1.7°~2.5°之间。
     竖直结构和梯型结构的自组装PVA-MS动态膜组件在同一SMBR反应器中,同一曝气强度下的对比试验证实,梯型膜能够有效的控制膜表面的滤饼层污染,防止由于压力升高引起的滤饼层压缩和由于膜面缺氧而引起的阻力急速上升。但是活性污泥发生膨胀引起的沉降性变差和运动学粘度变化过大,将会使气泡及其尾流与膜面作用的消弱,导致膜阻力的急速上升。梯型组装PVA-MS动态膜组件保持通量在18.6 L·m~(-2)·h~(-1)下运行的120 d内压力仅上升到0.01 MPa,出水浊度约为1.34 NTU,COD,氨氮的去除率分别为90%和91.5%。
Membrane bioreactors(MBRs) are the most promising processes used for wastewater treatment and water reclamation.The membrane filtration used in the bioreactor can retain the sludge flocs,and then improve the effluent quality significantly.However,the high cost of membranes and the severe fouling has been demonstrated as the major obstacle for the widespread application of MBRs.Therefore,development of anti-fouling and low-cost filtration medium is of great significance for the wide application of MBRs,especially in the developing countries.Recent years,precoating the low-coat filtration medium(i.e., non-woven,mesh and filter cloth) by using some special particles(i.e.,powder activated carbon) has been proved as an interesting and potential alternative for MBRs.
     The powder activated carbon(PAC) with particle size of 22.8μm was used as precoating reageat to develop a dynamic membrane on the commercially used filter cloth.The impacts of the developed dynamic membrane thickness on membrane resistance and rejection ability were studied by measuring the distilled water permeation and the rejection of standard turbidity solution.The results indicate that the optimum thickness of the precoated PAC daynamic membrane was determined to be 0.3±0.05 mm.But,it was found that the aeration used in the submerged MBR could damage the precoated PAC dynamic membrane.As MLSS was lower than 8000 mg·L~(-1),the activated sludge suspension featured non-newtonian fluid.In addition,according to the theory of boundary layer,the steady aeration intensity was estimated and optimized in this study.The results indicate that the optimized aeration intensity can guarantee the steady and sustainable operation of the precoated dynamic membrane bioreactor.
     Compared with self-forming dynamic membrane and hollow fiber membrane,it was found that the precoated dynamic membrane(PDM) could keep high permeation,the TMP of PDM rose up to 42 kPa after 43 days of the stable operation of PDMBR,and the removal efficiency of effluent COD(97.09%) and NH_4~+-N(76.13%) were as good as traditional hollow membrane bioreactor(THFMBR).Furthermore,the flux of the fouled membrane could recover totally just after being cleaned by brushing,and it didn't consume any chemical reagent.Moreover,it was also found that PDM could prevent the biomass contaminations diffusing from the surface to the internal.The application of filter cloth is much attractive since it commercial price is only 25 RMB per square meter.Lastly,the PAC precoated filter cloth will become a more and more reliable and cost-saving when some more hydrophilic substances(i.e.,YiO2,SiO2) can be introduced into PAC precoated filter cloth.
     Since the major membrane foulants of EPS/SMP featured higher hydrophobicity and negative charge,a novel coating reagent,polyvinyl alcohol microsphere(PVA-MS),was prepared and was coated onto the surface of filter cloth.The PVA-MS was prepared by PVA and glutaraldehyde after acetal reaction.The PVA-MS prepared featured an excellent dispersal with a mean particle size of 1.2±0.1μm.The analysis of FTIR and zeta potential shows that the PVA-MS had several solar groups and behaved negative charge.It also was found that the pH value had significant influence on zeta potential and at pH=11 there was a lowest zeta potential of-87.25 mV.
     Subsequently,Three dynamic membranes of symmetric Standard blockage filtration type without filter cake、asymmetric Standard blockage filtration type、symmetric full blockage filtration type were prepared successfully by using self-assembly coating and pre-coating methods.It shows that the water contact angle of the coated PVA-MS membrane was determined as 0,and their filtration resistances were calculated to be 1.02×10~(10) m~(-1)、2.76×10~(10) m~(-1)、1.07×10~(11) m~(-1).The zeta potential of the dynamic membrane prepared was also monitored by measuring streaming potential with 0.01 mol·L~(-1) KCl solution,and the zeta potentials were calculated to be -26.2 mV,-35.3 mV and -65.1 mV after corrected with membrane resistance. The coated PVA-MS on the filter cloth was found to be effective in the rejection of small particles.The symmetric Standard blockage filtration type without filter cake、asymmetric Standard blockage filtration type、symmetric full blockage filtration type could reject 78%, 93.7%and 98.9%turbidity of the sludge supernatant with 21.34 NTU.Their rejection abilityes on TOC were 6.56%,37.16%and 48.63%,respectively,when the sludge supernatant with 18.3 mg·L~(-1) TOC was filtered.
     The results suggest that chemical cleaning can eliminate the irreversible fouling of uncoated filter cloth,self-assembly coated filter cloth and pre-coated cloth filter.The efficiency of physical cleaning would increase with increasing coated MS on the filter cloth. By comparing,the self-assembly coated MS are not readily shatter even after frequent chemical cleaning;however,regarding the pre-coated MS,physical cleaning could eliminate the irreversible fouling completely,but it needs a repeated precoating to maintain the MS layer on the surface of the filter cloth.
     The cross flow shear stress induced by aeration is an effective approach to control membrane fouling.In this study,a novel flat sheet membrane module,ladder-type flat membrane structure,was developed.In this way,the aeration bubbles near the membrane surface can be held,at the same time the intensity and times of elastic collision between bubbles and membrane surface will be increased.According to the mathematics model of collision between bubble and vertical flat developed by Vries,the inclination angle of the ladder-type was calculated and optimized by using computer iterative calculation technology. In view of the real application of SMBR,the design of membrane and aeration was optimized as following:the interval distance of membrane modules is 8~15 mm,and aeration will be operated at 5~7 mm among membrane modules,besides the optimal design angle of trapeziform membrane is 1.7°~2.5°.
     To confirm the role of ladder-type flat membrane structure in fouling control,a vertical and a ladder-type flat PVA-MS module were submerged in the bioreactor and operated in parallel.By comparing,it confirms that the ladder-type flat module can control membrane fouling effectively,but after long-term operation the TMP increased suddenly due to the compress of the cake layer.The effluent quality of ladder-type PVA-MS module was determined as turbidity 1.34 NTU,and the removal efficiency of effluent COD and NH_4~+-N were 90%and 91.5%respectively.
引文
[1]Marrot B,Barrios-Martinez A,Moulin P et al.Industrial wastewater treatment in a membrane bioreactor:A review.Environmental Progress,2004,23(1):59-74.
    [2]Adham S,Gagliardo P,Boulos L et al.Feasibility of the membrane bioreactor process for water reclamation.Water Science and Technology,2001,43(10):203-209.
    [3]Scott C,Olier C,Lamande A et al.Structural evolution of co-deposited Zn-Cr coatings produced by vacuum evaporation.Thin Solid Films,2003.436(2):232-237.
    [4]魏源送,樊耀波.废水处理中污泥减量技术的研究及应用.中国给水排水,2000,17(7):23-26.
    [5]刘锦霞,顾平.膜生物反应器脱氮除磷工艺的研究进展.城市环境与城市生态,2001,14(2):27-29.
    [6]Le-Clech P,Jefferson B and Judd S J.Impact of aeration,solids concentration and membrane characteristics on the hydraulic performance of a membrane bioreactor.Journal of Membrane Science,2003,218(1-2):117.
    [7]樊耀波,王菊思.水与废水处理中的膜生物反应器技术.环境科学,1995,16(5):79-81.
    [8]顾国维,何义亮.膜生物反应器-在污水处理中的研究与应用.北京:化学工业出版社(第一版),2002.
    [9]郑祥,朱小龙,张绍园等.膜生物反应器在水处理中的研究及应用.环境污染治理技术与设备,2000,1(5):12-19.
    [10]http://www.mbr-network.eu/.
    [11]Lesjean B,Gnirss R and Adam C.Process configurations adapted to membrane bioreactors for enhanced biological phosphorous and nitrogen removal.Desalination,2002,149(1-3):217-224.
    [12]Miyahara T,Tsuchiya K and Fan L S.Wake properties of a single gas bubble in a three-dimensional liquid-solid fluidised bed Int.J.Multiphase Flow,1988,41:749-763.
    [13]Yang W,Cicek N and Ilg J.State-of-the-art of membrane bioreactors:Worldwide research and commercial applications in North America.Journal of Membrane Science,2006,270(1-2):201-211.
    [14]刑传宏,T.E,钱易.无机膜生物反应器处理生活污水试验研究.环境科学,1997,18(3):1-4.
    [15]李红兵,顾国维,谢维民.中空纤维膜生物反应器处理生活污水的特性.环境科学,1999,20(2):53-56.
    [16]顾平,周丹,杨造燕.应用膜生物反应器处理生活污水的研究.中国给水排水,1998,14(5):6-8.
    [17]邹连沛,王宝贞,迟军等.膜生物反应器处理污水性能的研究.哈尔滨建筑大学学报,2001,34(2):57-60.
    [18]樊耀波,王菊思,姜兆春.膜生物反应器净化石油化工污水的研究.环境科学学报,1997,17(1):68-74.
    [19]张捍民,张兴文,杨风林等.宾馆污水及蒸汽冷凝水的再生回用工程.中国给水排水,2003,19(2):72-74
    [20]Scholz W G,Roug P,Bialo A et al.Desalination of mixed tannery effluent with membrane bioreactor and reverse osmosis treatment.Environmental Science and Technology,2005,39(21):8505-8512.
    [21]Qin J J,Kekre K A,Tao G et al.New option of MBR-RO process for production of NEWater from domestic sewage.Journal of Membrane Science,2006,272(1-2):70-77.
    [22] Chen T K and Chen J N. Combined membrane bioreactor (MBR) and reverse osmosis (RO) system for thin-film transistor - Liquid crystal display TFT-LCD, industrial wastewater recycling. Water Science and Technology, 2004, 50(2): 99-106.
    [23] Chen T K, Ni C H, Chan Y C et al. MBR/RO/ozone processes for TFT-LCD industrial wastewater treatment and recycling. Water Science and Technology, 2005, 51(6-7): 411-419.
    [24] Comerton A M, Andrews R C and Bagley D M. Evaluation of an MBR-RO system to produce high quality reuse water: Microbial control, DBP formation and nitrate. Water Research, 2005, 39(16): 3982.
    [25] Khoo C G L, Frantzich S, Rosinski A et al. Oral gingival delivery systems from chitosan blends with hydrophilic polymers. European Journal of Pharmaceutics and Biopharmaceutics, 2003, 55(1): 47-56.
    [26] Lee J, Ann W-Y and Lee C-H. Comparison of the filtration characteristics between attached and suspended growth microorganisms in submerged membrane bioreactor. Water Research, 2001, 35(10): 2435-2445.
    [27] Klatt C G and LaPara T M. Aerobic biological treatment of synthetic municipal wastewater in membrane-coupled bioreactors. Biotechnology and Bioengineering, 2003, 82(3): 313.
    [28] Kraume M, Bracklow U, Vocks M et al. Nutrients removal in MBRs for municipal wastewater treatment. Water Science and Technology, 2005, 51(6-7): 391.
    [29] Meng F, Zhang H, Yang F et al. Effect of filamentous bacteria on membrane fouling in submerged membrane bioreactor. Journal of Membrane Science, 2006, 272(1-2): 161.
    [30] Buttiglieri G, Malpei F, Daverio E et al. Denitrification of drinking water sources by advanced biological treatment using a membrane bioreactor. Desalination, 2005, 178(1-3): 211-218.
    [31] Ergas S J and Rheinheimer D E. Drinking water denitrification using a membrane bioreactor. Water Research, 2004, 38(14-15): 3225-3232.
    [32] Crespo J G, Velizarov S and Reis M A. Membrane bioreactors for the removal of anionic micropollutants from drinking water. Current Opinion in Biotechnology, 2004, 15(5): 463.
    [33] Chang I L and Lee D J. Ternary expression stage in biological sludge dewatering. Water Research, 1998, 32(3): 905-914.
    [34] Wasik E, Bohdziewicz J and Blaszczyk M. Removal of nitrates from ground water by a hybrid process of biological denitrification and microfiltration membrane. Process Biochemistry, 2001, 37(1): 57-64.
    [35] Wasik E, Bohdziewicz J and Blaszczyk M. Removal of nitrate ions from natural water using a membrane bioreactor. Separation and Purification Technology, 2001, 22-23: 383-392.
    [36] Reemtsma T, Zywicki B, Stueber M et al. Removal of sulfur-organic polar micropollutants in a membrane bioreactor treating industrial wastewater. Environmental Science and Technology, 2002, 36(5): 1102-1106.
    [37] Alvarez-Vazquez H, Jefferson B and Judd S J. Membrane bioreactors vs conventional biological treatment of landfill leachate: A brief review. Journal of Chemical Technology and Biotechnology, 2004, 79(10): 1043.
    [38] Setiadi T and Fairus S. Hazardous waste landfill leachate treatment using an activated sludge-membrane system. Water Science and Technology, 2003,48(8): 111.
    [39] Ahn K H, Song K G, Cho E et al. Enhanced biological phosphorus and nitrogen removal using a sequencing anoxic/anaerobic membrane bioreactor (SAM) process. Desalination, 2003, 157(1-3): 345-352.
    [40]Fuchs W,Resch C,Kernstock M et al.Influence of operational conditions on the performance of a mesh filter activated sludge process.Water Research,2005,39(5):803-810.
    [41]Quintana J B,Weiss S and Reemtsma T.Pathways and metabolites of microbial degradation of selected acidic pharmaceutical and their occurrence in municipal wastewater treated by a membrane bioreactor.Water Research,2005,39(12):2654.
    [42]Wintgens T,Gallenkemper M and Melin T.Occurrence and removal of endocrine disrupters in landfill leachate treatment plants.Water Science and Technology,2003,48(3):127-134.
    [43]Wintgens T,Gallenkemper M and Melin T.Removal of endocrine disrupting compounds with membrane processes in wastewater treatment and reuse.Water Science and Technology,2004,50(5):1.
    [44]Gander M,Jefferson B and Judd S.Aerobic MBRs for domestic wastewater treatment:a review with cost considerations.Separation and Purification Technology,2000,18(2):119-130.
    [45]Chang S C,Rawson K and McNeil C J.Disposable tyrosinase-peroxidase bi-enzyme sensor for amperometric detection of phenols.Biosensors and Bioelectronics,2002,17(11-12):1015-1023.
    [46]徐志成,邓新华,孙元等.PE非织物亲水性改型的研究.天津工业大学学报,2007,26(3):51-53.
    [47]郭红霞,王平,陈翠仙等.超高分子量聚乙烯微孔膜的亲水改性研究(Ⅱ)改性UHMWPE微孔滤膜的性质及其过滤性能.膜科学与技术,2003,10:76-83.
    [48]万红,孙诗兵,田英良等.定形相变材料的表面亲水改性研究.化学建材,2005,21(4):49-51.
    [49]孙剑,黄健,王晓琳.聚乙烯二醇树脂在聚乙烯膜材料表面的自组装及亲水改性.南京工业大学学报(自然科学版),2007,29(2):1-5.
    [50]Van Baelen D,Van Der Bruggen B,Van Den Dungen K et al.Pervaporation of water-alcoho mixtures and acetic acid-water mixtures.Chemical Engineering Science,2005,60(6):1583-1590.
    [51]Bae T-H,Kim I-C and Tak T-M.Preparation and characterization of fouling-resistant TiO2self-assembled nanocomposite membranes.Journal of Membrane Science,2006,275(1-2):1-5.
    [52]Cai B,Ye H and Yu L.Preparation and separation performance of a dynamically formed MnO2membrane.Desalination,2000,128(3):247-256.
    [53]K.iso Y,Jung Y J,Ichinari T et al.Wastewater treatment performance of a filtration bio-reactor equipped with a mesh as a filter material.Water Research,2000,34(17):4143-4150.
    [54]Liang Z,Feng Y,Meng S et al.Preparation of glutaraldehyde cross-linked chitosan beads under microwave irradiation and properties of urease immobilized onto the beads.Transactions of Tianjin University,2005,11(2):79-84.
    [55]Seo G T,Moon B H,Lee T S et al.Non-woven fabric filter separation activated sludge reactor for domestic wastewater reclamation.Water Science and Technology,2003,47(1):133-138.
    [56]Song K C,Lee H S,Choung I Y et al.The effect of type of organic phase solvents on the particle size of poly(d,l-lactide-co-glycolide) nanoparticles.Colloids and Surfaces A:Physicochemical and Engineering Aspects,2006,276(1-3):162-167.
    [57]蔡邦肖,Quang Trong N,Pierre S等.纤维素酯膜的有机物渗透性.水处理技术,2003,29(1):15-18.
    [58]Defrance L and Jafffrin M Y.Reversibility of fouling formed in activated sludge filtration.Journal of Membrane Science,1999,157(1):73-84.
    [59]Defrance L and Jaffrin M Y.Comparison between filtrations at fixed transmembrane pressure and fixed permeate flux:Application to a membrane bioreactor used for wastewater treatment.Journal of Membrane Science,1999,152(2):203-210.
    [60]黄霞,桂萍,范晓军等.膜生物反应器废水处理工艺的研究进展.环境科学研究,1998,11(1):40-44.
    [61]Harada K,Kushida M,Miyakawa S et al.Control of photo and thermal decomposition of diazo/PVA and diazo/PVAc resist with inclusion compounds.Journal of Photopolymer Science and Technology,2005,18(2):187-192.
    [62]Lee S and Lueptow R M.Experimental verification of a model for rotating reverse osmosis.Desalination,2002,146(1-3):353-359.
    [63]Wen Z and Zheng J Q.Directional guidance of nerve growth cones.Current Opinion in Neurobiology,2006,16(1):52-58.
    [64]Bouhabila E H,Ai?m R B and Buisson H.Microfiltration of activated sludge using submerged membrane with air bubbling(application to wastewater treatment).Desalination,1998,118(1-3):315-322.
    [65]孟凡刚.膜生物反应器膜污染行为的识别与表征:(博士学位论文)辽宁:大连理工大学,2007:102-109.
    [66]Hong S P,Bae T H,Tak T M et al.Fouling control in activated sludge submerged hollow fiber membrane bioreactors.Desalination,2002,143(3):219-228.
    [67]Tsugoshi T,Nagaoka T,Hino K et al.Evolved gas analysis-mass spectrometry using skimmer interface and ion attachment mass spectrometry.Journal of Thermal Analysis and Calorimetry,2005,80(3):787-789.
    [68]Houghton J I,Quarmby J and Stephenson T.Municipal wastewater sludge dewaterability and the presence of microbial extracellular polymer.Water Science and Technology,2001,44(2-3):373.
    [69]Lee S and Lueptow R M.Control of scale formation in reverse osmosis by membrane rotation.Desalination,2003,155(2):131-139.
    [70]刘燕,王越兴,莫华娟等.有机底物对活性污泥胞外聚合物的影响.环境化学,2004,(03):23-28.
    [71]周健,柴宏祥,龙腾锐.活性污泥曝外聚合物EPS的影响因素研究.给水排水,2005,31(8):19-23.
    [72]Zhang S,Yang F,Liu Y et al.Performance of a metallic membrane bioreactor treating simulated distillery wastewater at temperatures of 30 to 45[deg]C.Desalination,2006,194(1-3):146-155.
    [73]布多,张颖,顾平.氯化铁絮凝法减轻膜污染.城市环境与城市生态,2003,16(06):46-48.
    [74]Lee J C,Kim J S,Kang I J et al.Potential and limitations of alum or zeolite addition to improve the performance of a submerged membrane bioreactor.Water Science and Technology,2001,43(11):59-66.
    [75]Kim I S and Jang N.The effect of calcium on the membrane biofouling in the membrane bioreactor (MBR).Water Research,2006,40(14):2756-2764.
    [76]Mareiknowsky A E.Hyperfiltration studies(Ⅵ) salt rejeetion by dynamically of formed hydrous oxide membrnae.Jounral of Chemical Society,1966,88:44-57.
    [77]Spencer G and Thomas R.Fouling,cleaning,rejuvenation of formed-in-place membrnae.Food Technology,1991,45:98-99.
    [78]Tanny G B.Dynamic membranes in ultrafilarttion and reverse osmosis.Journal SeParation &Purification Methothod,1978,7:183-220.
    [79]周灵平,黄桂芳,李绍禄等.钢表面离子束改性类金刚石膜层性能.金属热处理,1996,13(3):42-47.
    [80]Kishihara S,Tamaki H,Fujii S et al.Clarification of technical sugar solutions through a dynamic membrane formed on a porous ceramic tube.Journal of Membrane Science,1989,41:103-114.
    [81]Ohtani T and A.W.Rejection ProPerties of dynamic membrane of ultrafiltration.1987,27:295-305.
    [82]Sungpet A,Jiraratananon R and Luangsowan P.Treatment of effluents from textile-rinsing operations by thermally stable nanofiltration membranes.Desalination,2004,160(1):75.
    [83]Goel V,Accomozzo M A,Dileo A J et al.Pluskal M.Membrnae hand book.New York:Academic Press.1992:377-436.
    [84]Kiso Y,Jung Y-J,Ichinari T et al.Wastewater treatment performance of a filtration bio-reactor equipped with a mesh as a filter material.Water Research,2000,34(17):4143.
    [85]Fuchs W,Resch C,Kemstock Met al.Influence of operational conditions on the performance of a mesh filter activated sludge process.Water Research,2005,39(5):803.
    [86]吴季勇,华敏洁,高运川.自生生物动态膜反应器处理市政污水的特性.上海师范大学学报(自然科学版),2004,(04):23-29..
    [87]Alavi Moghaddam M R,Satoh H and Mino T.Performance of coarse pore filtration activated sludge system.Water Science and Technology,2002,46(11-12):71.
    [88]杜大恒,陈胜,孙德智等.好氧生物流化床处理抗生素废水的试验研究.工业水处理,2005,25(12):29-33
    [89]高松,周增炎,高廷耀.自组生物动态膜在污泥截留中的应用研究.净水技术,2005,24(01):14-17.
    [90]卢进登,李海波.膜生物反应器对污染物的去除效果及运行条件的研究现状.湖北大学学报(自然科学版),2003,25(01):77-80.
    [91]熊丽,濮文虹,杨昌柱等.动态膜生物反应器处理生活污水的特性.化学与生物工程,2005,(01):31-33
    [92]吴盈禧,陈福泰,黄霞.高通量自生动态膜生物反应器的运行特性.中国给水排水,2004,(02):17-20.
    [93]Kryvoruchko A,Atamanenko I and Kornilovich B.A role of the clay minerals in the membrane purification process of water from Co(Ⅱ)-ions.Separation and Purification Technology,2001,25(1-3):487-492.
    [94]Kryvoruchko A P,Atamanenko I D and Yurlova L Y.Concentration/purification of Co(Ⅱ) ions by reverse osmosis and ultrafiltrafion combined with sorpfion on clay mineral montmorillonite and cation-exchange resin KU-2-8n.Journal of Membrane Science,2004,228(1):77-81.
    [95]Lagashetty A,Havanoor V,Basavaraja S et al.Synthesis of MoO3 and its polyvinyl alcohol nanostructured film.Bulletin of Materials Science,2005,28(5):477-481.
    [96]Cumming I W,Holdich R G and Smith I D.The rejection of oil by microfiltration of a stabilised kerosene/water emulsion.Journal of Membrane Science,2000,169(1):147-155.
    [97]Galjaard G,Buijs P,Beerendonk E et al.Pre-coating(EPCE(R)) UF membranes for direct treatment of surface water.Desalination,2001,139(1-3):305-316.
    [98]Elkebir A A.Application crossflow filtration for biomass retention in aeration tanks.PHD.Thesis,University of Newcaster Upon Tyne,UK,1991.
    [99]Al-Malack M H and Anderson G K.Use of MnO2 as a dynamic membrane with crossflow microfiltration:Slow membraning technique.Desalination,1997,109(1):15-24.
    [100]Al-Malack M H,Anderson G K and Almasi A.Treatment of anoxic pond effluent using crossflow microfiltration.Water Research,1998,32(12):3738-3746.
    [101]Al-Malack M H.Technical and economic aspects of crossflow microfiltration.Desalination,2003,155(1):89-94.
    [102]Al-Malack M H,Bukhari A A and Abuzaid N S.Crossflow microfiltration of electrocoagulated kaolin suspension:fouling mechanism.Journal of Membrane Science,2004,243(1-2):143-153.
    [103]Rumyantsev M,Shauly A,Yiantsios S G et al.Parameters affecting the properties of dynamic membranes formed by Zr hydroxide colloids.Desalination,2000,131(1-3):189-200.
    [104]Altman M,Semiat R and Hasson D.Removal of organic foulants from feed waters by dynamic membranes.Desalination,1999,125(1-3):65-75.
    [105]徐寅汇,武小鹰,吕少虹等.动态陶瓷膜的制备及应用研究.水处理技术,2003,29(03):134-136.
    [106]Chen C C and Chiang B H.Formation and characteristics of zirconium ultrafiltration dynamic membranes of various pore sizes.Journal of Membrane Science,1998,143(1-2):65-73.
    [107]Xu X,Leo Gaddis J and Garth Spencer H.Dynamic formation of a self-rejecting membrane by nanofiltration of a high-formula-weight dye.Desalination,2000,129(3):237-245.
    [108]周迟骏,陈忠,许仁裕.经表面修饰的FeO(OH)胶粒制备动态膜及其脱色性能.化工进展,2005,24(07):785-762.
    [109]Bae T-H and Tak T-M.Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration.Journal of Membrane Science,2005,249(1-2):1-8.
    [110]Bae T-H and Tak T-M.Preparation of TiO2 self-assembled polymeric nanocomposite membranes and examination of their fouling mitigation effects in a membrane bioreactor system.Journal of Membrane Science,2005,266(1-2):1-5.
    [111]Bae T-H and Tak T-M.Interpretation of fouling characteristics of ultrafiltration membranes during the filtration of membrane bioreactor mixed liquor.Journal of Membrane Science,2005,264(1-2):151-163.
    [112]Yu K,Wen X,Bu Q et al.Critical flux enhancements with air sparging in axial hollow fibers cross-flow microfiltration of biologically treated wastewater.Journal of Membrane Science,2003,224(1-2):69-79.
    [113]张传义,王勇,黄霞等.一体式膜-生物反应器经济曝气量的试验研究.膜科学与技术,2004,24(05):11-15.
    [114]张军,冯晓辉,甘力强等.利用废旧泡沫塑料制造建筑涂料.洛阳工学院学报,2001,21(4):59-61
    [115]Ohkubo K,Hayashi T and Ye H N.Hollow fiber device[P].US Pat:4876006(1998).
    [116]Shimizu Y,Okuno Y I,Uryu K et al.Filtration characteristics of hollow fiber microfiltration membranes used in membrane bioreactor for domestic wastewater treatment.Water Research,1996,30(10):2385-2392.
    [117]Doshi M R,Gill W N and N.K V.Optimal design of hollow fibre modules.AIChE Journal,1977,23(5):765-768.
    [118]Mercier-Bonin M and Fonade C.Air-sparged microfiltration of enzyme/yeast mixtures:determination of optimal conditions for enzyme recovery.Desalination,2002,148(1-3):171-176.
    [119]Cheng T W and Lin C T.A study on cross-flow ultrafiltration with various membrane orientations.Separation and Purification Technology,2004,39(1-2):13-22.
    [120]Essemiani K,Ducom G,Cabassud C et al.Spherical cap bubbles in a flat sheet nanofiltration module:experiments and numerical simulation.Chemical Engineering Science,2001,56(21-22):6321-6327.
    [121]Souvik Biswas,Asghar Esmaeeli and Tryggvason G.Comparison of results from DNS of bubbly flows with a two-fluid model for two-dimensional laminar flows.International Journal of Multiphase Flow,2005,31:1036-1048.
    [122]Scott K,Mahmood A J,Jachuck R J et al.Intensified membrane filtration with corrugated membranes.Journal of Membrane Science,2000,173:1-16.
    [123]Yeh H M,Liu T C and Huang P C.Effect of varying incidental angles of a wire-rod insert on the performance of tubular ultrafiltration membranes.Desalination,2004,170:15-25.
    [124]翟守亮,黄显怀,刘绍根等.膜生物反应器在污水处理中膜污染及其防治.工业水处理,2004,24(8):9-13.
    [125]斯蒂文·K·帕德森,皮埃尔·科特.浸入膜元件和组件[P].中国专利:00802893.1.2000-11-15.
    [126]戴维·J·考克斯,查富芳.中空纤维约束系统[P].中国专利:01807879.6.2001-04-06.
    [127]Cabassud C,Laborie S and Laine J M.How slug flow can improve ultrafiltration flux in organic hollow fibres.Journal of Membrane Science,1997,128(1):93-101.
    [128]Ueda T,Hata K,Kikuoka Yet al.Effects of aeration on suction pressure in a submerged membrane bioreactor.Water Research,1997,31(3):489-494.
    [129]Psoch C and Schiewer S.Long-term study of an intermittent air sparged MBR for synthetic wastewater treatment.Journal of Membrane Science,2005,260(1-2):56-65.
    [130]Psoch C and Schiewer S.Critical flux aspect of air sparging and back_flushing on membrane bioreactors.Desalination,2005,175(1):61-71.
    [131]Psoch C and Schiewer S.Resistance analysis for enhanced wastewater membrane filtration.Journal of Membrane Science,2006,280(1-2):284-297.
    [132]任南琪,张颖,陈兆波.SMBR中不同膜组件形式的膜通量变化数学模型分析.高技术通讯,2001,(09):100-103.
    [133]张颖,任南琪,田文军等.不同膜组件形式的SMBR处理蛋白废水的特性研究.哈尔滨工业大学学报,2001,33(06):796-798.
    [134]Guibert D,Ben Aim R and Rabic H e a.Aeration performance of immersed hollow-fiber membranes in a bentonit suspension.Desalination,2002,148(1-3):395-400.
    [I35]Smith S,Taha T and Cui Z.Enhancing hollow fibre ultrafiltration using slug-flow -- a hydrodynamic study.Desalination,2002,146(1-3):69-74.
    [136]李耀中,贺延龄,刘永红等.投加粉末炭对SMBR过滤性能的影响.中国给水排水,2004,20(10):10-13.
    [137]Ellingsen K and Risso F.Measurements of the flow field induced by the motion of a single bubble.Proc.Third Int.Symp on Multiphase Flows,Lyon.1998.
    [138]Saito H,Yuzi S,Yamaguchi S et al.Conformation and dynamics of membrane proteins and biologically active peptides as studied by high-resolution solid-state 13C NMR.Journal of Molecular Structure,1998,441(2-3):137-148.
    [139]赵国玺,朱瑶.表面活性剂作用原理.中国轻工业出版社,2003,北京:163-166;173-174.
    [140]Xie Y J,Yu H Y and Ke X Z.Surface modification of polypropylene microporous membranes by the adsorption of non-ionic surfactants.Chinese J Polym Sci,2006,24:421-429.
    [141]Bouhabila E H,Aim R B and Buisson H.Fouling characterisation in membrane bioreactors.Separation and Purification Technology,2001,22-23:123-132.
    [142]Vries A W G d,Biesheuvel A and Wijngaarden L v.Notes on the path and wake of a gas bubble rising in pure water.International Journal of Multiphase Flow,2002,28:1823-1835.
    [143]刘乃震,王廷瑞,刘孝良等.非牛顿流体的稳定性及其流态判别.天然气工业,2003,23(1):53-57.
    [144]Sandra R K K,Matthias K.Rheology of activated sludge in membrane bioreactors.journal Engineering in Life Sciences,2002,2(9):269-275.
    [145]邢传宏,钱易,TardieuEric.超滤膜-生物反应器处理生活污水及其水力学研究.环境科学,1997,(05):39-45.
    [146]张远君,王慧玉等.两相流体动力学基础理论及工程应用.北京:北京航空学院出版社,1987:270-271.
    [147]Xing C H,Qian Y,Wen X H et al.Physical and biological characteristics of a tangential-flow MBR for municipal wastewater treatment.Journal of Membrane Science,2001,191(1-2):31-42.
    [148]Lunde K and Perkins R J.Observations on wakes behind spheroidal bubbles and particles.No.FEDSM97-3530.ASME-FED Summer Meeting,Vancouver,Canada.1997.
    [149]刘惠枝,舒宏纪.边界层理论.北京:人民交通出版社,1991.:82-96.
    [150]Magaudet J and Eames I.The motion of high-Reynolds-number bubbles in inhomogeneous flows.Annual Review of Fluid Mechanics,2000 32:659-708.
    [151]Praptowidodo V S.Influence of swelling on water transport through PVA-based membrane.Journal of Molecular Structure,2005,739(1-3):207-212.
    [152]Wu G M,Lin S J and Yang C C.Preparation and characterization of PVA/PAA membranes for solid polymer electrolytes.Journal of Membrane Science,In Press,Corrected Proof.
    [153]Ahn S M,Ha J W,Kim J H et al.Pervaporation of fluoroethanol/water and methacrylic acid/water mixtures through PVA composite membranes.Journal of Membrane Science,2005,247(1-2):51-57.
    [154]Kim D S,Park H B,Rhim J W et al.Preparation and characterization of crosslinked PVA/SiO2hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications.Journal of Membrane Science,2004,240(1-2):37-48.
    [155]Tan T,Wang F and Zhang H.Preparation of PVA/chitosan lipase membrane reactor and its application in synthesis of monoglyceride.Journal of Molecular Catalysis B:Enzymatic,2002,18(4-6):325-331.
    [156]Frolund B,Palmgren R,Keiding K et al.Extraction of extracellular polymers from activated sludge using a cation exchange resin.Water Research,1996,30(8):1749-1758.
    [157]耿霞,梁冰,梁玉祥等.苯酚-硫酸导数光谱法快速测定中药中多糖的研究.四川大学学报,2002.34(3):62-64.
    [158]Lowery O H,Rosebrough N J,Farr A Let al.Protein measurement with the folin phenol reagent.Journal of Biochemistry,1951,193:265-275.
    [159]Fievet P,Szymczyk A and Sbai M.Tangential streaming potential as a tool in the characterisation of microporous membranes.Desalination,2006,199(1-3):18-19.
    [160]Zhang Y,Xu T and Liu Z.Streaming potential across a porous charged membrane in organic-aqueous solutions.Desalination,2007,212(1-3):183-190.
    [161]Adamczyk Z,Zembala M and Michna A.Polyelectrolyte adsorption layers studied by streaming potential and particle deposition.Journal of Colloid and Interface Science,2006,303(2):353-364.
    [162]陆扬.明胶微球的研究进展.明胶科学与技术,2006,26(2):57-68.
    [163]蒋庆哲,宋昭铮,赵密福等.表面活性剂科学与应用.北京:中国石化出版社,2006.168-196.
    [164]贝歇尔·P.乳状液-理论与实践(修订本)北京大学化学系胶体化学教研室译.北京:科学出版社,1978.
    [165]郑忠.胶体科学导论(第1版).北京:高等教育出版社.1995:5-48.
    [166]沈钟.胶体与表面化学.第2版.北京:化学工业出版社.
    [167]Myers D.Surfaces and colloids:principles and applications(1st edition).New York:VCH Publishers,Inc.,1991.
    [168]Kang S T,Subramani A,Hoek E M V et al.Direct observation of biofouling in cross-flow micro filtration:mechanisms of deposition and release.Journal of Membrane Science,2004,244(1-2):151-165.
    [169]Wilen B-M,Jin B and Lant P.The influence of key chemical constituents in activated sludge on surface and flocculating properties.Water Research,2003,37(9):2127-2139.
    [170]Van Wijngaarden L.On the equations of motion for mixtures of liquid and gas bubbles.Journal of Fluid Mechanics 1968,33:465-474.
    [171]Van Wijngaarden L.One-dimensional flow of liquids containing small gas bubbles.Annual Review of Fluid Mechanics,1972,4:369-397.
    [172]Van Wijngaarden L.Hydrodynamic interaction between gas bubbles in liquid.Journal of Fluid Mechanics,1976,77:27-44.
    [173]Van Wijngaarden L.Flow of bubbly liquids.Theoretical and Applied mechanics 17,1988.
    [174]Van Wijngaarden L.The mean rise velocity of pairwise-interacting bubbles in liquid.Journal of Fluid Mechanics,1993,251:55-78.
    [175]Van Wijngaarden L.On pseudo turbulence.Theor.Comp.Fluid Dyn.10,449-458.,1998.
    [176]Biesheuvel P M,Verweij H and Breedveld V.Microdivers to Study Sedimentation in Polydisperse,Concentrated Colloidal Suspensions.AIChE Journal,2001,47(9):1969-1977.
    [177]Van Wijngaarden L.and Kapteyn C.Concentration waves in dilute bubble/liquid mixtures.Journal of Fluid Mechanics,1990 212:111-137.
    [178]LAMMERS J H and Biesheuvel A.Concentration waves and the instability of bubbly flows.Journal of Fluid Mechanics,1996 328:67-93.
    [179] Duineveld P C. Bouncing and coalescence of two bubbles in water. Ph.D. thesis, University of Twente. 1994.
    [180] Duineveld P C. The rise velocity and shape of bubbles in pure water at high Reynolds number. Journal of Fluid Mechanics, 1995 292: 325-332.
    [181] Kok J B W. Dynamics of a pair of gas bubbles moving through liquid part I. Theory. European Journal of Mechanics. B. Fluids, 1993,12: 515-540.
    [182] Kok J B W. Dynamics of a pair of gas bubbles moving through liquid part II. Experiment. European Journal of Mechanics. B. Fluids, 1993b 12: 541-560.
    [183] Poorte R E G. On the motion of bubbles in active grid generated turbulent flows. Ph.D. thesis, University of Twente. 1998
    [184] Nagura M, Takagi N, Katakami H et al. States of water in poly(vinyl alcohol) hydrogels. Polymer Gels and Networks, 1997, 5(5): 455-468.
    [185] Takagi S, Properetti A and Matsumoto Y. Drag coefficient of a gas bubble in an axisymmetric shear flow. Physics of Fluids, 1994 6: 3186-3188.
    [186] Ryskin G and Leal L G. Numerical solution of free-boundary problems in fluid mechanics. Part 1. the finite-difference technique. Journal of Fluid Mechanics, 1984a 148: 1-17.
    [187] Ryskin G and Leal L G. Numerical solution of free-boundary problems in fluid mechanics. Part 2. buoyancy-driven motion of a gas bubble through a quiescent liquid. J. Fluid Mech., 1984b 148: 19-35.
    [188] Tsao H K. and Koch D L. Observations of high Reynolds number bubbles interacting with a rigid wall. Physics of Fluids, 1997 9: 44-55.
    
    [189] Whalley P B. Boiling Condensation and Gas-Liquid Flow, Clarendon Press, Oxford. 1987.
    [190] Zhang J, Chua H C, Zhou J et al. Factors affecting the membrane performance in submerged membrane bioreactors. Journal of Membrane Science, 2006, 284(1-2): 54-66.
    [191] Magara Y, Nambu S and Utosawa K. Biochemical and physical properties of an activated sludge on settling characteristics. Water Research, 1976, 10(1): 71-77.
    [192] Choi J-G, Bae T-H, Kim J-H et al. The behavior of membrane fouling initiation on the crossflow membrane bioreactor system. Journal of Membrane Science, 2002, 203(1-2): 103-113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700