用户名: 密码: 验证码:
立式拱顶储罐超压破坏机理与弱顶结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
立式拱顶储罐是原油储运过程中重要的储存设备,而储罐内超压产生原因、破坏压力计算与破坏条件判定和弱顶设计一直是储罐设计、安全运行中的关键技术问题。本文开展储罐内超压产生原因、储罐在不同超压形式下的破坏压力计算,以及储罐破坏条件与弱顶判定和弱顶设计的理论、数值分析方法研究,具有重要的学术价值和良好的工程应用前景。本着从简单到复杂的原则,开展如下研究工作。
     首先,以立式拱顶储罐为研究对象,对储罐内两种动态升压方式可燃气体燃烧和爆炸进行了分析。采用定容燃烧法对储罐内可燃气体燃烧升压几何分析、燃烧温度和燃烧速度进行计算,得到了储罐内由于可燃气体燃烧引起超压的计算方法;通过对TNT爆炸影响的因素分析,建立了由于可燃气体爆炸导致储罐超压的TNT当量计算法,考虑爆炸冲击波峰值压力在储罐内的反射问题,结合爆炸冲击波的几何分析,得到了储罐内可燃气体爆炸的峰值超压计算方法。
     其次,针对储罐静压作用下的超压问题,分析了罐顶两种破坏形式,抗压环屈服导致的局部失稳破坏和由于顶壁连接焊缝强度不足导致的强度破坏。对拱顶储罐抗压环截面受力进行了分析,分析了储罐设计标准中顶壁连接处破坏压力与抗压环截面的计算方法。以危险截面的平均应力达到材料的屈服强度,建立了储罐的强度破坏条件。并通过对储罐顶壁连接处的有力矩理论分析,建立了考虑弯矩的储罐顶壁连接处破坏压力计算公式。
     其三,采用壳单元、实体单元、梁单元对罐顶肋条、连接焊缝、包边角钢、顶板、底板、壁板、地基等结构进行离散,采用接触单元模拟顶板与肋条、底板与地基的单向接触摩擦问题,建立了储罐空间数值计算模型,通过对不同容积储罐在空罐、半罐和满罐的有限元计算分析,得到了罐顶与罐底的破坏压力。按照结构相似性,制造了实验储罐,通过储罐超压破坏试验,对罐顶两种破坏方式及破坏压力计算公式与储罐破坏条件进行了验证。
     其四,分析了储罐内由于可燃气体燃烧和爆炸引起的储罐内两种动态超压过程,在燃烧超压中,储罐内各位置处的压力仅与燃烧时间有关;在爆炸超压中,储罐内各位置处的压力与距爆炸点位置和时间均有关。通过建立储罐动力学计算模型,给出了储罐在不同动压下的破坏条件,对典型容积拱顶储罐在两种超压模式下,罐顶与罐底的破坏压力进行了计算。
     最后,通过对不同容积拱顶储罐在空罐、半罐和满罐下各种受力状态的力学分析,结合储罐顶壁连接处与底壁连接处破坏条件与破坏压力,建立了拱顶储罐弱顶评价条件,并建议储罐为弱顶结构时k empty1.5(空罐)、 k full2.5(满罐)。对不同容积拱顶储罐在不同超压形式下的弱顶性能进行了计算,得到了储罐在不同液位下的弱顶性能变化规律。针对影响储罐弱顶性能的主要影响因素,对各容积储罐在不同工况的弱顶性能进行了分析,提出了不同容积储罐的弱顶设计方法。通过改变储罐单个设计参数或多个设计参数,使其满足弱顶性能,设计出了满足弱顶要求的拱顶储罐。
     本文研究成果可作为储罐事故发生原因、预防和灾难救援,火灾控制以及储罐弱顶设计提供重要的理论基础与计算方法。
Vertical dome roof tank is important storage equipment in the process of storage andtransportation of crude oil, and the tank overpressure mechanism, failure stress calculation,destruction condition judgment and weak roof design have been the key technical problemsof the tank design and safe operation. This paper carried out the mechanism of tankoverpressure, tank failure stress calculation in different forms of overpressure, the judgmentof storage tank damage and weak roof judgment and a weak roof design theory as well asnumerical analysis method of study, which have important academic value and goodprospect of engineering application. Based on the principle of from simple to complex,carry out the following research work.
     First of all, take vertical dome roof tank as the research object, two kinds of dynamicpressure rise inside the tank, combustible gas burning and explosion are analyzed. Using theconstant volume combustion method, combustible gas in the tank booster geometricanalysis, combustion temperature and combustion rate has been calculated, got thecalculation method of storage tank caused by combustible gas explosion; By TNT explosiveimpact on the factor analysis, established the TNT equivalent calculation method caused bycombustible gas explosion overpressure, considering the blast shock wave peak pressure inthe storage tank reflection, according to the geometrical analysis of the explosion shockwave, got to the overpressure peak value calculation method of combustible gas explosion.
     Secondly, in view of the storage tank overpressure problem under the action of staticpressure, analyzed two damage forms of the tank roof, local buckling failure caused bycompression ring yield and strength damage caused by the hanging wall connection weldstrength insufficient. The vault tank compression ring cross-section stress is analyzed,analyzed the calculation method of roof joint damage pressure and compressive ringcross-section in tank design standard. Established the tank damage conditions by makingthe average stress of dangerous section to achieve material yield strength. Through torquetheoretical analysis of storage tank roof joint, established tank roof joint damage stresscalculation formula considering bending.
     Thirdly, the shell element and solid element and beam element are adopted to roof rib,weld joint, edge Angle, roof, bottom plate, shell, foundation etc to discrete the structure,contact elements are adopted to simulate the roof and rib, bottom plate and the foundationof one-way contact friction problem, storage space numerical calculation model isestablished, based on different capacities of the storage tank under the empty, half loadedand full working conditions finite element analysis, the destruction of the roof and bottom pressure are obtained. Manufactured experimental tank using structure similarity principle,by the destruction test on the tank overpressure, two failure modes and failure pressurecalculation formulas and tank damage conditions are verified.
     Fourthly, the paper analyzed the two kinds of dynamic process of overpressure ofstorage tank caused by combustible gas combustion and explosion in storage tank, incombustion overpressure, pressure on different location is only related to the burning time;in explosion overpressure, pressure on different location is associated with both distancefrom blast point position and time. By establishing a dynamic computational model ofstorage tank, given the destruction of the storage tank under different pressure conditions,calculated the failure pressure of typical capacities storage tank under two kinds ofoverpressure, the destruction of the roof and bottom.
     Finally, based on different capacities of the dome roof storage tank in the empty, halfloaded and full working condition tank under various stress mechanics analysis, combiningof tank roof joint and the bottom joint damage conditions and destruction pressure,established the evaluation condition of a dome roof storage tank, and recommended thatwhen the storage tanks is with weak roof structure, k empty1.5(empty tank),k full2.5(full tank). Based on calculation on dome roof storage tank of different capacitiesunder different forms of overpressure, got the weak roof performance variation underdifferent liquid levels. In terms of the main influencing factors of the tank weak roofperformance, analyzed the weak roof performance of different capacities under differentworking conditions, and put forward weak roof design methods of the tank in differentcapacities. By changing a single or some parameters of storage tank to satisfy its weak roofperformance, to design a tank that satisfies the requirement of weak roof.
     This article research results can be used as tank disaster relief, prevention and rescue,fire control, and storage tank design, providing important theoretical basis and numericalcalculation method.
引文
[1]中国石油化工总公司安全监督局编.石油化工安全技术[M].北京:中国石化出版社,1998.
    [2]靳自兵.火灾事故后果评价方法在LNG储罐发生BLEVE爆炸上的应用[J].火灾科学,2004,10(4):256~260.
    [3]林文胜,顾安中,弓燕舞.蒸汽爆炸火灾的研究现状及问题分析[J].石油天然气与化工,2002,31(3):161~164.
    [4] Petersen C.M.. Analysis of the LPG Disaster in Mexieo City[J]. Hazardous Materials,2008,21(20):85-107.
    [5]宋广成.对一起储油罐爆炸事故的分析[J].油气储运.1990,9(3):21~23.
    [6]周鸿.浅谈火灾爆炸的预防[J].化工劳动保护,1999,5(4):31~33.
    [7]梁金忠,马昌华.西安“3.5”液化石油气泄漏爆炸事故原因分析[J].劳动保护,2000,10(8):43~44.
    [8]才玉松,齐丽艳,刘永彪.液态烃储罐引发火灾的危险因素分析及对策[J].石油化工安全环保技术,2010,26(4):47~49.
    [9]陈林顺.沸腾液体膨胀蒸气爆炸和蒸气云爆炸事故的分析模拟[D].北京:北京理工大学,2001.
    [10] Sabatino Ditali. Consequence Analysis in LPG Installation Using an Integrated ComputerPackage[J]. Journal of Hazardous Materials,2011,71(15):9-177.
    [11]林文胜,顾安忠.可燃性液化气体储运安全性研究现状[J].天然气工业,2001,21(5):87~91.
    [12] Dag Bjerkedvedt, Jan Roar, Kees van Wingerden. Gas Explosion Handbook[M]. ElsevierScience,1997.
    [13] Sanming Wang, Juncheng Jiang. Hazards evaluation of major explosion accident.Progress in Safety Science and Technology[C]. Beijing:Chemical Industry Press,2000,523-527.
    [14] Juncheng Jiang, Sanming Wang. Comparison of several correlation models for VCE blastprediction. Theory and Practice of Energetic Materials[C]. Beijing:China Science andTechnology Press,2001,411-416.
    [15] Juncheng Jiang, Baoquan Wang, Xuhai Pan, eta. Accidents analysis and safety evaluationbased on catastrophe theory. Progress in Safety Science and Technology[C].Beijing:Chemical Industry Press,2000,41-46.
    [16]郭文军,崔京浩,雷全立.密闭空间燃气爆炸升压计算[J].煤气与热力,1999,19(2):42~44.
    [17] B.H.Hjertager. Numerical models of gas explosions. Proceedings of the ExplosionPrediction and Mitigation Congested Volumes and Complex Geometries[C]. Universityof Leeds, Leeds, UK,2007.
    [18]何敏.煤矿井下封闭火区的燃烧状态与气体分析研究[D].北京:中国矿业大学,2013.
    [19]张艳春,喻健良,丁信伟,等.预测密闭容器内可燃气体爆燃最大压力的方法[J].化工机械,2002,29(6):333~337.
    [20]赵衡阳.气体和粉尘爆炸原理[M].北京:北京理工大学出版社,1996.
    [21]王志荣,蒋军成.容器内可燃气体燃爆温度与压力的计算方法[J].南京工业大学学报,2004,26(1):9~12.
    [22] J. Nagy. Development and control of dust explosions[J]. Marcel Deker Inc, NewYork,2009.
    [23] M.GZabetakis. Flammability characteristics of combustible gases and vapors[J]. USBureau of Mines Bullet,2011.
    [24] Nagy J. Development and control of dust explosion[M]. Marcel Deler Ins, New York,2003.
    [25] Zabetakis MG. Flammablity Characteristics of Combustible Gases and Vapors[M]. USBureau of Mines Bullet,2011.
    [26]谭迎新,张景林,张小春.可燃气体(或蒸汽)爆炸特性参数测定[J].兵工学报,1995,5(2):11~13.
    [27] Vladimir M. Modeling of vented hydrogen-air deflagrations and correlations for ventsizing[J]. Journal of Loss Prevention in the Process Industries,1999,12:147-156.
    [28]魏东,薛岗,田亮等.着火油罐燃烧过程预测的通用模型[J].工程热物理学报,2005,3(2):335~338.
    [29]王淑兰,丁信伟,贺匡国.容器内烃类气体燃爆温度与压力的数值解[J].大连理工大学学报,1992,3(2):163~169.
    [30]毕明树,李志义,丁信伟,等.可燃气体爆炸强度的计算[J].化工机械,1991,18(4):217~221.
    [31]邢志祥.密闭容器内液化石油气燃爆特性的计算[J].消防科学与技术,2000,5(2):61~62.
    [32] A.Ogle Russell. Explosion hazard analysis for an enclosure partially filled with aflammable gas[J]. Process Safety Progress,2009,18(3):170-177.
    [33]赵大林,魏东,田亮,等.汽油储罐火灾燃烧特性的实验研究[J].工热物理学报,2004,3(2):341~344.
    [34]魏东,赵大林,杜玉龙,等.油罐火灾燃烧速度的实验研究[J].燃烧科学与技术,2005,6(3):286~291.
    [35]蔡万太.低浓度甲烷催化燃烧实验研究[D].合肥:中国科学技术大学,2009.
    [36] K.H.OH, H.Kim, K.B Kim etc. A study on the obstacle variation of the gas explosioncharacteristics[J]. Journal of Loss Prevention in the Process Industries,2011,14(5):597-602.
    [37]王博,陈思维.密闭受限空间可燃气体爆炸特性数值模拟研究[J].工业安全与环保,2008,34(2):28~30.
    [38]毕数明,尹旺华,丁信伟.圆筒形容器内可燃气体爆燃过程的数值模拟[J].天然气工业,2004,24(4):94~96.
    [39] M.Fairweather, G.K.Hargrave, S.S.Ibrahim, D.G.Walker. Studies of premixed flamepropagation in explosion tubes[J]. Combustion and Flame,2009,116(4):504-518.
    [40]严清华.球形密闭容器内可燃气体爆炸过程的数值模拟[D].大连:大连理工大学,2004.
    [41] Dag Bjerkedvedt, Jan Roar, Kees van Wingerden. Gas Explosion Handbook[M]. ElsevierScience,2007.
    [42]任邵然,李海奎,李磊兵,等.惰性及特种可燃气体对甲烷爆炸特性的影响实验及分析[J].天然气工业,2013,33(10):110~115.
    [43] Juncheng Jiang, Sanming Wang. Comparison of several correlation models for VCE blastprediction. Theory and Practice of Energetic Materials[C]. Beijing:China Science andTechnology Press,2001,411-416.
    [44] Juncheng Jiang, Baoquan Wang, Xuhai Pan, etal. Accidents analysis and safetyevaluation based on catastrophe theory. Progress in Safety Science and Technology[C].Beijing:Chemical Industry Press,2000,41-46.
    [45]王震,胡可,赵阳.拱顶钢储罐内部蒸气云爆炸冲击载荷的数值模拟[J].振动与冲击,2013,32(20):35~40.
    [46] B.J.rnZ, Bengt. Numerical simulations of blast loads and structural defomation fromnear-field explosions in air[J]. International Journal of Impact Engineering,2011,38(7):597-612.
    [47]路胜卓,张博一,王伟,等.爆炸作用下薄壁柱壳结构动力响应实验研究[J].南京理工大学学报.2011,35(5):621~626.
    [48]张艳春,喻健良,丁信伟,等.预测密闭容器内可燃气体爆燃最大压力的方法[J].化工机械,2002,29(6):333~337.
    [49]王志荣,蒋军成.容器内可燃气体燃爆温度与压力的计算方法[J].南京工业大学学报,2004,26(1):9~12.
    [50]郭吉红.压力容器爆炸事故分析和后果预测[J].工业安全与环保,2005,9(9):52~54.
    [51]毕明树.开敞空间可燃气云爆炸压力研究[D].大连:大连理工大学,2001.
    [52] W.E.Baker. The elastic-plastic response of thin spherical shells to internal blast loading[J].ASME Journal of Applied Mechanics,2010,27(1):139-144.
    [53] Daniel Hilding. Simulation of a detonation chamber test case[R]. Proeeedings of the3thEuroPean LS-DYNA user conferenee,2011.
    [54] Coward, H.F Jones, G.W. Limits of Flammability of Gases and Vapors[R]. US Bureau ofMines, Bulletin503, Washington DC,2009.
    [55]朱文辉.爆炸容器承受内部加载的实验研究[J].爆炸与冲击,1995,15(4):374~381.
    [56]霍宏发.椭球封头圆柱形爆炸容器振动特性研究[J].机械科学与技术,2000,(6):967~969.
    [57]邓君香,严传俊.单次爆震波的对比实验研究[J].燃烧科学与技术,2000,4(6):356~358.
    [58]钟方平,陈春毅,林俊德,等.双层圆柱形爆炸容器弹塑性结构响应的实验研究[J].兵工学报,2000,21(3):268~271.
    [59]路胜卓,王伟,张博一,等.可燃气体爆炸对钢壁冲击特性的实验研究[J].哈尔滨工业大学学报,2011,32(8):1001~1006.
    [60] T.A.Duffey, D.Mitchell. Containment of explosions in cylindrical shells[J]. InternationalJournal of Mechanical Sciences,2007,45(3):56-59.
    [61] A.ABuzukov. Forces Produced by an explosion in an air-filled explosion chamber[J].Combustion Explosions and Shock Waves,2010,13(3):34-36.
    [62] VM.Kornev, V.V.Adishchev, A.N. Mitrofanov.Experimental investigation and analysis ofthe vibrations of the shell of an explosion chamber[J]. Combustion Explosions andShock Waves,2009,35(3):345-350.
    [63] A.Thomas, Duffey, R.Christopher. Stran growth in spherical explosive chamberssubjected to internal blast loading[J]. Internation Journal of Impact Engineering,2003,14(28):967-983.
    [64] Smirnov N N, Panfilov I I. Deflagation to Detonation in Combustible Gas Mixtures[J].Combustion and Flame,2005,35(101):91-100.
    [65] H Phylaktou G, E Andrews. Gas explosions in linked vessels[J].13th ICDERS. Japan,July,2009.
    [66] RAZUS D, MOVILEANU C, BRINZEA V, etc. Explosion pressures of hydrocarbon-airmixtures in closed vessels[J]. Journal of Hazardous Materials,2006,136:58-65.
    [67] Razus D, MOVILEANU C, OANCEA D. The rate of pressure rise of gaseousproplene-air explosions in spherical and cylindrical enclosures[J]. Journal of HazardousMaterials,2007,139:1-8.
    [68] Razus D, BRINZEA V, MITU M, etc. Inerting effect of the combustion products on theconfined deflagration of liquefied pertroleum gas-air mixtures[J]. Journal of LossPrevention in the process Industries,2008,22:463-468.
    [69] Razus D, OANCEA D, BRINZEA V, etc. Experimental and computed burning velocitiesof propane-air mixtures[J]. Energy Conversion and Management,2009,51:2979-2984.
    [70] Razus D, BRINZEA V, MITU M, etc. Explosion characteristics of LPG-air mixtures inclosed vessels[J]. Journal of Hazardous Materials,2009,165:1248-1252.
    [71] Razus D, OANCEA D, BRINZEA V, etc. Temperature and pressure influence onexplosion pressures Materials of closed vessel propane-air deflagrations[J]. Journal ofHazardous,2010,174:548-555.
    [72]毕小敏.爆炸与冲击的仿真研究[D].北京:中国石油大学,2010.
    [73] Kailasannath, K,Oran, J.P, eta. Determination of Detonation Cell Size and the Role ofTransverseWaves in Two-Dimensional Detonations[J]. Combustion and Flame.2006,(61):199.
    [74] Lefebvre, M.H. The Influenced of the Heat Capacity and Diluent onDetonationStrueture[J]. Combustion and Flame.2003,(95):206.
    [75] Oran, E.S, Weber, J.E, etal. A Numerieal Study of Two-Dimensional H2-O2-ArDetonation Using a Detailed Chemical Reaction Model[J]. Combustion and Flame.2008,(113):147-163.
    [76] A.A.VasilevS, A.Zhdan. Shockwave Parametersonex Plosion of eylindrieal charge in air.Combustion ExPlosions and ShoekWaves,2001,45(4):98-102.
    [77]胡八一,柏劲松,张明,等.球形爆炸容器动力响应的强度分析[J].工程力学,2001,18(4):136~139.
    [78]朱文辉,薛鸿陆,张振宇.解析方法与数值模拟相结合求解炸药在容器内部爆炸产生的壁面载荷[J].国防科技大学学报,1997,19(6):102~106.
    [79]钟方平,陈春毅,林俊德,等.双层圆柱形爆炸容器弹塑性结构响应的实验研究[J].兵工学报,2000,21(3):268~271.
    [80]段卓平.爆炸载荷下壳体的响应[D].北京:北京理工大学,1993.
    [81]张鹏.轴对称爆炸容器中冲击波与壁面祸合作用的数值研究[D].北京:中国科学技术大学,2000.
    [82] Daniel Hilding. Simulation of a detonation chamber test case[R]. Proeeedings of the3thEuroPean LS-DYNA user conferenee,2001.
    [83] SH3046-1992,石油化工立式圆筒形钢制焊接储罐设计规范[S].1992
    [84] API650-2011,钢制焊接油罐(中文版)[S].2011.
    [85] GB50341-2003,立式圆筒形钢制焊接油罐设计规范[S].2003.
    [86] Study to Establish Relations for the Relative Strength of API650ConeRoofRoof-to-Shell and Shell-to-Bottom Joints[R]. Thunderhead Engineering Consultants,2005.
    [87]陈志平,沈建民,葛颂.基于组合圆柱壳理论的大型油罐应力分析[J].浙江大学学报(工学版),2006,40(9):13~16.
    [88]徐永春,李辉.一种锥壳组合容器的应力分析[J].广西科学,2002,9(2):104~107.
    [89]黄载生.超高压容器爆破压力计算[J].压力容器,1992,9(3):74~77.
    [90]陈志平,黄载生.超高压容器爆破压力计算式及其工程应用[J].化工设备与管道,1992,(4):12~15.
    [91]郑传祥,文棋.低碳钢压力容器爆破压力的修正[J].化工机械,2002,29(5):275~277.
    [92]郑传祥,文棋.低碳钢压力容器爆破试验及爆破压力公式研究[J].压力容器,2002,19(9):9~12.
    [93]刘小宁,张红卫,刘岑,等.钢制薄壁内压短圆筒静强度的试验研究[J].压力容器,2009,26(7):11~14.
    [94]刘文杰,芮延年,李友云,等.薄壁容器的极限压力迭代法及其应用[J].机械设计与制造工程,2001,30(1):18~19.
    [95]徐永春,李辉.钢制化工容器极限内压分析[J].宁波大学学报,2002,15(3):50~54.
    [96] Martin Prager. Investigation of Frangibility of Geodesic Dome Roofs Used inAboveground Storage Tanks [J]. Welding Research Council Progress Reports.2005,60(3):3-37.
    [97] Morgenegg E. New design rules for frangible roof tanks[J]. HP,2008,57(8):11-14.
    [98] Kroenke W C. Classification Of Finite Element Stresses According To ASME SectionIII[J]. Analysis And Computers,2004,4(3):5-9.
    [99] Kroenke W C. Addicott Interpretation Of Finite Element Stresses According to ASMESectionⅢ [J]. Oil and Gas,2005,14(3):75-76.
    [100] Kroenke W C. Component Evaluation Using The Finite Element Method[J]. PressureVessels And Piping Technology,2005,33(11):11-14.
    [101] Luis M W. Two Step Approach Of Stress Classification And Primary StructureMethod[J]. Pressure Vessel Technology,2000,22(1):2-8.
    [102]黄晓明.浅谈大型储罐的“最后一道安全防线”—弱顶结构[J].劳动保护科学技术,1999,19(3):51~53.
    [103]孙正国.储油罐顶对壳的弱连接结构[J].油气储运,1991,10(1):41~46.
    [104]刘巨保,胡衍明,丁宇奇,等.2万m3立式锥顶储罐弱顶结构分析与评价[J].石油化工设备,2010,37(4):31~35.
    [105]刘巨保,许蕴博.基于GB-50341标准设计的立式拱顶储罐弱顶结构分析与评价[J].化工机械,2011,38(4):423~427.
    [106] Evaluation of Design Criteria for Storage Tanks With Frangible Roof Joints[R]. APIPublication937,1996.
    [107] Zhi Liu. Manual Release2.1: A Program for the Analysis of Storage Tanks withFrangible Roof Jonits[R]. Mechanical Engineering Department Kansas State UniversityManhattan.2005.
    [108] Zienkiewicz. Finite Element Method For Sloid and Structural Mechanics[M].Elsevier(Singapore)Ple Ltd,2009.
    [109]范维澄,万跃鹏.流动及燃烧的模型与计算[M].北京:中国科学技术出版社,1992.
    [110]周力行.燃烧理论与化学流体力学[M].北京:中国科学技术出版社,1986.
    [111]高志崇.甲烷燃烧反应的火焰温度[J].山西大学学报(自然科学版),2004,27(1):32~34.
    [112]张守中.爆炸基本原理[M].北京:国防工业出版社,1988.
    [113] JB4732-1995.钢制压力容器分析设计标准[S].1995.
    [114]刘鸿文.板壳理论[M].浙江:浙江大学出版社,1987.
    [115]郑津洋.过程设备设计[M].北京:化学工业出版社,2010.
    [116]徐祥娜.固定顶储罐结构破坏理论方法研究[D].大庆:东北石油大学,2012.
    [117]吴天云.油罐中幅板的应力分析[J].油气储运,1999,16(9):7~10.
    [118]张磊.Q235钢拉伸性能的有限元仿真与实验[D].长春:吉林大学,2012.
    [119]霍宏发,于琴,黄协清.组合式爆炸容器冲击载荷及其动力响应的数值模拟[J].西南交通大学学报,2003,39(5):513~516.
    [120]时常勇.基于ANSYS/Ls DYNA8.1进行显示动力学分析[M].北京:清华大学出版社,2008:184~249.
    [121]叶先磊,史亚杰.Ansys工程分析软件应用实例[M].北京:清华大学出版社,2003.
    [122]王国强.实用工程数值模拟技术及其在ANSYS上的实践[M].西安:西北工业大学出版社,1999.
    [123]尚晓江,邱峰,赵海峰,等.ANSYS结构有限元高级分析方法与范例应用[M].北京:中国水利水电出版社,2008.
    [124]盖京波.舰船结构在爆炸冲击载荷作用下的局部破坏研究[D].哈尔滨:哈尔滨工程大学,2005.
    [125]午辛民,孟宪昌.材料动态屈服应力实验研究与分析[J].太原机械学院学报,1992,13(1):1~5.
    [126]候日立,彭建祥.高压下2A12铝合金的动屈服强度测量[J].武汉理工大学学报,2010,32(13):38~40.
    [127] HG/T21545-2006.地脚螺栓通用图[S].2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700