用户名: 密码: 验证码:
重型柴油机可变气门系统的开发及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代柴油机在高负荷时,如何提高热效率同时实现超低NOx和微粒排放是一大难题。作者课题组提出了柴油机燃烧过程混合和化学时间尺度控制及燃烧路径控制概念,提出了一种高热效率和超低排放燃烧理论—“高密度-低温”燃烧理论。高密度-低温燃烧过程主要通过两级涡轮增压和进气门晚关来组织。进气门晚关可以降低有效压缩比,降低压缩阶段的压力和温度,延长滞燃期增加混合时间,控制预混燃烧的着火和燃烧过程。
     为了实现高密度-低温燃烧过程,降低发动机主要有害物排放并提高热效率,本文作者创造性地提出并设计了一种滑阀式两模式进气门晚关机构(IVCA)。两模式是指气门既可以按照原凸轮型线运行,也可以通过液压活塞产生一个附加升程叠加在原凸轮升程上使进气门晚关,两模式工作可以满足发动机不同工况下的要求。工作过程仿真分析表明,该系统可以有效地推迟进气门关闭定时,进油孔、回油1孔对于气门关闭定时延迟角度影响巨大,而回油2孔对于气门落座速度有着重要影响;同时发现采用较小的进油孔直径及合理的回油2孔开启位置可以获得较好的气门关闭定时转速一致性。通过实验标定确定了最优的参数组合为进油孔直径1.3mm,回油1孔直径1.0mm,回油2孔直径2.0mm,回油2孔开启位置1.1mm。两模式工作的进气门晚关系统结构简单、安装方便,特别适合安装于现有重载柴油机上,优化完成的气门关闭定时对发动机不同运行工况都有很好的适应性,通过微调的进气门关闭定时,具有很好的各缸一致性。较好转速适应性和高的各缸工作一致性使本系统具有很强的实用价值。
     IVCA对于发动机燃烧实验的研究影响证明,大负荷时IVCA是降低缸内压力最为有效的手段。中等负荷下IVCA对于燃烧过程的控制和排放物控制的效果明显,IVCA降低了有效压缩比,降低了压缩阶段的缸内压力和温度,增加了滞燃期,混合时间增加,获得了更加均匀的混合气,减少了局部浓区,有利于降低碳烟排放,IVCA降低了进气量,降低了着火前的温度,且当量比增加,NOx排放降低,最终使NOx和碳烟的折衷排放改善。IVCA对重载柴油机热效率的影响显著,随着进气门关闭定时的延迟,在米勒循环作用和换气功降低的双重作用下,热效率有显著提高,1600转/分中负荷时热效率可提高3.7%,1900转/分中负荷时热效率可提高7.3%。最后,作者综合考虑发动机热效率和排放,通过实验方法确定了IVCA在全工况范围内的工作MAP。
The enhancement of fuel efficiency and simultaneous suppression of NOx andsoot formation in a high-load modern diesel engine has been a big challenge.Professor Su and his research team presented a new concept of mixing and chemistrytime-scale control and combustion path control and put forward the HighDensity-Low Temperature Combustion (HD-LTC) theory, which is realized by twostage turbo charge and late intake valve closing and showed higher thermal efficiencyand very low emission potential. Late intake valve closure can lower the effectivecompression ratio, the pressure and compressed gas temperatures near the top deadcenter; increase ignition delay and mixing time and control the ignition andcombustion process of premixed combustion.
     To carry out the high density-low temperature combustion, the author developeda two mode late intake valve closing actuation (IVCA)controlled by a slide valve.Two mode means the valve can either work on the original cam lift or get anadditional lift created by a hydraulic piston adding to the original cam lift to retard theintake valve close timing to satisfy different work conditions. The simulation of theworking process showed this system can postpone the intake valve closure timingeffectively, the intake hole and back hole1can strongly affect the intake valve closetiming, while back hole2mainly affect the velocity when the valve is closing. It wasalso found that lesser intake hole diameter and suitable back hole2open timing canget preferable intake valve close timing coherence for different speeds. Throughexperimental study, the author finally confirmed the best parameters: intake holediameter1.3mm, back hole1diameter1.0mm, back hole2diameter2.0mm, backhole2opening position1.1mm. The two mode working system has simple structureand is easy to equip, especially suitable for the diesel engines already in use.Optimized and adjusted late intake valve closing system is suitable for differentworking conditions, and has good cylinder-to-cylinder coherence. The goodadaptability and coherence of the late intake valve closing system offer greatpractical value. The study of the effects of IVCA on diesel engine Combustioncharacteristics showed IVCA is the most effective way to lower in-cylinder pressureat high loads. At medium loads IVCA has obvious effect on combustion progresscontrol and emission control. The IVCA lowered effective compression ratio, thepressure and compressed gas temperatures near the top dead center; increaseedignition delay and mixing time; achieved more homogeneous mixture and reduced local rich regions—which is better for depressing soot emissions. IVCA reducedintake gas; lowered the temperature before ignition; enhanced equivalence ratio—which directly resulted in NOx emission reduction, and improved the NOx-soottrade-off. IVCA has distinguished effects on heavy duty diesel engines, when theintake valve close timing is retarded, thermal efficiency is enhanced because of Millercycle and pumping loss decrease, a3.7%and7.3%thermal efficiency improvementcan be achieved at1600rpm and1900rpm50%load respectively.Based on the engine thermal efficiency and emissions, the author finallyaccomplished the IVCAworking MAP in the working plane through experiments.
引文
[1].陈俊武,陈香生,中国中长期碳减排战略目标初探(3),中外能源,2011,16(7):1-13
    [2].[2] Zhiyuan Hu. Environment and economic life cycle assessment of cassaveethanol used as automotive fuel in Guangxi province of China. The14thInternatinal Symposium on Alcohol Fuels, November,2002, Tailand
    [3].何光远,发展煤基醇醚氢汽车燃料是替代石油的首要选择
    [4].梁刚,2002年和2001年世界石油储量和产量,国际石油经济,2003,11(1):54-55
    [5].陈元千,我国未来石油产量和最终可采储量的预测,石油科技论坛,2003(1):26-31
    [6].文清,发改委:2010年石油进口依存度将突破50%,市场周刊.新物流,2005(7):46
    [7].张幼文,黄仁伟,2004中国国际地位报告,北京:人民出版社,2004
    [8].朱华,胡武祥,我国汽车工业发展模式的能源清单,汽车工业研究,2002(10):33-35
    [9].21世纪我国石油供给分析,中国石油学会石油炼制分会,2005
    [10].盛杨怿,我国石油供给、需求现状及战略分析,经济前沿,2005,11(5):8-11
    [11].牛建英,战略矿产资源供应安全研究:[博士学位论文],北京;中国地质大学,2007
    [12]. http://auto.ifeng.com/roll/20101125/474601.shtml.
    [13].刘湘俊,内燃机的排放与控制,北京,机械工业出版社,2002.1~12
    [14].郝勇,范群,赫冬青等,汽车排气污染现状及防治对策,环境保护科学,2003,29(4):l5~16
    [15].J. B. Heywood, Internal combustion engine fundamentals, New York:McGraw-Hill Book Company,1998
    [16].J. Warnatz, U. Maas&R. W. Dibble., Combustion: Physical&ChemicalFundamentals, Modelling&Simulation, Experiments, Pollutant Formation (4thed.), Berlin Heidelberg: Springer-Verlag,2006
    [17].周龙保.内燃机学.机械工业出版社,1999(6)
    [18].李孝禄.二冲程发动机预混合压缩着火燃烧的研究[博士论文].上海交通大学,2002
    [19].申宝武.排放法规变化对重负荷柴油机油规格标准的影响.国际石油经济,2006年8月
    [20].GB17691-2005《车用压燃式、气体燃料点燃式发动机与汽车排气污染物排放限值及测量方法》
    [21].Daniel W. Dickey, Thomas W. Ryan III, NOx Control in Heavy-Duty DieselEngines-What is the Limit?, SAE980174,1998
    [22].张晓宇. MULINBUMP复合燃烧过程中物理、化学因素耦合作用的研究[博士论文].天津大学,2007
    [23].王建昕.汽车排气污染治理及催化转化器[M].北京:化学工业出版社,2000(1)DOC技术
    [24].徐杰.排放法规和尾气后处理技术的发展对柴油机油配方的影响[J】.商用汽车,2006,8(4),7—10
    [25].何喜朝.柴油机氧化催化转化器的研制[D】.武汉:武汉理工大学,2005
    [26].Guy R.Chandler,Barry J.Cooper, James P.Harris,et a1.An integrated SCRand Continuously Regenerating Trap system to meet future NOx and PMlegislation[C].SAE paper,2000-01-0188
    [27].何国本.柴油机的微粒排放及处理措施[J】.车用发动机,2002,10(5):43-46
    [28].钟秦.选择性非催化还原法脱除NO。的试验研究【J】.南京理工大学学报,2000,24(1):68—71
    [29].朱天乐,郝吉明,傅立新等.柴油机排气控制的研究进展【J】.环境科学与技术,200327(4):38—41
    [30].Klaus Rusch,Lothar Hofmann and Juergen Zuerbig,et a1.PM—reduction bySCR.catalyst[C].SAE paper.2003-01-0777
    [31].J.Oieshoif, A.Schafer-Sindlinger.Improved SCR systems for heavy dutyapplications[C].SAE paper.2000-01-0189
    [32].F. Pischinger, The Diesel Engine for Cars–is there a Future, ASME FallConference,1995
    [33].Y. Mase, J. I. Kawashina, T. Sato and M. Euguchi, Nissan’s New Multivalve DIDiesel Engine Series, SAE Paper981039,1998
    [34].Eiji Aiyoshizawa, Manabu Hasegawa, Jun-ichi Kawashima, et al, CombustionCharacteristics of a Small DI Diesel Engine, JSAE Review21, pp241-263,2000
    [35].Masahiko kondo, Shuji Kimura, Izubo Hirano, et al, Development of NoiseReduction Technologies for a Small Direct-Injection Diesel Engine, JSAEReview21(2000), pp327~333,2000
    [36].Shuji Kimura, Osamu Aoki, Hiroshi Ogawa, Shigeo Muranaka and YoshiteruEnomoto, New Combustion Concept for Ultra-clean and High-efficiency SmallDI Diesel Engines, SAE Paper1999-01-3681,1999
    [37].Shuji Kimura, Osamu Aoki, Y. Kitahara, Ultra-clean Combustion TechnologyCombining a Low-temperature and Premixed Combustion Concept for MeetingFuture Emission Standards, SAE Paper2001-01-0200,2001
    [38].Shuji Kimura, An experimental analysis and future trend of Low-temperatureand premixed combustion for Ultra-Clean Diesel, SAE Homogeneous ChargeCompression Ignition system,2005
    [39].Akihama, K., Takatori, Y., Inagaki, K., Mechanism of the smokeless rich Dieselcombustion by reducing temperature, SAE paper2001-01-0655,2001
    [40].Kamimoto, T., and Bae M., High Combustion Temperature for the Reduction ofParticulate in Diesel Engines, SAE paper880423,1988
    [41].Lutz, A.E., Kee, R.J., and Miller, J.A., Senkin: AFortran Program For PredictingHomogenous Gas Phase Chemical Kinetics with Sensitivity Analysis, SandiaNational Laboratories, SAND87-8248;1994
    [42].T Kitamura, T Ito, J Senda and H Fujimoto, Mechanism of smokeless dieselcombust ion wi th oxygenated fuels based on the dependence of the equivalencerat io and temperature on soot particle formation, International Journal of EngineResearch,2002, Vol.3(4): a223-247
    [43].Ciajolo, A. D'Anna, A., Barbella, R., Tregrossi, A., and Violi, A., The Effect ofTemperature on Soot Inception in Premixed Ethylene Flames, Proceedings of theCombustion Institute26,1996,2327-2333
    [44].苏万华,赵华等.均质压燃低温燃烧发动机理论与技术.北京:科学出版社,2010
    [45].Takeda Y, Nakagome K, Niimura K. Emission characteristics of premixed leandiesel combustion with extremely early staged fuel injection. SAE Paper,1996,961163.
    [46].Nakagome K, Shimazaki N, Niimura K, et al.Combustion and emissioncharacteristics of premixed lean diesel combustion engine. SAE Paper,1997,970898.
    [47].Kobori S, Kamimoto T, Kosaka H. Ignition, combustion and emissions in a DIdiesel engine equiped with a micro-hole nozzle. SAE Paper,1996,960321.
    [48].Walter B, Gatellier B. Development of the high-power NADI concept usingdual-mode diesel combustion to achieve zero NOx and particulate emissions.SAE Paper,2002,2002-01-1744
    [49].Su W H, Lin T J, Zhao H et al. Research and development of an\advancedcombustion system for the direct injection diesel engine. Journal AutomobileEngineering,2005,219(2):241-252.
    [50].Su W H, Lin T J, Pei Y Q. Acompound technology for HCCI combustion in a DIdiesel engine based on the multi-pulse injection and the BUMP combustionchamber. SAE Paper,2003,2003-01-0741.
    [51].Wanhua Su and Xiaoyu Zhang, Mixing Enhancement by a Bump Ring in aCombustion Chamber for Compound Combustion, SAE Technique Paper2005-01-3721,2005
    [52].Wanhua Su and Xiaoyu Zhang, Study of Mixing Enhancement by a Bump Ringin a Combustion Chamber, Proceedings of the International Green EnergyConference, June12-16, Canada, IGEC-1-068,2005
    [53].张晓宇,苏万华,裴毅强等,BUMP环强化柴油混合过程的数值模拟研究,内燃机学报,v23(1):1-9,2005
    [54].张晓宇,苏万华,林铁坚等,MULINBUMP HCCI燃烧控制特性的实验和数值模拟研究,燃烧科学与技术,v10(5):413-417,2004
    [55].裴毅强,苏万华,张晓宇等,BUMP燃烧室的稀扩散燃烧机理,燃烧科学与技术,v12(1):41-45,2006
    [56].苏万华,林铁坚,张晓宇等,MULINBUMP-HCCI复合燃烧放热特征及其对排放和热效率的影响,v22(3):193-202,2004
    [57].Wenbin Yu, Bin Liu, Yang Li. A Hybird Combustion Control Strategy for HeavyDuty Diesel Engines Based on the Technologies of Multi-Pulse Injections,Variable Boost Pressure and Retarded Intake Valve Closing Timing. SAE paper2011-01-1382
    [58].Wanhua Su, Yingying Lu, High Density-Low Temperature Combustion in DieselEngine Based on Technologies of Variable Boost Pressure and Intake ValveTiming. SAE paper2009-01-1911
    [59].Yingying Lu, Wenbin Yu and Wanhua Su. Using Multiple Injection Strategies inDiesel PCCI Combustion: Potential to Extend Engine Load, Improve Trade-offof Emissions and Efficiency. SAE paper2011-01-1396
    [60].Thomas Dresner and Philip Barkan, A Review and classification of VariableValve Timing Mechanisms, SAE Paper890674
    [61].G. B. Parvate-Patil, H. Hong and B. Gordon, Analysis of Variable Valve TimingEvents and Their Effects on Single Cylinder Diesel Engine, SAE paper2004-01-2965
    [62].Daisuke Kawano, Hisakazu Suzuki et al. Ignition and Combustion Control ofDiesel HCCI, SAE paper2005-01-2132
    [63].Yutaka Murata, Jin Kusaka, Achievement of Medium Engine Speed and LoadPremixed Diesel Combustion with Variable Valve Timing, SAE paper2006-01-0203
    [64].Xin He and Russell P. Durrett, Late Intake Valve Closing as an EmissionsControl Strategy at Tier2Bin5Engine-Out NOx Level, SAE paper2008-01-0637
    [65].Ryan M. Nevin, Yong Sun, Manuel A. Gonzalez D. and Rolf D. Reitz, PCCIInvestigation Using Variable Intake Valve Closing in a Heavy Duty DieselEngine, SAE paper2007-01-0903
    [66].Hanho Yun and Mark Sellnau, Development of Premixed Low-TemperatureDiesel Combustion in a HSDI Diesel Engine, SAE paper2008-01-0639
    [67].Yong Sun, Shi-Jin Shuai, et al. Numerical Simulation of Mixture Formation andCombustion of Gasoline Engines With Multi-Stage Direct InjectionCompression Ignition (DICI), SAE paper2003-01-1091
    [68].Takeda Y, Nakagome K, Niimura K. Emission characteristics of premixed leandiesel combustion with extremely early staged fuel injection. SAE Paper,1996,961163
    [69].Nakagome K, Shimazaki N, Niimura K, et al. Combustion and emissioncharacteristics of premixed lean diesel combustion engine. SAE Paper,1997,970898
    [70].Yutaka Murata, Jin Kusaka and Yasuhiro Daisho, Miller-PCCI Combustion in anHSDI Diesel Engine with VVT, SAE paper2008-01-0644
    [71].William De Ojeda, Effect of Variable Valve Timing on Diesel CombustionCharacteristics, SAE paper2010-01-1124
    [72].Su W H, Wang H, Liu B. Injection mode modulation for HCCI dieselcombustion. SAE Paper2005-01-0117
    [73].林铁坚,基于多脉冲复合喷射控制的柴油HCCI燃烧过程的研究:[博士学位论文],天津;天津大学,2004
    [74].王辉,多脉冲喷油模式的调制及其对柴油HCCI燃烧过程影响的研究:[博士学位论文],天津;天津大学,2005
    [75].Yuuichi Kodama, Izumi Nishizawa, Full-Load HCCI Operation with VariableValveActuation System in a Heavy-Duty Diesel Engine, SAE paper2007-01-0215
    [76].Qinxue Chen, Languang Lu, Xiaojun Zhang, Kerun Cui and Guowei Zhu AFlexible, Electronically Controlled, Hydraulically Actuating Variable ValveSystem for Diesel Engine, SAE paper2002-01-217
    [77].李洋,柴油机可变气门系统开发及试验研究:[硕士学位论文],天津;天津大学,2008
    [78].刘斌,物理、化学因素对清洁高效柴油燃烧过程影响的试验研究:[博士学位论文],天津;天津大学,2008
    [79].石磊,邓康耀等.变气门正时对柴油燃料HCCI燃烧的影响.2004年中国内燃机学会燃烧联合学术会议.
    [80].许回江,任晓莉等.柴油机电控—液压气门系统实验研究.车用发动机,2007(5):62-65.
    [81].许回江,任晓莉,潘志翔.柴油机可变气门系统优化研究.现代车用动力,2007(1):24-27.
    [82].严兆大,王希珍等.电磁控制全可变气门系统及其仿真.内燃机工程,2002(4):10-12.
    [83].金华民,赵雨东,陈似竹.发动机电磁气门驱动(EVA)机构的设计及试验.小型内燃机与摩托车,2007(2):27-31.
    [84].李莉,王希珍,严兆大.电磁驱动气门机构系统模型.内燃机工程,2004(4):11-19.
    [85].刘梁,常思勤.动圈式电磁驱动气门的分析与设计.汽车工程,2009(8):733-736,
    [86].王秋华,赵雨东,付雨民.发动机电磁气门驱动有限元法仿真计算.车用发动机,2006(4)35-38.
    [87].Wanhua Su, Bin Liu, Hui Wang and Haozhong Huang, Effects of Multi-injectionMode on HCCI Diesel Combustion, ASME. Journal of Engineering for GasTurbines and Power.
    [88].Wanhua Su, Hui Wang and Bin Liu,Injection Mode Modulation for HCCI DieselCombustion,SAE paper2005-01-0117,2005.
    [89].刘斌、苏万华、王辉、黄豪中,调制多脉冲喷油模式放热特征和能量分布及其对热效率和排放的影响,内燃机学报,v24(6):385-393,2006.
    [90].王辉、苏万华、刘斌,调制喷油模式对柴油HCCI燃烧性能和排放的影响,燃烧科学与技术,v12(3):226-232,2006.
    [91].王辉、苏万华、刘斌,多脉冲喷油模式的调制对柴油HCCI燃烧特性及热效率和排放的影响,汽车工程,2006(9):803-808,2006.
    [92].李克、苏万华、郭树满,新型高压共轨ECU升压模块的数字化开发与优化研究,内燃机学报,v28(2):97-102,2010.
    [93].李克、苏万华、郭树满,陈礼勇,可灵活调制喷油模式的ECU开发与研究,内燃机工程,v32(1):12-18,2011.
    [94].李克、苏万华、郭树满,高速电磁阀分时驱动电路可靠性与一致性研究,内燃机工程,v32(2):34-37,2011.
    [95].韩志强、苏万华、战强、陈礼勇、刘二喜、吴松林,涡轮端旁通阀开度对增压柴油机排放和热效率的影响,中国内燃机学会燃烧节能净化分会2010年学术年会;2010.08,459-463.
    [96].战强,苏万华,滑阀-液压式进气门晚关机构的设计和研究,中国内燃机学会燃烧节能净化分会2010年学术年会;2010.08,723-727.
    [97].高孝洪,内燃机工作过程数值计算,国防工业出版社,北京,1986
    [98].Gy rgy Sitkei,内燃机的传热和热负荷,马重芳等译,中国农业机械出版社,1981
    [99].Per Risberg, Discribing the Auto-Ignition Quality of Fuels in HCCI Engines:
    [Doctoral thesis], Sweden: Royal Institute of Technology,2006
    [100]. M. lida, M. Hayashi, D. E. Foster, J. K. Martin, Characteristics ofHomogeneous Charge Compression Ignition (HCCI) Engine Operation forVariations in Compression Ratio, Speed, and Intake Temperature While Usingn-Butane as a Fuel, Transactions of ASME, Vol.(125):472~478,2003
    [101]. Bengt Johansson, Homogeneous Charge Compression Ignition–the future ofIC engines?, International Journal of Vehicle Design,2007,44(1-2):1-19
    [102]. John E. Dec and Magnus Sj berg, Diesel HCCI with External MixturePreparation,10th Diesel Engine Emissions Reduction (DDER) Workshop,Aug30-Spet.1,2004
    [103].陶金田,内燃机多通道燃烧分析系统的开发及应用:[硕士学位论文],天津;天津大学,2007年
    [104].于文斌,高压共轨柴油机多功能数据采集及燃烧分析系统的开发:[硕士学位论文],天津;天津大学,2007年
    [105].蔡春源等,机械设计手册,机械工业出版社,北京,2000.
    [106].雷天觉主编,液压工程手册,机械工业出版社,北京,1990.
    [107].孔珑主编,工程流体力学,中国电力出版社,北京,1992年,151-154
    [108].尚汉冀,内燃机配气凸轮机构,复旦大学出版社,上海,1988年,7-10
    [109]. G.Deschler, D. Wittman.肖云龙.考虑弹性流体动力润滑的平底挺柱凸轮的设计.西德《MTZ》1978年3期
    [110].费鸿俊、张冠生编,电磁机构动态分析与计算,机械工业出版社,北京,1993
    [111].张冠生、陆俭国编,电磁铁与自动电磁元件,机械工业出版社,北京,1982
    [112].孟庆龙、颜威利编,电器数值分析,机械工业出版社,北京,1993
    [113]. Robert D. Chalgren, Gordon G. Parker, A Controlled EGR Cooling Systemfor Heavy Duty Diesel Applications Using the Vehicle Engine Cooling SystemSimulation. SAE Paper2002-01-0076
    [114]. Jan-Ola Olsson, Per Tunest l, The Effect of Cooled EGR on Emissions andPerformance of a Turbocharged HCCI Engine. SAE Paper2003-01-0743
    [115]. Timothy Jacobs, Dennis Assanis and Zoran Filipi, The Impact of ExhaustGas Recirculation on Performance and Emissions of a Heavy-Duty DieselEngine. SAE Paper2003-01-1068
    [116]. Marc van Aken and Frank Willems, Appliance of High EGR Rates With aShort and Long Route EGR System on a Heavy Duty Diesel Engine. SAE Paper2007-01-0906
    [117]. Beatrice C, Belardini P, Bertoli C, et al. Diesel combustion control incommon rail engines by new injection strategies. Internation Journal of EngineResearch,2002,3(1):23-36
    [118]. Liu Y, Reitz R D. Optimizing HSDI diesel combustion and emissions usingmultiple injection strategies. SAE Paper2005-01-0212
    [119]. Akihama, K., Takatori, Y., Inagaki, K., Mechanism of the smokeless richDiesel combustion by reducing temperature, SAE paper2001-01-0655,2001
    [120]. Kamimoto, T., and Bae M., High Combustion Temperature for the Reductionof Particulate in Diesel Engines, SAE paper880423,1988
    [121]. Lutz, A.E., Kee, R.J., and Miller, J.A., Senkin: A Fortran Program ForPredicting Homogenous Gas Phase Chemical Kinetics with Sensitivity Analysis,Sandia National Laboratories, SAND87-8248;1994
    [122]. T Kitamura, T Ito, J Senda and H Fujimoto, Mechanism of smokeless dieselcombust ion wi th oxygenated fuels based on the dependence of the equivalencerat io and temperature on soot particle formation, International Journal of EngineResearch,2002, Vol.3(4): a223-247

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700