用户名: 密码: 验证码:
望远镜光路实时对准方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着望远镜口径日益增大和光学系统复杂度的提升,工作过程中动态对准误源也变得越来越多。为了使望远镜能够长时间保持最佳工作状态,需实时修正其动态对准误差。本文对望远镜光路实时对准方法进行了深入研究,并针对其中的核心问题提出了具体的实现方案。
     通过对望远镜光路静态对准方法进行深入研究,并结合实时对准的需求,提出了望远镜光路实时对准的基本方法。其基本步骤为:量化对准误差,设计对准检测光路,检测信息处理,对准误差求解,对准状态评价,对准误差修正。其中,对准状态评价是指根据工作光路的探测结果来量化评价其工作状态;对准误差修正过程需要迅速、平稳,以保证工作光路的稳定性。该基本方法明晰了实时对准的基本要求和工作内容,具有一定的指导意义。
     对准误差求解是望远镜光路实时对准技术中的核心部分,主要研究对准误差的精确求解方法或量化判断条件及其边界条件。本文分别对基于图像信息和基于波前信息的对准误差求解方法进行了深入研究。
     在利用图像信息求解对准误差方面,本文利用动态光学模型深入研究了离散阵列光源、离焦星点图和次镜回转机构等在对准误差求解中的应用。采用离散阵列光源的对准误差求解算法是利用离散阵列光源产生参考光,然后通过离焦位置探测器上各光斑的变化计算出主次镜的对准误差,仿真表明该方法可以实现37μm和50″的对准精度;利用离焦星点图的对准误差求解算法则是利用次镜对入射光线的遮拦,根据离焦星点图内外环的信息计算出对准误差,利用该对准误差求解算法进行了RC地平式望远镜的主次镜对准实验,实现了最佳2.4″的角分辨率;利用次镜回转的对准误差求解算法则是使用一个线光源产生参考光,然后利用次镜回转时光斑的移动轨迹计算出主次镜的对准误差。
     在利用波前信息求解对准误差方面,本文深入研究了采用线性拟合的对准误差求解算法和利用像散分解的对准误差求解算法。线性拟合算法是指先通过分析对准误差和出瞳波前误差的各项泽尼克系数之间的关系,从而建立线性映射关系,在测出出瞳波前误差后,便可根据线性方程组求出对准误差,仿真表明该方法可以实现优于1μm和1″的对准精度;利用像散分解的对准误差求解算法是指通过像散项分解求出两组对准误差单独作用时产生的像散的大小,然后结合慧差项求解对准误差,仿真结果表明该算法可以实现优于5μm和0.5″的对准精度。
     工作光与探测器模块的对准问题主要体现在工作光与探测器模块的相对位置的稳定性上。针对量子通信后光路多光路探测、探测视场小等特点,使用共光轴的方法实现各探测光路的工作光与探测器模块的实时对准。室内测试和外场实验结果均达到了预期目标,证明了该方法的有效性。
     本文通过对望远镜光路实时对准技术的研究,提出了实时对准的基本方法,并深入研究了对准误差求解方法。对望远镜光路实时对准技术在实际工程中的应用有一定参考价值。
As the telescope aperture is increasing and the optical system complexity is upgrading, dynamic alignment errors of the telescope in work process also increase. In order to make the telescope keeping best working state for a long time, the dynamic alignment error of the telescope must be corrected in the real time. In this paper, the real-time alignment method of the telescope optical path was studied, and a concrete implementing scheme was proposed about the core problem.
     Through in-depth study of the static alignment technology of telescope optical path, combining the demand of real-time alignment, the basic method of the real-time alignment of telescope optical path was put forward. The basic steps were as follows:quantifying the alignment error, designing the alignment detection optical path, testing information processing, solving the alignment error, the evaluation of the alignment state, and the correction of the alignment error. Among them, alignment state evaluation referred to quantitatively evaluating working condition according to the detection results of telescope working optical path. The correction process of the alignment error should be quick and smooth to ensure the stability of the working optical path. The basic method clarified the basic requirements and the work content of the real-time alignment, and it had a certain guiding significance.
     The algorithm for solving the alignment error was the core part of the real-time alignment of telescope optical path. The accurate solution of the alignment error or quantification of the judgment conditions and boundary conditions were mainly studied. The algorithms for solving the alignment error based on image information and based on wave front information were studied respectively.
     In terms of using image information to solve the alignment error, dynamic optical model was used to study the discrete array light source, out-of-focus stellar images and the slewing mechanism of the secondary mirror to solve the alignment error. Alignment error algorithm based on discrete array light source was using the discrete array reference light source to produce reference light, and then calculating the primary and secondary mirror alignment error through the change of light spot in the detector from the focal position. The result indicated that this method could obtain the alignment accuracy of37μm and50". The algorithm for solving the alignment error based on out-of-focus stellar images was using the secondary mirror to block the incident light, and calculating the primary and secondary mirror alignment error of the telescope according to the information inside and outside the ring of the out-of-focus stellar images. This algorithm for solving the alignment error was used for the alignment experiment of the primary and secondary mirrors of the RC horizon telescope, the best angular resolution of2.4" had been obtained. The algorithm for solving the alignment error based on the secondary mirror rotation was using a linear light source to generate a reference light. Then, the movement trajectory of the spot during the secondary mirror rotating was used to calculate the alignment error of the primary and secondary mirrors.
     In using the wave front information to solve the alignment error, the algorithms for solving the alignment error based on linear fit and astigmatic decomposition were studied. Linear fit algorithm referred as follows:firstly, a linear mapping relationship was established by analyzing the relationship of the Zernike coefficient between the pupil front wave error and the alignment error. Then the alignment error could be obtained according to the linear equations after the pupil wave front error was obtained. The results indicated that this method could achieve the alignment accuracy better than1μm and1". The algorithm for solving the alignment error based on astigmatic decomposition firstly obtained the size of the astigmatism with only two alignment error by astigmatic decomposition, and then solved the alignment error by the coma items. The results indicated that this method could achieve the alignment accuracy better than5μm and0.5"
     The alignment problems of the telescope work light and the detector module were mainly reflected in the stability of the relative position. To address the issue of multi-light path detection of quantum communication, small detection field of view, the real-time alignment of the work light and the detector module were achieved by the common optical axis detection method. The results of indoor test and outdoor experiment both achieved the expected goal and this method proved to be effective.
     Through the study on the real-time alignment of telescope optical path, a basic method to align the optical path in real time was proposed, and the solution for alignment error was in-depth studied. The research had some reference value on practical applications of engineering.
引文
[1]陈丹.从伽利略到克拉克[J].太空探索,2009,2:62-65.
    [2]卞毓麟.光学天文望远镜的足迹[J].物理,2008,37(12):844-852.
    [3]宇长春.天文望远镜400年发展中对于光学知识的应用和拓展[J].2013,32(10):45-50.
    [4]张景旭.地基大口径望远镜系统结构技术综述[J].中国光学,2012,5(4):327-336.
    [5]H Philip Stahl.50+years of NASA Mirror Technology Development:from Hubble to JWST and Beyond[C]. Proc. of SPIE,2012.
    [6]P Schipani, F Perrortta, L Marty. Active optics correction forces for the VST2.6m primary mirror[J]. Proc. of SPIE,2006,6273:62733A.
    [7]张凯胜.拼接式反射镜检测技术研究[D].北京:中国科学院大学,2012.
    [8]乔彦峰,刘坤,段相永.光学合成孔径成像技术及发展现状[J].中国光学与应用光学,2009,2(3):175-183.
    [9]周志良光场成像技术研究[D].合肥:中国科学技术大学,2012.
    [10]周智伟.光学多孔径成像系统成像性能研究[D].北京:北京工业大学,2013.
    [11]姜文汉.自适应光学技术[J].自然杂志,2006,28(1):7-13.
    [12]杨晓飞.三反射光学系统的计算机辅助装调技术研究[D].北京:中国科学院大学,2004.
    [13]孙敬伟.地基大口径光电成像望远镜装调技术研究[D].北京:中国科学院大学,2011.
    [14]Rene Zehnder. Use of Computer Generated Holograms for Optical Alignment[D]. Arizona: The University of Arizona,2011.
    [15]Noethe L, Franza F, Giordano P, et al. Active Optics:From the test set up to the NTT in the observatory[C]. Proc. of SPIE,1989:314-319.
    [16]R N Wilson. Reflecting telescope optics Ⅱ [M]. Berlin:Springer,2001.
    [17]C Pernechela, F Bortoletto, A Cavazza, et al. Optical alignment of the Galileo telescope: results and on-sky test before active optics final tuning[C]. Proc. of SPIE,1999,3737:594-600.
    [18]李德培.天文光学望远镜的调校与检测[J].光学技术,1998,24(3):27-31.
    [19]李德培.2.16米天文望远镜光学系统的调整[J].光学仪器,2001,23(2):30-36.
    [20]李德培.大型Schmidt望远镜光学系统调整方法[J].光学技术,2007,33(S1):129-132.
    [21]李德培.“水平式”施密特(Schmidt)望远镜光学系统的调整方法与步骤[J].天文研究与技术:国家天文台台刊,2009,6(3):215-219.
    [22]De Groot P, Gallatin G, Gardopee G, et al. Laser feedback metrology of optical systems [J]. Applied optics,1989,28(13):2462-2464.
    [23]Gallagher B B. Optical Shop Applications for Laser Tracker[D]. Arizona:The University of Arizona,2003.
    [24]李杰,伍凡,吴时彬,匡龙,林常青.使用激光跟踪仪测量研磨阶段离轴非球面面形[J].光学学报,2012,32(1):116-120.
    [25]Li J, Wu S. Fast and accurate measurement of large optical surfaces before polishing using a laser tracker[J]. Chinese Optics Letters,2013,11(9):38-40.
    [26]张志彬,金福江,汤仪平.一种改进的一维搜索指数优化算法[J].华侨大学学报(自然科学版),2012,33(5):503-505.
    [27]张蓉竹,杨春林,石琦凯,许乔,蔡邦维.子孔径拼接干涉检测及其精度分析[J].光学学报,2003,23(10):1241-1244.
    [28]Chen S, Li S, Dai Y, et al. Lattice design for sub-aperture stitching test of a concave paraboloid surface[J]. Applied optics,2006,45(10):2280-2286.
    [29]王孝坤,郑立功,张学军.子孔径拼接干涉检测凸非球面的研究[J].光学学报,2010,30(7):2022-2026.
    [30]Paul H Merritt, John R Albertine. Beam control for high-energy laser devices [J]. Optical Engineering,2013,52(2):021005.
    [31]Merritt P H, Cusumano S J, Kramer M A, et al. Active tracking of a ballistic missile in the boost phase[C]. Proc. of SPIE,1996,2739:19-29.
    [32]Albertine J R, Siahatgar S, Bennett H E. High-power beam control:results-to-date and relevance to power beaming[C]. Proc. of SPIE,1997,2988:257-263.
    [33]Albertine J R. History of Navy HEL technology development and systems testing[C]. Proc. of SPIE,2002,4632:32-37.
    [34]Forden G E. The airborne laser[J]. Spectrum, IEEE,1997,34(9):40-49.
    [35]Kelchner B L, Dauk R C. ABL beam control segment[C]. Proc. of SPIE,1998,3381:8-13.
    [36]Anderson J, Sarkodie-Gyan T. Mechanical design and modeling of an inertial reference unit for laser beam stabilization[C]. IEEE,2004,16:389-396.
    [37]胡浩军.运动平台捕获,跟踪与瞄准系统视轴稳定技术研究[D].长沙:国防科技大学,2005.
    [38]许德新.无人机光电载荷视轴稳定技术研究[D].哈尔滨:哈尔滨工程大学,2011.
    [39]蔡立华.基于陀螺的舰载光电经纬仪视轴稳定技术研究[D].北京:中国科学院大学,2011.
    [40]David C Redding, Fang Shi, Scott A Basinger, et al. Wavefront Sensing and Control for Large Space Optics[J]. IEEE,2003,4:1729.
    [41]张斌,韩昌元.离轴非球面三反射镜光学系统装调中计算机优化方法的研究.光学学报,2001,21(1):54-58.
    [42]Zhishan Gao, Lei Chen, Songzuan Zhou, et al. Computer aided alignment for a reference transmission sphere of an interferometer[J]. Optical Engineering,2004,43(1):69-74.
    [43]J W Figoski, T E Shrode, and G F Moore. Computer-aided alignment of a wide field, three mirror, unobscured, high-resolution sensor [J]. SPIE,1989,1049:166-177.
    [44]Zhao Xi-ting, Jiao Wen-chun, Liao Zhi-bo, et al. Study on computer-aided alignment method of a three-mirror off axis aspherical optical system[C]. Proc. of SPIE,2010,7656:76566M.
    [45]Wang Bin, Jiang Shi-lei, Qiu Tian. Study on Computer-aided Alignment Method of Cassegrain System[C]. Proc. of SPIE,2010,7654:765405.
    [46]Zhang Xiao-ming, Chen Hong-bin, Wang Ji-hong, et al. Computer aided alignment for a Cassegrain telescope[C]. Proc. of SPIE,2012,8417:841728.
    [47]Yeon Soo Kim, Hyun Sook Kim, and Hyun Kyu Kim. Use of null optics for monitoring the optical alignment of a beam director[J]. Applied Optics,2005,44(20):4239-4243.
    [48]Yeon Soo Kim, Hyun Sook Kim, Yong Chan Park, et al. Laser beam director system monitoring the alignment state with a null reflector[C]. SPIE,2007,6569:656909.
    [49]E Luna. Telescope Alignment by Out of Focus Stellar Image Analysis [J]. The Astronomical Society of the Pacific,1999,111:104-110.
    [50]孙敬伟,陈涛,王建立等.基于离焦星点图的RC式望远镜装调技术[J].光学精密工程,2011,19(4):728-736.
    [51]S Kim, H-S Yang, Y-W Lee, et al. Merit function regression method for efficient alignment control of two-mirror optical systems [J]. Optics Express,2007,15(8):5059-5068.
    [52]E-S Oh, S Kim, Y Kim, et al. Integration of differential wavefront sampling with merit function regression for efficient alignment of three-mirror anastigmat optical system [C]. Proc. of SPIE,2010,7793:77930F.
    [53]韩杏子,俞信,董冰.随机并行梯度下降算法用于次镜校准的仿真研究[J].激光与光电子学进展,2010,47(4):042201.
    [54]韩杏子,胡新奇,俞信.高分辨率空间光学系统位置误差的无波前传感器综合校正[J].光学学报,2011,31(6):0626003.
    [55]王健.基于图像处理的自动调焦技术研究[D].北京:中国科学院大学,2013.
    [56]方恒楚.遗传模拟退火算法在光学系统计算机辅助装调中的应用[D].北京:北京交通大学,2008.
    [57]李浩洋,刘兆军,徐彭梅.浅谈空间光学遥感器稳像技术.航天返回与遥感,2010,31(6): 52-57.
    [58]Blanc P, Monroing G. Numerical Line of Sight Stabilization for High Resolution Earth Observation from High Orbits[C]. ESA Special Publication,2006,621:126.
    [59]Janschek Klaus, Tchemykh Valerij, Dyblenko Serguei. Intergrated Camera Motion Compensation by Real Time Image Motion Tracking and Image Deconvolution[C]. IEEE,2005:628-632.
    [60]刘日舁,高卫华Matlab的动态数据交换及其应用研究[J].测控技术,2001,20(6):39-45.
    [61]张文静,刘文广,刘泽金Zemax与Matlab动态数据交换及其应用研究.应用光学,2008,29(4):553-556.
    [62]刘志祥,马冬梅,田园,卞江.基于DDE接口技术的计算机辅助装调方法[J].应用光学,2009,30(3):486-490.
    [63]Dvid C Redding, Willianm G Breckenridget. Optical Modeling for Dynamics and Control Analysis [J]. Journal of Guidance, Control, and Dynamics,1991,14(5):1021-1032.
    [64]JET PROPULSION LABORATORY. Modeling and Analysis for Controlled Optical Systems User's Manual [M]. Jet Propulsion Laboratory,1997.
    [65]史建亮.光电跟踪系统集成建模与仿真技术研究[D].中国科学院大学,2010.
    [66]Malacara D. Optical shop testing[M]. New York:John Wiley&Sons, Inc,1987,105.
    [67]徐德衍.剪切干涉仪及其应用[M].北京:机械工业出版社,1987,8.
    [68]HariHaran P, Sen D. Radial shearing interferometer[J]. Journal of Scientific Instruments,1961,38(11):71-72.
    [69]Smartt R N, Steel W H, Theory and application of point-diffraction interferometer [J]. Japanese Journal of Applied Physics Supplement,1975,14:351-356.
    [70]Ragazzoni R. Pupil plan wavefront sensing with an oscillating prism[J]. Journal of Modern Optics,1996,43:289-293.
    [71]李新阳,姜文汉.哈特曼-夏克传感器的泽尼克模式波前复原误差[J].光学学报,2002,22(10):1236-1240.
    [72]吴腊红.夏克—哈特曼波前传感器精度标校研究[D].北京:中国科学院大学,2013.
    [73]张锐.焦面哈特曼传感器波前相位复原研究[D].北京:中国科学院大学,2013.
    [74]Roddier F. Curvature sensing and compensation:a new concept in adaptive optics[J]. Applied Optics,1988,27(7):1223-1225.
    [75]Blanchard P M, Fisher D J, Woods S C, et al. Phase-diversity wave-front sensing with a distorted diffraction grating [J]. Applied Optics,2000,39(35):6649-6655.
    [76]Guo-zhen Yang, Bi-zhen Dong, Ben-yuan Gu, et al. Gerchberg-Saxton and Yang-Gu algorithms for phase retrieval in a nonunitary transform system [J]. Applied Optics,1994,33(2):209-218.
    [77]Hedley M, Hong Yan. A modified Gerchberg-Saxton algorithm for one-dimensional motion artifact correction in MRI[J]. IEEE,1991,39(6):1428-1433.
    [78]C Roddier, F Roddier. Wave-front reconstruction from defocused images and the testing of ground-based optical telescopes [J]. J Opt Soc Am A,1993,10(11):2277-2287.
    [79]李强,沈忙作.基于相位差法的波前检测技术[J].光电工程,2006,33(11):114-119.
    [80]毛珩,王潇,赵达尊.复杂光瞳波前相位恢复算法与实验验证[J].光学学报,2009,29(3):575-581.
    [81]王欣,赵达尊,毛衍,王潇.相位变更方法发展简述[J].光学技术,2009,35(3):454-460.
    [82]张金凯Phase diversity在拼接镜piston相位检测中的应用[D].北京:中国科学院大学,2010.
    [83]李斐.相位差波前探测技术及其在图像恢复中的应用研究[D].武汉:国防科学技术大学研究生院,2011.
    [84]程强,闫锋,薛栋林等.利用相位差异技术检测离轴三反光学系统的波前误差[J].中国激光,2012,39(10):141-148.
    [85]Lawton H. Point-by-point approach to phase-diverse phase retrieval[C]. Proc. of SPIE,2003,4850:441-452.
    [86]Richard G Paxman, Brian J Thelen, Ryan J Murphy, et al. Phase-Diverse Adaptive Optics for Future Telescopes[C]. Proc. of SPIE,2007,6711:671103.
    [87]C Roddier, F Roddier. Combined approach to the Hubble Space Telescope wavefront distortion analysis [J]. Applied Optics,1993,32(16):2992-3008.
    [88]Krist J E, Burrows C J. Phase Restrieval Analysis of Pre-and Post-Repair Hubble Space Telescope Images[J]. Applied Optics,1995,34(22):4951-4964.
    [89]林妩媚.光学系统计算机辅助装调(CAA)机理的研究[J].光电工程,1999,26(S):49-52.
    [90]杨晓飞,张晓辉,韩昌元.用像差逐项优化法装调离轴三反射镜光学系统[J].光学学报,2004,24(1):115-120.
    [91]Eugene D Kim, Young-Wan Choi, Myung-Seok Kang. Reverse-optimization Alignment Algorithm using Zernike Sensitivity [J]. Journal of the Optical Society of Korea,2005,9(2):68-73.
    [92]H Lee, G. B Dalton, I A J Tosh, et al. Computer-guided alignment Ⅰ:Phase and amplitude modulation of alignment influenced optical wavefront[J]. Optics Express,2007,15(6):3127-3139.
    [93]H Lee, G. B Dalton, I A J Tosh, et al. Computer-guided alignment Ⅱ:Optical systemalignment using differential wavefront sampling[J].Optics Express,2007,15(23):15424-15437.
    [94]罗森,朱永田.计算机辅助装调方法在离轴卡塞格林系统中的应用[J].光学技术,2008,34(4):514-517.
    [95]车驰骋,李英才,樊学武.基于矢量波像差理论的计算机辅助装调技术研究[J].光子学报,2008,37(8):1630-1634.
    [96]史广维.基于矢量波前理论的反射镜望远系统装调研究[D].北京:中国科学院大学,2011.
    [97]张伟,刘剑峰,龙夫年.基于Zernike多项式进行波面拟合研究[J].光学技术,2005,31(5):675-678.
    [98]鄢静舟,孙厚环,高志强.用Zernike多项式进行波面拟合的一种新算法[J].数学物理学报,2000,20(3):378-385.
    [99]侯溪,伍凡,杨力.基于Zernike多项式的环孔径波面拟合方法[J].红外与激光工程,2006,35(5):523-526.
    [100]James C Wyant.Basic Wavefront Aberration Theory for Optical Metrology[M].NewYork:Academic Press,1992:35-38.
    [101]苏玉鑫.大射电望远镜精调Stewart平台的优化、分析与控制[D].西安:西安电子科技大学,2002.
    [102]段学超,仇原鹰,段宝岩.大射电望远镜精调Stewart平台结构刚度分析[J].机械科学与技术,2006,25(1):50-52,94.
    [103]郭洪波,刘永光,李洪人.六自由度Stewart平台动力学模型的特性分析[J].北京航空航天大学学报,2007,33(8):940-944.
    [104]吴培栋.Stewart平台的运动学与逆动力学的基础研究[D].武汉:华中科技大学,2008.
    [105]张诚,胡薇薇,徐安士.星地光通信发展状况与趋势[J].中兴通讯技术,2006,12(2):52-56.
    [106]钟可君,唐志列,卢非等.量子通信的研究进展和发展前景[J].光电子技术与信息,2005,17(6):16-20.
    [107]亓波,陈洪斌,任戈等.100km量子纠缠分发实验捕获跟踪技术[J].光学精密工程,2013,21(6):1628-1634.
    [108]张军.远距离量子通信[D].合肥:中国科学技术大学,2007.
    [109]叶俊.量子通信中的量子隐形传态技术研究[D].武汉:华中科技大学,2007.
    [110]张诚,顾闻博,柳迪等.星地光通信多点地面接收方案的初步研究[J].光子学报,2008,37(2):275-278.
    [111]印娟.自由空间量子通信实验研究[D].合肥:中国科学技术大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700