用户名: 密码: 验证码:
药用石蒜不同居群遗传多样性及驯化繁育技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究针对能提取加兰他敏(该药用于治愈阿尔茨海默病有明显疗效)的石蒜(Lycoris radiata)进行野生种质资源收集,运用现代分子标记技术(ISSR),对来源于9个省22个不同居群进行遗传多样性分析,在不同树种套种林下进行驯化培育,引用灰色关联度评价体系分析生长、生理、生物量、营养成分和加兰他敏含量之间的关联度及其与微环境因子的关联度,建立无性繁殖技术体系,开展优质资源初步选育等工作。取得以下主要研究成果:
     (1)石蒜野生居群种质资源开展基础研究,发现来自亚热带南部的居群生长节律期明显早于来自中北部居群,南部居群的繁殖系数、子鳞茎质量也均优于中北部居群,所有居群繁殖系数均值为5.81,子鳞茎质量均值为1.64 g。子鳞茎5个生物学性状相比,根系数量差异最大(3.42~7.98根),其次是高度差异(1.27~2.01 cm ),再次是质量差异(1.33~1.94 g ),最后是直径差异(1.03~1.23 cm )。初步选育YL16、YL13、YL22等3个加兰他敏接近或超过300μg·g~(-1)居群,建议作为一类优质资源开发利用。
     利用石蒜叶片基因组DNA为模板,建立其ISSR分析的最优化反应体系及应用程序:25μL反应体系中,有20 ng模板DNA、0.5μmol·L~(-1)随机引物、150μmol·L~(-1) dNTPs、2.0mmol·L~(-1) Mg2+、1.0 U Taq DNA聚合酶。反应程序为:94℃预变性300 s ;然后45个循环:每个循环94℃变性45s,55℃退火60s,72℃延伸120s;循环结束后72℃延伸420s。利用ISSR分子标记技术对14个野生石蒜居群进行遗传多样性分析,结果表明:物种遗传多样性很高,多态位点百分率为92.31%,Shannon指数h为0.4597,Nei指数I为0.3025;居群水平遗传多样性较低,多态位点百分率平均为49.65%,Shannon指数h平均为0.2620,Nei指数I平均为0.1763;居群间的遗传分化系数Gst为0.5035,基因流Nm为0.6983。而AMOVA分子变异分析显示:居群间遗传分化程度高,46.12%的变异发生在居群内,53.88%的变异发生在居群间。生境的片段化使居群间的基因流受阻,可能是居群间高遗传分化和居群水平低遗传多样性的主要原因。
     (2)建立石蒜与3种落叶树种、1种杜英套种驯化培育试验。套种引起微环境中光照效应、气温效应、湿度效应、土壤水分和土壤养分等存在差异。套种林下光照强度日变化曲线为抛物线,林下东西部测点分别在11点、13点最大值,同一树种林下不同测点光照强度曲线呈U状图;气温曲线为单峰抛物线,最高值在午后1:00,同一树种林下不同测点气温曲线呈小U型;不同树种套种林下不同测点湿度日变化曲线类似于字母U型。土壤含水量差异如下:杜英(25.004%)>栾树(20.997%)>重阳木(19.469%)>桤木(18.796%);土壤养分有不同程度的提高,提升的幅度依次为:速效P(-23.53~100%)>水解N(2.73~56.21%)>有机质(6.59~41.07%)>速效K(2.37~31.62%)。
     微环境对石蒜生长影响相当复杂。套种林下石蒜叶片叶绿素在不同生长发育季节为动态变化过程,但不同测点值基本平稳(1.84~2.16 mg·g~(-1)),叶绿素a/b的比值在1.38~2.05之间变化;套种构成的荫蔽程度差异表现在叶绿素荧光参数FV/FM(均值0.793)明显高于全光照下(0.779),其中重阳木林下、栾树林下、桤木林下、杜英林下的FV/FM分别是对照的101.54%、101.71%、101.71%和102.48%。套种在栾树下干、鲜生物量最大;套种后加兰他敏比对照提高,由高到低排序依次是:杜英(21.39μg·g~(-1))>桤木(16.61μg·g~(-1))>重阳(14.80μg·g~(-1) >栾树(13.53μg·g~(-1))。年度生长发育期内加兰他敏出现二个高峰(休眠中期7月97.536μg·g~(-1)和叶旺盛生长11月51.6343μg·g~(-1))、二个低峰(休眠初期4月6.3277μg·g~(-1)和花后的8月22.9554μg·g~(-1))。加兰他敏含量从第1年的5.6475μg·g~(-1)上升第5年的116.2253μg·g~(-1),第3~5年含量是快速增长期,建议加强后期管理,减少鳞茎自然分蘖,在休眠中期7月进行资源采集和制药提取。
     通过对石蒜的生长性状、生理指标、生物量、营养成分与环境因子关联度分析,发现影响以上指标的主导环境因子存在差异性,但发现相对湿度和土壤水分是制约其生长的关键环境因子。对石蒜生长指标与环境因子回归分析,发现叶面积、鳞茎高度、根鲜重、鳞茎鲜重、鳞茎干重、蛋白质、可溶性糖、淀粉及还原糖与环境因子回归显著水平均低于0.05,相关性显著;叶鲜重、叶干重、根干重、第三年度鳞茎加兰他敏含量与环境因子回归显著水平分别均低于0.01,相关性极显著,建立的回归方程均可用;鳞茎宽度、第二年度鳞茎加兰他敏含量与环境因子回归显著水平大于0.05,相关性不显著,建立的回归方程不可用。经对石蒜性状之间的关联度分析,发现不同性状均有与其密切相关的性状,根据一个性状与其他性状关联度可推测其他性状特点,为石蒜优质资源培育提供一定技术指导。
     (3)田间实验设计3种施肥措施能增加石蒜的干、鲜物质。肥料种类对增加鳞茎体积由好到差排序:钾肥>复合肥>氮肥。影响石蒜生物产量构成因素效果的肥料种类排序也是钾肥>氮肥>复合肥,实践中发现钾肥连续施用导致鳞茎自然分蘖增多,可提供制药原料的鳞茎数量减少。
     盆栽试验发现钾肥能提高根系活力、根系CEC差异和加兰他敏含量,三者年度变化曲线十分相似。增施钾肥0.3 g·kg~(-1)、0.6 g·kg~(-1),鳞茎的根系活力、根系CEC差异和加兰他敏含量比对照均有小幅增长;增施钾肥0.9 g·kg~(-1)时,鳞茎的根系活力、根系CEC差异和加兰他敏含量均达到最大值(97.35 ug·g~(-1)h ~(-1)、9.67 cmol·kg~(-1)、276.4054μg·g~(-1));施钾肥继续增长到1.2 g·kg~(-1)时,上述指标反而降低。
     (4)石蒜自然繁殖系数为2.495~2.656。在不同生长发育期进行无性繁殖,繁殖系数呈现双高峰曲线图,其值则在0.80~6.8之间变动;欲获得较高无性繁殖系数,建议在休眠期的6月、7月及初叶期的9月繁殖;欲获得较大质量的子鳞茎宜在初叶期的9月和落叶期的4月繁殖;欲获得横径较大的子鳞茎宜在6、7、9和4月份繁殖;在3~7月和9月进行繁殖,获得子鳞茎的根系发育良好。中国石蒜(L.chinensis)母鳞茎个体之间繁殖系数差异从1~19个不等,繁殖系数均值为7.09,母鳞茎质量不能作为挑选作为获得繁殖系数较多的标志。
     通过对石蒜离体培养诱导胚性愈伤组织及其分化。优化培养条件后建立起高效的离体再生繁殖体系。结果表明:改良MS+BA 5 mg·L~(-1)+NAA 3 mg·L~(-1)组合胚性愈伤组织诱导率最高,3个月诱导率可达100%;改良MS+BA 1.8 mg·L~(-1)+ KT 0.7 mg·L~(-1)+NAA 2.5 mg·L~(-1) +peptone 100 mg·L~(-1)处理对胚性愈伤增殖和分化效果较好,且分化苗可再次被诱导出胚性愈伤组织;MS+BA 1.5 mg·L~(-1)+KT 0.5 mg·L~(-1)+NAA 2 mg·L~(-1) +YE 100 mg·L~(-1)+Sugar 8%是较好的优化处理组合,能有效缓解胚性愈伤组织玻璃化严重问题以及维持相对稳定的增殖与分化速度。
Lycoris radiata is special for its value to contain galanthamine, which is the main component of the cure for the alzheimer’s disease. Genetic diversity was evaluated among/within 22 wild L. radiata populations naturally distributed in nine provinces by ISSR (inter-simple sequence repeat) markers. The collected L. radiata plants were domesticated by inter-planting with different tree species. With the help of the Grey Relation Analysis, the degree of association between the galanthamine content and the growth characteristics, physiological indices, biomass, and nutrient components was evaluated, along with the relation of the galanthamine content to the micro-environmental factors. The system of vegetative propagation was established to select and breed high-quality L. radiata germplasm. The main results are as follows:
     (1) A basic research on wild populations indicated that the annual growth rhythm of populations from the southern part of the subtropical zone was earlier than that from the north-central part. The vegetative propagation coefficient and young bulbs mass of populations from the southern part were similarly better than those from the north-central part. The average vegetative propagation coefficient of populations was 5.08, with the young bulb mass of 1.64 g. Comparison of five biological characters of young bulbs revealed that the number of roots varied from 3.42 to 7.98, the height of bulb from 1.27 to 2.01 cm, the mass of bulb from 1.33 to 1.94 g, and the diameter of bulb from 1.03 to 1.23 cm. Three preliminarily bred populations YL16, YL13, and YL22, whose galanthamine content was as high as, if not more than, populations with the content of galanthamine of 300μg.g~(-1), are suggested to be exploited as high quality resources.
     The stable and reproducible reaction system of ISSR-PCR amplification was established for L. radiata, which was: 20 ng template DNA, 1 U Taq DNA polymerase, 2.0 mmol·L~(-1) Mg2+, 200μmol·L~(-1) dNTPs and 0.5 mmol·L~(-1) primer in the 25μL reaction volume. The amplification program consisted of an initial step of 94℃for 300 s for pre-denaturation, 45 cycles of 94℃for 45 s, 55℃for 50s,and 72℃for 120 s,followed by final 1 cycle of 72℃for 420 s for extension. The genetic diversity of 14 L. radiata populations was analyzed by ISSR markers. The results showed that at the species level, the percentage of polymorphism (P) was 92.31%, Shannon’s index (h) was 0.4597, and Nei’s gene diversity (I) was 0.3025, indicating a high level of genetic diversity. At the population level, however, they were 49.65%, 0.2620, and 0.1763, respectively, suggesting a low level of genetic diversity. The gene differentiation coefficient (Gst) and gene flow among the populations were 0.5035 and 0.6983, respectively. The analysis of molecular variance (AMOVA) demonstrated that there was a relatively high level of genetic variation (46.12%) among populations and a relatively low genetic variation (53.88%) within populations. The high genetic differentiation among populations and the low genetic diversity within populations could be attributed to the habitat fragmentation and the limited gene flow among populations.
     (2) The trial of domestication and cultivation of L. radiata and other four tree species, including three deciduous species and one evergreen species, was carried out. The differences, such as illumination intensity, air temperature, humidity, soil moisture, and soil nutrient, were remarkably present in the different interplant patterns. The curve of daily variation of illumination intensity under the different inter species was parabolically shaped, and the illumination intensity of the test points of eastward and westward arrived at the culmination on the 11:00 am and 1:00 pm. The curve of space division of daily illumination intensity under the different test points was in an U shape. The curve of daily variation of air temperature under the different inter species was in singlet parabolic shape, and air temperature arrived at the culmination on 1:00 pm. The curve of space division of daily air temperature was as similar as U shaped. The curve of daily variation of humidity under the different inter species was also similar to be U shape. The differences of soil moisture ranked from high to low by species as Elaeocarpus sylvestris (25.004%), Koelreuteria paniculata (20.997%), Bischofia poiycarpa (19.469%), and Alnus cremastogyne (18.796%). In a way, soil nutrients had been improved after cultivating L. radiata, with a range ranking from high to low as rapidly available phosphorus (-23.53~100%), hydrolysable nitrogen (2.73~56.21%), organic matter (6.59~41.07%), and rapidly available potassium (2.37~31.62%).
     Micro-environment had a complicated impact on the growth of L. radiata. Chlorophyll content ofL. radiata’s leaf under different inter-planting species displayed continuous changes in different growth season, but different test points from different inter-planting species kept almost stable (1.84~2.16mg.g~(-1)) with the ratio of Chlorophyll a/b ofL. radiata’s leaf varying from 1.38 to 2.05. The daily variation of PSⅡphotochemistry (FV/FM,0.793) ofL. radiata’s leaf under different inter-planting species remarkably surpassed the data(FV/FM,0.779) under full-exposure. PSⅡphotochemistry(FV/FM ) ofL. radiata’s leaf under cultivating Bischofia poiycarpa, Koelreuteria paniculata, Alnus cremastogyne and Elaeocarpus sylvestris was respectively, 101.54%, 101.71%, 101.71%, and 102.48% higher than that under full-exposure. The new and dry biomass of L. radiata under cultivating Koelreuteria paniculata were the heaviest. The galanthamine content ofL. radiata’s bulbs coming from inter-planting species was higher than that coming from full-exposure, and the range of galanthamine content of L. radiata’s bulbs from high to low was Elaeocarpus sylvestri(s21.39μg·g~(-1)), Alnus cremastogyne (16.61μg·g~(-1)), Bischofia poiycarpa (14.80μg·g~(-1)), and Koelreuteria paniculata (13.53μg·g~(-1)). Galanthamine content ofL. radiata’s bulbs usually demonstrated two peak periods (97.536μg·g~(-1) in July of the dormancy stage, and 51.6343μg·g~(-1) in November of the leaf growth stage) and two bottom periods (6.3277μg·g~(-1) in April of the initial dormancy stage and 22.9554μg·g~(-1) in August after flowering). The galanthamine content ofL. radiata’s bulbs ascended from the first year (5.6475μg·g~(-1)) to the fifth year (116.2253μg·g~(-1)), with a rapid and stable phase from the third year to the fifth year.
     By analyzing the grey relation between growth characteristics, physiological index, biomass modular, nutrient component, galanthamine content, and environmental factors, it was found that difference was present in the principal environmental factors affecting these indices, and humidity and soil moisture were the key environmental factors restraining the bulbs growth. Regression analysis indicated that there was a significant linear correlation between leaf area, bulbs’length, root fresh weight, bulbs’fresh weight, bulbs’dry weight, protein, soluble sugar, starch, reducing sugar, and environmental factors at the 5% level. There was a significant linear correlation between leaf fresh weight, leaf dry weight, root dry weight, and galanthamine content in the third year at the 1% level. All regression equations are available. But significant linear correlation between bulb-width, and galanthamine content in the second year could not be constructed at the 5% level. Through analyzing regression among growth characters, it was found that one character usually related to other characters, from which other characters could be speculated.
     (3) Three field-experiment-schemes on fertilization could increase bulbs fresh and dry biomass. Different kinds of fertilizers could increase the bulb size and affect the bulbs biomass increment, with an effect ranging from good to poor: potassium fertilizer, compound fertilizer, and nitrogen fertilizer; potassium fertilizer, nitrogen fertilizer, and compound fertilizer. An increase in the natural tiller number of bulbs, in addition, was observed after continuously applying potassium fertilizer.
     In the potting experiment, potassium fertilizer increased root activities, root CEC, and galanthamine content of bulbs, and these showed similar daily variation curves in shape. Compared with control, root activities, root CEC, and galanthamine content of bulbs were improved via increasing potassium application by 0.3 g·kg~(-1) or 0.6 g·kg~(-1). Root activities, root CEC, and galanthamine content of bulbs rose to a peak of 97.35 ug·g~(-1)h ~(-1), 9.67 cmol·kg~(-1), and 276.4054μg·g~(-1) when potassium application was increased to 0.9 g·kg~(-1). However, these indices mentioned above started to decline when potassium was applied by the dosage of 1.2 g·kg~(-1).
     (4) The natural propagation coefficient of L.radiata bulbs ranged from 2.495 to 2.656. The curve of vegetative propagation coefficient took on two peaks under different development phases, varying from 0.80 to 6.8, In order to get high vegetative propagation coefficient, it is suggested that vegetative propagation should be carried out in June, July, and September. In order to get more massive young bulbs, vegetative propagation should be carried out in September and April. In order to get larger young bulbs, vegetative propagation should be carried out in June, July, September, and April. In order to get good root activities, vegetative propagation should be carried out from March to July, and in September. The number of young bulbs produced varied from in L. chinensis, with the average of vegetative propagation coefficient being 7.09.
     Embryogenic callus (EC) was induced and differentiated by tissue culture in L. aurea. Embryogenic callus inductivity reached 100% in three months with the treatment of improved MS+BA 5 mg·L~(-1)+NAA 3 mg·L~(-1).Improved MS+BA 1.8 mg·L~(-1)+KT 0.7 mg·L~(-1)+NAA 2.5 mg·L~(-1)+peptone 100 mg·L~(-1) was favorable for multiplication of embryogenic callus and for promoting differentiation of somatic embryo. Under this medium the embryogenic callus could be induced from sprouts again. MS+BA 1.5 mg.L~(-1)+KT 0.5 mg.L~(-1)+NAA 2 mg.L~(-1) +YE 100 mg·L~(-1)+Sugar 8%, a better medium, could effectively alleviate the problem of seriously vitrifiation as well as sustaining a relatively stable speed of multiplication of embryogenic callus and promotion differentiation of somatic embryo.
引文
[1] William Jagust, Alzheimer’disease,Family Caregiver Alliance.2002.
    [2]李谷才,尹瑞沚 ,夏姣云等.阿尔茨海默病发病机理研究进展.脑与神经疾病志,2005,13(4):311-312,305.
    [3]杨晓军,刘锐军,李奇峰.乙酰胆碱酯酶抑制剂研究现状.长江大学学报(自然科学版),2005,2(5):49-51.
    [4]刘涛.加兰他敏合成工艺的研究.浙江大学材料与化学工程学院,博士学位论文.2006,4,10-16.
    [5] Lorenzo A, Yuan M,Zhang Z et al. Amyloid beta interacts with the amyloid precursor protein: a potential toxic mechanism in Alzheimer’s disease. Nature Neurosci, 2000, 3:460-464.
    [6] Yamagata.High expression of apolipoprotein E mRNA in the brains with sporadic Alzheimer’s disease. Dement-Geriatr-Cogn-Disord,2001 Mar-Apr,12(2):57-62.
    [7]朱奇,李振涛,纪宇等.加兰他敏治疗阿尔茨海默病作用机制的研究进展.天津药学,2005,17(3):38-40.
    [8] Esperanza Arias, Eva Ales, Nelson H.et al. Galantamine prevents apoptasis induced byβ-amyloid and thapsigargin: involverment of nicotinic acetycholine receptors. Neuropharmacology. 2004,46:103.
    [9] Afonso Caricati-Neto. Luiz Garlos Aberch D’anfelo. Haydee Reutee. et al. Enhancement of purinergic neurotransrnission by galantamine and acetylcholinesterase inhaibitors in the rat ves deferens.Europen J Pharm,2004,503:191.
    [10]殷剑.加兰他敏治疗轻至中度阿尔茨海默病人的有效性及安全性:多中心随机对照试验.英国医学杂志,2001,4(4):224-227.
    [11]袁志敏,ErkinjunttiT.加兰他敏治疗血管性痴呆及阿尔茨海默病疗效分析.国外医学:老年医学分册.2003,24(6):287-287.
    [12]马振英,赵文丽.氢溴酸加兰他敏获准在美国上市.Foreign Medical Sciences Sectionon Pharmacy ,2001,28(6):378.
    [13]唐君波,彭六保,崔巍等.加兰他敏市场前景浅析.中国药房,2006,17(22):1609-1692.
    [14]栾伟,石蒜中加兰他敏的微波辅助提取、分离和分析的研究,中山大学硕士学位论文,2004,6,1-42.
    [15]肖观秀,超临界萃取技术提取石蒜中加兰他敏的工艺研究,天津大学化工学院硕士学位论文,2005,2,3-25.
    [16]张俊梅,王明新,申雅维.石蒜科生物碱研究Ⅻ:薄层色谱鉴别石蒜生物碱和高效液相色谱法测定加兰他敏的含量.药物分析杂志,1999,19(6):399–403.
    [17] Mustafa N R,Rhee K,Verpoorte R.靳朝东,译.用HPLC法快速测定石蒜科植物中的加兰他敏.国外医药:植物药分册,2005,20(1):26.
    [18]吴芳丽,李爱珍,毛慧芳.RP-HPLC测定石蒜中加兰他敏含量.中国中药杂志,2005,30(7):523–525.
    [19] Zhang Lu,Cao Fu-liang.Advance on the culture technology in the Genus Lycoris. ACTAAGRICULTURAE UNIVERSITIS JIANGXIENSIS,2001,23(3):375-378.
    [20]杨志玲,谭梓峰.石蒜资源的开发利用和繁育研究建议.经济林研究,2003,21(4):97-99.
    [21]杨志玲,冯刚利,谭梓峰,等.红花石蒜ISSR-PCR反应体系的建立.林业科学研究,2006,19(4):509-512.
    [22]范华均,林广欣,肖小华等.微波辅助提取石蒜和虎杖中有效成分的动力学机理.分析化学研究报告,2006,9:1260-1264.
    [23]范华均,肖小华,李攻科.微波辅助提取石蒜和虎杖中有效成分的动力学模型.高校学校化学学报,2007,28(6):1049-1054.
    [24]范华均,林广欣,肖小华等.微波辅助提取石蒜和虎杖中有效成分的热力学机理研究.高等学校化学学报,2006,27(12):2271-2276.
    [25]范华均,栾伟,李攻科.微波辅助提取/HPLC分析石蒜中的生物碱.分析测试学报,2006,5(3):27-30.
    [26]范华均,肖小华,刘玉竹等.微波辐射溶剂回流法提取石蒜中石蒜碱、力可拉敏和加兰他敏.中山大学学报,2006,45(3):46-51.
    [27]令狐昱慰,李多伟.石蒜属植物的研究进展(综述).亚热带植物科学,2007,36(2):73-76
    [28]李霞,李攻科,张展霞.微波辅助萃取技术的进展.分析化学,2003,31(10):1261-1268
    [29]陈红辉.从石蒜粗提物中分离高纯度加兰他敏的方法,01342010.9,2004年4月21日.
    [30]林定勇,石蒜属球根花卉之分类、形态、生长与开花.中国园艺(台湾),1993,39(2):67-72.
    [31]梁素秋,许圳涂.金花石蒜预生花芽分化与发育特性及其诱导因素的探讨.中国园艺(台湾),1992,38(3):139-148.
    [32]王磊,汤庚国,刘彤,等.球根花卉花期调控的研究进展.南京林业大学学报:自然科学版.2004,28(1):66-70.
    [33] Li Yu-ping,Yu Feng,Tang Geng-guo.Effect of planting density and shading leval on the growth and the qulity of cut flowers of Lycoris ladiata, JOURNAL OF NANJING FORESTRY UNIVERSITY(NATURAL SCIENCES ),2004,28(3):93-95.
    [34]李淑顺,赵九洲,袁娥.几种石蒜属花卉观赏性状的灰色评价.徐州师范大学学报(自然科学版),2004,22(1):69-72.
    [35]韩锦隆.金花石蒜天然开花期之变温及人工花期调节方法之研究.宜兰农工学报,1991(10):105-121.
    [36]梁素秋.金花石蒜花芽分化及体外培养之探讨.国立台湾大学园艺研究所,硕士论文,1992,1-15.
    [37]中国科学院植物志编委会编.中国植物志.北京:科学出版社,1985,16(1):16-27.
    [38]王仁师.关于石蒜属的生态地理.西南林学院学报,1990,10(1):41-48.
    [39]赵天荣,施永泰,蔡建刚.石蒜属植物的研究进展.北方园艺,2008(4):65-69.
    [40]李云龙.石蒜属植物引种及开发利用.中国花卉园艺,2007,11,15:38-41.
    [41]刘志高,邵伟丽,黄华宏.石蒜属植物的园林应用.河北农业科学, 2008, 12 (3): 52-54
    [42] Kurita S,Karyotypic.orthoselection in the genus Lycoris Amaryllidaeeae.Pro Sino jpn Symp Pl Chr Res,1987,100-106.
    [43] Kurita S.Variation and evolution in the karyotype of Lycoris.AmaryllidaceaeⅢ, intraspecific variationin the karyotype of L.traubii Hayward. Cytologia ,1987 ,52 :117-128.
    [44] Bose S.A new chromosome number and karyotype in L. radiata.Nature,1963,197 (4873):1229-1230.
    [45] Tae,Kyoung Hwan,Sung Chul Ko,Kim Y S,A Cytotaxonomic study on genus Lycoris in Korea.Kor J Plant Tax,1987,17:135-145.
    [46]林巾箴,邱新军.石蒜属几种植物的花粉大小及其生活力的测定.杭州植物园通讯,1984(2):18-19.
    [47]徐炳声,林巾箴,俞志洲.从花粉生活力和杂交后的结实率评价石蒜属内的种间关系.遗传学报,1986,13(5):369-376.
    [48]周守标,余本祺,罗琦等.石蒜属植物花粉形态及分类研究.园艺学报,2005,32(5): 914-917.
    [49] Ren X F, Zhou SB, Chu X H,et al. Studies on the pollenmorphology of 6 species ofLycoris Herb. in China. Journal of Anhui Normal University (Natural Science), 1994, 17 (1):49-52(in Chinese).
    [50] Ren X F, Zhou S B, Zheng Y, et al. Studies on the pollen morphology of the genus Lycoris in China. Acta Botanica Yunnanica, 1995,17(2): 182-186 (in Chinese).
    [51] LIU Zheng wei, XIAO Dexing, ZHANG Lu. Microsporgenesis and Development of Male Gametophyte in Lycoris radiata Herb.. ACTA AGRICULTURAE UNIVERSITIS JIANGXIENSIS,2006,28(2):234-238.
    [52]秦卫华,余本祺,周守标.安徽省九华山野生石蒜居群的核型研究.安徽师范大学学报,2004,27(4):440-442.
    [53] Godwin ID,Aitken EAB,Smith LW.Application of inter simple sequence repeat(ISSR)markers to plant genetics.Electrophoresis,1997,18:1524-1528.
    [54] Goodall JA, Stoddart JA.Techniques for the electrophoresis of mangrove tissue.Aquat.Bot,1989,35:197-207.
    [55] Hamrick JL,Godt MJW.Allozyme diversity in plant species.In:Brown AHD,Clegg MT,Kahler AL,et a1.Plant Population Genetics,Breeding and Genetic Resource.Sunderland,Massachusetts:Sinauer,1990, 43-63.
    [56]秦卫华,余本祺,周守标.安徽省九华山野生石蒜居群的核型研究.安徽师范大学学报,2004,274):440-442.
    [57]秦卫华,周守标,汪恒英,等.A new chrornosome number and karyotype in Lycoris radiate in Anhui Prown,广西植物,2004,24(1):29-32.
    [58]周守标,秦卫华,余本祺,等.安徽产石蒜两个居群的核型研究.云南植物研究,2004,(4):421- 426.
    [59]陈耀华,李懋学.四种石蒜属植物的染色体核型研究.园艺学报,1985,12(1):57-60.
    [60]刘琰,徐炳声.石蒜属的核型研究.植物分类学报,1989,27(4):257-264.
    [61]邵建章,杨积高,张定成等.二倍体石蒜在安徽发现.植物分类学报,1994,32 (6):549-552.
    [62] Bose S.A new chromosome number and karyotype in L. radiata.Nature,1963,197 (4873):1229-1230.
    [63] Inariyama S.Cytological studies in the genus Lycoris( Preliminary notes).Bot Mag Tokyo.1931,45:11-26.
    [64] Inarryama S Cytological studies in the genus Lycoris(Ⅰ).Sci Rep Tokyo Bunrika Daigaku Sect B1951a,6:74-l00.
    [65] Kurita S.Variation and evolution in the karyotype of Lycoris.AmaryllidaceaeⅢ,intraspecific variation in the karyotype of L.traubii Hayward. Cytologia ,1987,52 :117-128.
    [66] Tae,Kyoung Hwan,Sung Chul Ko,Kim Y S,A Cytotaxonomic study on genus Lycoris in Korea.Kor J Plant Tax,1987,17 :135 -145.
    [67] Takemura E.Morphological and cytological studies on artificial hybrids in the genus LycorisⅡ.Artificial hybrida among the different species haVibg only rod—shaped chromosomes.Bot Mag Tokyo,1962,75:72-79.
    [68] Bose S.Flory W S.A. study of phylogeny and karyo type evolution in Lycoros.Nucleus,1963,6(2):141-156.
    [69] Bose S.A new chromosme number and karyo type in L.radiata.Nature,1963,197(4873):1229-1230.
    [70] Kurita S.Variation and evolurtion in the karyotype 0f Lycoris,Amaryllidaceae V,chromosomal vatiation in L.sanguinea MaximL.p1.spec.Biol,1989,4:47-60.
    [71] Kurita S.Karyotypic orthoselection in the genus Lycoris Amaryllidaeeae.Pro Sino jpn Symp Pl Chr Res,1987,100-106.
    [72]徐炳声,黄少甫,赵治芬等.石蒜及其矮小变种染色体核型的分析.植物研究,1984,4(1):112-117.
    [73]徐炳声,黄少甫.长筒石蒜的染色体核型分析.植物分类学报,1984,22(1):43-45.
    [74]徐炳声,黄少甫.红兰石蒜和换锦花的染色体核型分析.南京中山植物园研究论文集,1983,15-19.
    [75]徐炳声,黄少甫,赵治芬,等.石蒜及其矮小变种染色体核型的分析.植物研究, 1984,4 (1):112-117.
    [76]徐炳声,黄少甫,等.安徽石蒜和中国石蒜染色体核型的分析.云南植物研究,1984,6 (1):79–83.
    [77]李懋学,陈瑞阳.植物染色体核型分析的标准.武汉植物研究,1985,3(4):297-302.
    [78]陈耀华,李懋学.四种石蒜属植物的染色体核型研究.园艺学报,1985 ,12 (1):57-60.
    [79]张定成.中国石蒜核型分析.安徽师范大学学报,1988,2:36-39.
    [80]刘琰,徐炳声.石蒜属的核型研究.植物分类学报,1989,27(4):257-264.
    [81]孙叶根,郑艳,张定成等.安徽石蒜四种植物核型研究.广西值物,1998,18(4):363-367.
    [82]柯丽霞,孙叶根,郑艳等.石蒜属三种植物的核型研究.安徽师范大学学报(自然科学版),1998,21(4):343-348.
    [83]张定成,孙叶根,郑艳,等.三倍体换锦花在安徽发现.植物分类学报,1999,37(1):35-39.
    [84]余本祺,王彤,周守标,等.安徽省中国石蒜的核型研究.皖西学院学报,2004,(2):30-32.
    [85] Levan A, Freclga K, Sandberg A A. Nomenclatrue for centrommericposition on chromosomes. Hereditas, 1964, 52(2):201-220.
    [86]秦卫华,周守标,汪恒英,等.石蒜属植物的研究进展.安徽师范大学学报,2003,26(4):385-390.
    [87] Deng Chuan-liang,Zhou Jian.Study on leaf mico-morphological characteristice of Lycoris.ACTA BOTANICA BOREALI-OCCIDENTALIA SINICA, 2005,25(2):355-62.
    [88] Deng Chuan-liang,Zhou Jian.长筒石蒜花被片DNA的提取及ISSR体系的建立.ACTA AGRICULTURAE UNIVERSITIS JIANGXIENSIS,2005,27(2):257-261.
    [89]邓传良,李存胜,周坚,等.长筒石蒜种质资源的ISSR研究.河南师范大学学报:自然科学版,2006,34(1):98-101.
    [90]袁菊红,彭峰,冯煦,等.应用HPLC图谱进行石蒜属种间关系与分类研究.西北植物学报,2007,27(11):2195-2110.
    [91] Zhang Lu,Cai youming,Zhu geqiang. Analysis of the Inter-species Relationships on Lycoris (Amaryllidaceae) by Use of RAPD, Acta Genetica Sinica,,2002,19(1):915-921.
    [92]吴玲,卢毅军,史树德,等.中国石蒜属种间亲缘关系ITS序列分析.亚热带植物科学,2007,31(1):31-35.
    [93]史树德.石蒜属种间关系和杂交起源的研究.浙江大学,博士学位论文,2006,1-25.
    [94]袁菊红,权俊萍,胡绵好,等.石蒜SRAP-PCR扩增体系的建立与优化.植物资源与环境学报,2007,16(4):1-6.
    [95]张雷凡,高燕会,朱玉球.石蒜属植物种质资源ISSR—PCR反应体系的建立.浙江林学院学报,2007,24(2):151-156.
    [96]邓传良,刘建,周坚.长筒石蒜居群遗传多样性RAPD分析.广西植物,2007,27(3):401-405.
    [97]沈明山,叶志伟.石蒜的人工栽培.夏门科技,1999,2:13-14.
    [98] LI Ai-Rong, ZHOU Jian. Study of the Growth Cycle and Development of Lycoris chinensis leaves. CHINESE BULLETIN OF BOTANY,2005,22(6):680-686.
    [99] Liu Xiaoping Studies on the Senescence Process of Lycoris Longituba Leaves. NANJING FORESTRY UNIVERSITY, Master's Thesis,2005,1-35.
    [100] Li Ai-rong,Zhou Jian.Study on the growth cycle and devolopment of Lycoris Chinese leaf. CHINESE BULLETIN OF BOTANY,2005,27(1):17-21.
    [101]周守标,罗琦,李金花,等.石蒜属12种植物叶片比较解剖学研究,云南植物研究,2006,28(5):473-480.
    [102]王磊,赵九洲,汤庚国.几种植物生长调节剂对石蒜生理生化特性的影响.南京林业大学学报(自然科学版),2004,28(4)39-42.
    [103]金雅琴,黄雪芳,李佟林,等.中国石蒜花期前后内源多胺的动态变化.浙江林学院学报,2007,24(4):419~423.
    [104]郭兆武,虢国成,熊远福.两种野生石蒜的光合生理细胞学及栽培特性比较.西北农业学报,2007,16(2):134-141.
    [105]武维华.植物生理学,北京:科学出版社2003:150-210.
    [106]王磊,汤庚国,赵九州.3种石蒜属植物开花特性的研究.江苏农业科学,2008,1:112-115.
    [107]森源治郎.石蒜属的开花生理与培养.农耕与园艺,1990(12):136-139.
    [108]吕美丽,许东辉.金花石蒜栽培技术之研究.桃园农业改良场特刊,台湾.1988.
    [109]易军,许彩霞.石蒜鲜切花贮运技术初探.林业科技开发,2004,18(2):23-26.
    [110]杨旭,杨志玲,冯刚利,等.钴离子(Co2+)浓度对忽地笑切割瓶插衰老生理的影响,林业科学研究,2007,20(3):134-138.
    [111]金雅琴.石蒜叶生长规律和内源激素的动态研究.南京林业大学,硕士学位论文,2002.22-33.
    [112]李淑顺,赵九州,袁娥.几种石蒜属花卉观赏性状的灰色评价.徐州师范大学学报(自然科学版),2004,22(1):69-72.
    [113]刘青,石蒜属植物的繁殖与栽培.安徽农业科学,2007,35(33):10678-10679.
    [114]罗琦.石蒜属植物鳞茎发育生理及盐胁迫下叶片生理变化研究.安徽师范大学,硕士学位论文,2007,11-25.
    [115] Wang Huayu. Studies on the Seed Character and Probulb Formation of Lycoris Chinesis. NANJING FORESTRY UNIVERSITY, Master's Thesis,2007,1-53
    [116] Zhang Lu,Wang Guang-ping,Cao Fu-liang.Studies on vegetaiton in the Genus Lycoris. JOURNAL OF NANJING FORESTRY UNIVERSITY(NATURAL SCIENCES ), 2002,26(4):1-5.
    [117]姚青菊,夏冰,彭峰.石蒜鳞片切片扦插繁殖技术.江苏农业科学,2004,(6):108-110
    [118] Li Yu-ping,Zhang Qing-feng,Tang Geng-guo.Quick propergation of bulb-scale Lycoris radiata. JOURNAL OF NANJING FORESTRY UNIVERSITY(NATURAL SCIENCES ),2005,29(2):103-105.
    [119] XIE Ju-ying, ZHANG Lu, LIAN Fang-qing,et al. Effects of Growth Regulator on the Bulb Propagation of Lycoris radiata Herb. JOURNAL OF NANJING FORESTRY UNIVERSITY(NATURAL SCIENCES )2006,30(3):125-127
    [120]崔德才,徐培文主编.植物组织培养与工厂化育苗.化学工业出版社,1-8.
    [121]叶南,陈元胜.药用植物组织培养在中药领域的应用研究.安徽农业科学,2007,35(24):7502-7502,751.
    [122]张智慧,张金渝,金航.组织培养在药用植物育种上的应用,西南农业学报,2006,19(B09):496-499.
    [123]黄璐琳,胡尚钦,杨晓.药用植物生物工程研究进展Ⅰ.组织和细胞培养研究.中草药.2006,37(4):486-491,520.
    [124]高增平,江佩芬,何斌.野生石蒜与其组织培养品的化学成分对比研究.北京中医科大学学报,1995,18(3):60-61.
    [125]林纯英,马溯轩.金花石蒜之鳞片组织培养繁殖.中国园艺,1987,33(4):255-264.
    [126]鲁雪华,陈杨春.忽地笑胚外植体的培养.云南植物研究, 1986,8(4):467-469.
    [127]董庆华,田惠桥.石蒜的组织培养.植物生理学通讯, 1995,31(3):204.
    [128]朱锦,诸葛强,余水生等.石蒜组培繁殖技术的研究.浙江林业科技, 2002,22(4):45-48.
    [129]何树兰,束晓春,姚青菊等.石蒜的组织培养.江苏林业科技, 2003,30(4):18-21.
    [130] Wang GuangPing;Chen Ying;Zhou Jian;Zhang Lou;Huang MinRen.Bulb Induction and Plant Regeneration of Lycoris longituba. PLANT PHYSIOLOGY COMMUNICATIONS,2005, 41(4):457-460.
    [131]吕玉华.石蒜组织培养及其生物多样性的ISSR分析.四川大学,硕士学位论文,2006.
    [132]刘志高,童再康,储家淼.乳白石蒜组织培养.浙江林学院学报,2006,23(3):347-350.
    [133]林田,刘灶长,李天菲,等.不同激素配比对红花石蒜小鳞茎及茎尖的分化培养的影响.上海农业学报,2006,22(4): 45-47.
    [134]肖艳,彭菲,王清等.黄花石蒜的组织培养研究.湖南中医学院学报, 2006,26(01):27-28.
    [135]王清,彭菲,肖艳.黄花石蒜的组织培养和植株再生.植物生理学通讯, 2006,42(2):259.
    [136]郭永兵,雷泽湘,吴亚鹏等.湖北野生石蒜驯化栽培初探.长江大学学报(自然科学版),2008,5(3):21-24,30.
    [137]林巾箴,邱新军,俞亚芳.石蒜科植物花粉贮藏及发芽率的测定.杭州植物园通讯,1985(1):34-36.
    [138]林巾箴,俞志洲,阮斌.石蒜科植物杂交育种试验及花粉生活力之测定.杭州植物园通讯,1986(2):23-26.
    [139]徐炳声,林巾箴,俞志洲等.换锦花与中国石蒜的种间杂交.园艺学报,1986,13(4):283-284
    [140]林巾箴.石蒜属内远缘杂交育种.杭州植物园通讯,1985(3):28.
    [141]林巾箴.石蒜属植物种间杂交的亲合性.杭州植物园通讯,1985(2):24-25
    [143]林巾箴,俞志洲.石蒜属新种预告.杭州植物园通讯,1986(4):1.
    [144]洪山海,李静芳,马广恩.石蒜科生物碱的研究Ⅳ.加兰他敏生产工艺及高含量植物的寻找.药学通报,1979,14(7): 372.
    [145]洪山海,李静芳,徐汝巽.石蒜科生物碱的研究Ⅵ.加兰他敏的薄层层析及纸层析鉴别法.植物学报,1981,23(4):334.
    [146]阮龙喜.石蒜科植物生物碱的一些研究进展.药学通报,1988,23(8):453.
    [147]邓传良,周坚.石蒜属植物生物碱研究概况.中国野生植物资源,2004,23(6):13-14.
    [148]李霞,熊远福,蒋利华,等.荧光法测定石蒜中加兰他敏含量.作物研究,2006,2:149-150.
    [149]李霞,熊远福,蒋利华,等.一步法提取石蒜中加兰他敏和石蒜碱.化工进展,2008,27(6):904-912.
    [150]耿中峰,吕惠生,张敏华.石蒜中加兰他敏超临界萃取工艺研究.中草药.2008,39(4):543-546.
    [151]张日清,何方.植物引种驯化理论与实践述评.广西林业科学,2001,30(1):1-6.
    [152]李振蒙,李俊清.植物引种驯化研究概述.内蒙古林业调查设计,2007,30(4):47-50,65.
    [153]万淑荣.药用植物引种驯化分析.林业勘查设计,2002,3:71.
    [154]何建永,高凤树,赵拴刚.引种驯化的原则和程序.河北农业科技, 2002, (6):20.
    [155]杨丽萍,安华轩.重视药用植物的栽培研究促进中药材种植业的发展.云南农业科技,2002,4:12-14.
    [156]曾波,何忠俊,毛昆明,等.药用植物施肥研究进展.云南农业大学学报.2007,22(4):587-592.
    [157]何元农,丁映,洗福荣等.肥料种类对艾纳香生物产量和有效成分含量的影响.贵州农业科学,2005.33(5):53-57.
    [158]韩建萍,梁宗锁,孙群,等.丹参根系氮、磷营养吸收及丹参酮累积规律研究.中国中药杂志,2004,29(4):207-210.
    [159]冷文金,魏有其,况英,等.施肥种类对家种丹参成分丹参酮ⅡA含量的影响.中成药.2002,24(6):434-435.
    [160]李伯刚,陈建中,周瑾.不同肥料对黄山药根茎产量和薯蓣皂甙元含量的影响天然产物研究,2001,13(4):27-29.
    [161]谈锋,邓君.钾营养对牛膝生物量和多糖含量的影响.西南师范大学学报(自然科学版),2001,26(6):699-702.
    [162]张永清,商庆新.药用植物次生代谢与中药材GAP.世界科学技术—中医药现代化*中药材栽培研究,2005,7(2):67-74.
    [163]刘咏梅,低钾对番红花光合作用的影响,西南师范大学学报,1997,22(4:):426-429.
    [164]刘咏梅,谈锋.低钾对番红花叶片中超氧物歧化酶,过氧化氢酶,过氧化物酶活性和膜脂过氧化的影响,西南师范大学学报:自然科学版,1999,24(1):116-119.
    [165]刘咏梅,谈锋.钾营养对番红花水分关系的影响.西南农业大学学报,2000,22(4):356-358,364.
    [166]刘咏梅,谈锋.钾营养对番红花蒸腾速率日变化的影响.西南师范大学学报:自然科学版,2000,25(5):626-628.
    [167]刘芸,龙云,朱利泉.钾对番红花球茎膨大的生理生态效应.应用生态学报,2004,15(4):663-666.
    [168]冯夏莲,何承忠,张志毅.植物遗传多样性研究方法概述.西南林学院学报,2006,26(1):69-74.
    [169]葛淑俊,孟义江,李广敏等.我国药用植物遗传多样性研究进展.中草药,2006,37(10):1584-1589.
    [170]张传军,刘亦肖,肖娅萍.遗传多样性与植物的遗传标记.陕西师范大学学报(自然科学版),2006,34(4):275-278.
    [171]钱韦,葛颂.居群遗传结构中显性标记数据分析方法初探.遗传学报,2001,28:244-255.
    [172]王绍先,王飞,刘成柏等.DNA分子标记技术在濒危物种保护中的应用.生态学杂志C,2008,27(2):250-256.
    [173] GrozdickerT,Williams J,Sharps P, et al.Physical mapping of temperature -sensitive mutations of adenovirus. Cold Spring Harbor Syrup Quant Biol, 1974, 39: 439.
    [174] Litt M, Luty J A. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am. J. Hum. Gene., 1989, 44:397-401.
    [175] Lander E S. The new genomics: global views of biology. Science, 1996, 274:536-539.
    [176] Williams J G, Kubelik A R, Livak K J, et al. DNA Polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res,1990, 18:6531-6535.
    [177] Zabeau M, Vos P. Selective restriction fragment amplification: a general method for DNA fingerprinting [J]. European Patent Application Number, 1992, 9(24):26-29.
    [178] Zietkiewicz E, Rrafalski A, Labuda D. Genome finger printing by simple sequence repeat (SSR) anchored polymerase chain reaction amplification.Genomics, 1994, 20:176-183.
    [179]李海生.ISSR分子标记技术及其在植物遗传多样性分析中的应用.生物学通报,2004,39(2):19-20.
    [180]鲍海鸥,陈波红.石蒜属植物资源的开发利用.中国野生植物资源,2000,19(5):31-32.
    [181]钱丹,何海波,杨志玲等.石蒜中加兰他敏和力可拉敏的提取及高效液相色谱法分析.药物分析杂志,2009,29(1):104-106.
    [182]左慧,杨志玲,杨旭等.石蒜球茎生物学性状及营养成分年变化规律研究.江西农业大学学报,2007,29(4):598-602.
    [183]杨志玲,谭梓峰,杨旭.施肥对红花石蒜物质积累和分配的影响.中南林学院学报,2006, 26(6):150-154.
    [184]杨志玲,杨旭,谭梓峰等.肥料种类及不同生长期施肥对石蒜生长性状、生物量及自然分蘖的影响研究.中国林学会经济林分会2007年年会论文集(获得年度优秀论文), 2007:112-116.
    [185]杨志玲,杨旭,左慧.钾营养对石蒜鳞茎生理指标影响的研究.中国林学会首届东部林木遗传育种学术会议论文集,浙江杭州,2007:201-205.
    [186]杨志玲,杨旭,谭梓峰等.不同生长发育期红花石蒜切割繁殖系数及小球生物学性状差异性研究.林业科学研究,2008,21(3):308-310.
    [187]杨志玲,杨旭,谭梓峰等.中国石蒜母球个体无性繁殖差异及其对子球生物学性状的影响.第八届中国林业青年学术年会论文集,专刊,2008:200-204.
    [188]欧阳彤,杨志玲.石蒜高效繁殖离体再生体系的建立.农业生物技术学报,2007,15(增刊):77-81.
    [189]李合生.现代植物生理学,北京:高等教育出版社,2002:45-143.
    [190]谭纪萍,张晓红,王鲁宁.阿尔茨海默病的流行病学研究概况.中华预防医学杂志,2005,3,39(2) :146-147.
    [191]中国树木志编委会主编.中国主要树种造林技术.北京:农业出版社,1978.775-779
    [192] Wang Yan,Su Xue-hen,Peng Zhen-hua. Review of study on plant shade—tolerance.Forest Research, 2002,15 (3):349-355.(in Chinese).
    [193] Cai Yongping,Li Ling,Li Hesheng,etc. Daily change of photosynthesie and chlorophyll fluoresce of Dendrobium huoshanense.Acta Horticulture Sinica, 2004,31(6):778-783.(in Chinese).
    [194] Cai Sif-zhen,Chen Qi-bing,Pan Yuanzhi,et al. Effects of photosynthetic characters and chlorophyll fluorescence parameters on Asarum splendens under different sun-shading treatments.Joumal of Sichuan Agricultural University, 2004,22 (4):326-331.(in Chinese).
    [195] Zhang Yajie,Feng Yulong.Difference in light acclimation mechanisms between light- loving and shade tolerant Ficus species.Journal of Plant Physiology and Molecular Biology,2004,30(3):297-304.(in Chinese).
    [196]缴丽莉,路丙社,周如久,等.遮光对青榨械光合速率及叶绿素荧光参数的影响.园艺学报,2007,34(1):173-178.
    [197]安锋,林位夫.植物耐荫性研究的意义与现状.热带农业科学,2005,25(2):68-72.
    [198]伍世平,王君健,于志熙.11种地被植物的耐荫性研究.武汉植物研究,1994, 12(4):360-364.
    [199]鲁守平,隋新霞,孙群,等.药用植物次生代谢的生物学作用及生态环境因子的影响.天然产物研究与开发,2006,18(6):1027-1032.
    [200]唐中华,于景华,杨逢建,等.植物生物碱代谢生物学研究进展.植物学通报,2003,20(6):696-702.
    [201] Zu YG,Tang ZH,Yu JH,Zhao CJ,et al. Diferent responses of camptothecin and10-hydroxy—camptothecin to heat shock in Camptotheata acuminate.Acta Bot Sin.2003b,45:809-814.
    [202] Su WH,Zhang GF,Li XH,et al. Relationship between accumulation of secondary metabolism in medicinal plant and environmental condition.China Tradit Herb rug,2005,36:1415-1418.
    [203]成海宏,王建林,常天军等.西藏栽培白菜型油菜种群构件与环境因子的灰色关联度分析.生态科学,2007,26(6):495-500.
    [204]唐艳龙,温小遂,许永青等.应用灰色关联度分析环境因子与萧氏松茎象危害程度的关系.江西农业大学学报,2007,29(3):356-359,388.
    [205]王建林,成海宏,常天军等.西藏野生芥菜型油菜构件种群相互关系及其与气候因素的灰色关联度分析,生态科学.2006(6):507-511,516.
    [206]林英华,张夫道,杨学云等.陕西农田土壤动物群落与长期施肥环境的灰色关联度分析.植物营养与肥料学报,2005,11(5):609-614.
    [207]徐莉,王丽,岳明,等.新疆阜康荒漠红砂种群构件结构与环境因子的灰色关联度分析.植物生态学报,2003,27(6):742-748.
    [208]司徒琳莉,袁长友.次生代谢产物:代谢途径、分类、作用及其产生(Ⅰ).牡丹江师范学院学报, 2001, (3):11-15.
    [209]武维华.植物响应低钾胁迫及钾营养高调控网络机制研究.中国基础科学研究进展,2007,2:18.
    [210]杜丽娜,张存丽,朱纬.植物次生代谢合成途径及生物学意义.西北林学院学报,2005,20(3):150-155.
    [211] Haubron F.Partial pyrification and characterization of fructokinase from developing taproots of sugar beet (Beta vulgaris).Plant Sci, 1995,110:181-186.
    [212] Witn,GW.丙酮酸激酶活性与苹果苦痘病发生的关系.国外农学:果树.1991(3):46-48.
    [213] Kang J G, Pyo Y J, Cho J W. Comparative proteome analysis of differentially expressed proteins induced by K+ deficiency in Arabidopsis thaliana. Proteomics,2004,4:3549-3559.
    [214] Yang X E,Liu J X, Wang W M,et al. Potassium internal use efficiency relative to growth vigor, potassium distribution, and carbohydrate allocation in rice genotypes.J of Plant Nutrition.2004,27(5):837-852.
    [215]王旭东,于振文,王东.钾对小麦茎和叶鞘碳水化合物含量及子粒淀粉积累的影响.植物营养与肥料学报,2003,9(1):57-62.
    [216]谭勇,梁宗锁,王渭玲,等.氮、磷、钾营养对膜荚黄芪幼苗根系活力和游离氨基酸含量的影响.西北植物学报,2006,26(3):0478-0483.
    [217]李廷轩,马国瑞.籽粒苋不同富钾基因型根际钾营养与根系特性研究.报,2004,18(6):90-93.
    [218]邹春琴,李振声,李继云.小麦对钾高效吸收的根系形态学和生理学特征.植物营养与肥料学报,2001,7(1):36-43.
    [219]徐良主编.中国名贵药材规范化栽培与产业化开发新技术.北京:中国协和医科大学出版社,2001.
    [220]任华东,姚小华,孙祥银等樟树种源苗期生物量变异及其综合评价.林业科学研究,2000,13(1):80-85.
    [221]李纪元,饶龙兵,王惠雄等.枫杨种源苗期生长及生物量地下变异研究.林业科学研究,2001,14(1):60-66.
    [222]余琳,张萍,周志春等.木荷种源苗期干物质积累和分配差异.林业科学研究,2005,18(1):91-94.
    [223]赵万里,古丽森,古丽江.云杉种和种源间生物量的测定.新疆农业科学,2003,40(2):94-97.
    [224]杨益花,张亚洁,苏祖芳.施氮量对杂交水稻产量构成因素和干物质积累的影响.天津农学院学报,2005,12(1):6-8,30.
    [225]刘生荣,刘党培,贾涛.化肥基施对转基因抗虫棉营养器官发育、干物质积累和产量的影响.植物营养与肥料学报,2005,11(2):282-234.
    [226]阗素红,蔡忠民,杨兆生等.不同肥力对晚播小麦开花后地上器官干物质积累运转及产量的影响.麦类作物学报,2000,20(3):46-49.
    [227]韩立军,李羽,王守富.钾肥对玉米根系生长状况及地上干物质积累的影响.吉林农业大学学报.2004,26(1):10-12,22.
    [228]张晓燕,华春.钾肥对油菜干物质积累及分配的影响.淮阴师范学院学报(自然科学版),2003,2(4):333-337.
    [229]倪丽,章建新,金加炜等.氮肥施用对高产大豆根系、干物质积累及产量的影响.新疆农业大学学报,2004,27(2):36-39.
    [230]张志梅,志席,郭玉海等.白芷干物质积累和异欧前胡素的动态研究.中草药,2005, 35(6):902-904.
    [231]王文颇,朱小平,李彦生等.菘蓝营养生长期干物质积累与氮磷钾吸收动态的研究.中国中药杂志,2005,30(15):1195-1197.
    [232]刘学周,蔺海明,漆琚涛等.养分对当归干物质积累及产量的影响研究.中国农学通报,2004,20(4):188–190.
    [233]魏建和,程惠珍,李昆同等.北柴胡器官建成与干物质积累规律的研究.中药材,2003,26 (7):469-471.
    [234]范巧佳,袁继超,吴卫.薏苡干物质积累特性的研究.四川农业大学学报,1998, 16(2):237-240.
    [235]李廷轩,张锡洲,王昌全,周建新.根系CEC、ATP酶活性和根际微生物对籽粒苋富钾能力的影响.四川农业大学学报,2002,20(4):354-356.
    [236]曹慧,王孝威,付循成.高等植物的钾营养.北方园艺,2008(2):48-51
    [237]彭海欢.缺钾对水稻叶片光合特性、抗氧化酶的影响及其诱导早衰机制的研究.浙江大学,硕士学位论文,2006,6.
    [238]杨峰,王永慧,杨朝华,等.钾营养对高品质棉株不同部位纤维成熟度影响的研究.棉花学报, 2008,20(4):312-314.
    [239]王明香,聂俊华,张华芳.钾营养研究进展.云南农业大学学报,2000.15(4):356-358.
    [240]刘建洋,杨肖娥,杨玉爱,等.低钾胁迫下水稻钾高效基因型若干生长特性和营养特性的研究,植物营养与肥料学报,2003,9(2):190-195.
    [241] [290]史春余,王振林,赵秉强.钾营养对甘薯块根薄壁细胞微结构的14C同化产物分配和产量的影响.植物营养与肥料学报,2002,8(3):335-339.
    [242]史春余,王振林,赵秉强等.钾营养对甘薯某些生理特性和产量形成的影响.植物营养与肥料学报,2002,8(1):81-85.
    [243]邹春琴,李振声,李继云.小麦对钾高效吸收的根系形态学和生理学特征.植物营养与肥料学报,2001,7(1):36-43.
    [244]郭丽琢,张福琐.不同时期的钾素营养对烤烟含钾量及其他品质指标的影响.农业现代化研究,2003,24(4):292-295
    [245]韩立军,李羽,王守富.钾肥对玉米根系生长状况及地上干物质积累的影响.吉林农业大学学报,2004,26(1):10-12,22
    [246]刘芸,龙云,朱利泉.钾对番红花球茎膨大的生理生态效应.应用生态学报,2004,15(4):663-666.
    [247] Zhang Men-xin,Ling Bin, Kong Chui-hua,et a1.Allelopathic potential of volatilc oil from Mikamia micrantha.Chinese Journal of Applied Ecology,2002,13(10):1300-1302.(in Chinese)
    [247] Ma Bo-ying and Xu Li Gen.2007.Efects of Different Nitrogen Supply on Photosynthesis,Antioxidant Enzymes in Vetiver Leaves. Acta Horticulturae Sinica,32(5):947-953. (in Chinese)
    [248] Gierth M, Maser P, Schroeder J.The potassium transporter at HAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKTIK+ channel contribution to K+ uptake kinetics in Arabidopsis roots. Plant Physiol,,2005,137:1105-1114.
    [249]化党领,介晓磊,韩锦锋.植物钾吸收的分子水平的研究.植物营养与肥料学报,2002,8(3):377-393.
    [250]屈云慧,张婷,张艺萍等.文山百合的离体培养及其试管籽球快速繁殖.植物生理学通讯.2007,43(5):901-901.
    [251]陈诗林,黄敏玲.低温和赤霉素对亚洲百合开花及鳞茎繁殖的效应.吉林农业大学学报,2007,29(5):511-517
    [252]万珠珠,龙春林,程治英.重要野生花卉大百合属植物研究进展.云南农业大学学报,2007,22(1):30-34.
    [253]陈沁滨,王建军,薛萍等.洋葱种质资源与遗传育种研究进展.中国蔬菜,2008(1):37-42.
    [254]帅正彬,熟江洪,杨斌等.大蒜气生鳞茎的快速繁殖作用研究.长江蔬菜.2008 (B08):29-30.
    [255]刘高琼,张学平.大蒜试管鳞茎微繁技术研究.南京农业大学学报,1996,19(3):31-36.
    [256]陈段芬,高健,彭镇华.水仙属植物研究进展.林业科学,2008,44(3):140-146.
    [257]何玮毅,陈晓静,陈祥檀.黄花水仙和南日岛水仙的组培快繁.福建农林大学学报:自然科学版,2005,34(3):313-317.
    [258]谢嘉华,袁建军.中国水仙( Narcissus tazetta var.chinensis )的组织培养.生物学杂志,2002,19(3):30-30,36.
    [259]陈春满,何蜜丽,叶燕.红花文殊兰的组织培养和植株再生.植物生理学通讯,2008,44(5):950-950.
    [260]魏翠华,谢宇,陈沁.文心兰试管苗分化及育苗技术研究.亚热带植物科学,2008,37(1):37-40.
    [261]飞雄,张孟锦,邹春萍等.蜜糖文心兰的组织培养与工厂化生产技术创新.广东农业科学,2007(10):35-38.
    [262]崔广荣,张子学,张从宇等.文心兰原球茎液体增殖培养研究.激光生物学报,2007, 16(3):338-343.
    [263]谷凤,候卓捷,张志平等.文心兰丛生芽组培快繁研究初报.中国农学通报,2007, 23(2):85-88.
    [264]欧阳彤,陈胜,汪凤珍.文心兰规模化组培育苗关键技术研究.林业科学研究,2006, 19(5):606-611.
    [265]崔凯荣,邢更生.体细胞胚发生的生化基础.生命科学,2001,13(1):28-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700