用户名: 密码: 验证码:
采动煤岩冲击破裂的震动效应及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为煤岩体震动在采掘空间内的动力显现,冲击矿压的发生与采动煤岩破裂密切相关。因此,冲击矿压有效预测及治理目标的实现,煤岩震动震源破裂机理及其冲击破坏效应的研究显得至关重要。论文围绕矿井采动煤岩冲击破裂的震动效应问题,采用理论分析、实验室物理模拟、数值模拟分析、现场试验和工程实践等方法,研究了采动诱发煤岩震动的震源破裂机理,揭示了矿震辐射能量的传播模式与衰减规律,分析了矿震动载的诱冲机理及其对巷道围岩冲击破坏效应的影响因素,并提出了煤岩冲击的预测及防治对策,最后在工程实践中进行了实证研究。
     煤矿井下采掘后,采场或巷道周围煤岩体要产生破裂、运动。其中:顶板弯拉断裂、冒落、离层等具有典型拉伸破裂特征;顶板回转失稳、煤柱压缩破裂等具有典型内爆破裂特征;而顶板剪切破裂、岩块滑移失稳、煤柱动态冲击和断层“活化”等则具有典型剪切破裂特征。以此,构建了煤岩震动震源等效力与震动远场位移的关系矩阵,建立煤岩震动的等效震源模型,研究了其震动位移场及能量辐射特征,揭示煤岩震动间的震源破裂机理差异,并根据震动波场特征进行煤岩震动的分类。
     实验室模拟研究并比较分析了顶板、煤(矿)柱和断层型等煤岩冲击破裂的微震效应及波场特征。结果表明,大尺度岩板主断裂、两次次断裂分别符合顶板水平拉伸、滑移和回转失稳的位移波场特征;弱、强冲击倾向性煤岩试样压缩受载分别近似满足煤(矿)柱内爆和动态冲击破裂的波场特征;且岩板主、次断裂,煤岩样前兆破裂、主震动间随破裂尺度增大,微震效应主要呈振幅增加、主频降低的演变规律。
     采用矩张量反演方法进行采动煤岩震源破裂机理的量化研究。结果表明,采用P、S波,尤其是P、SH波或P、SV、SH波的的震动位移场组合进行震源矩张量的最小二乘线性反演,可确保反演结果较好反映采动煤岩冲击破裂的震源机理和破裂特征。
     现场进行了爆破震动试验及Siroseis微震实测工作,对冲击震动波在采动煤岩体中传播的微震效应进行研究。结果表明,随采空区跨落、破裂范围扩大及覆岩性质的强度弱化,震动P波平均波速、峰值振幅平均值及P波初至平均频率等微震参量均有较大程度降低。
     理论分析了矿震激发震动波能量的传播模式和衰减特征,揭示了传播至巷道围岩处矿震残余动载的诱冲机理,数值模拟研究了矿震动载对巷道围岩冲击破坏效应的影响规律,进而提出了煤岩冲击预测及防治对策。
     在具有强矿震危险的鲍店103上02工作面和高冲击危险的华亭250102工作面进行了现场实践,基于SOS微震监测,对比分析各自开采地质条件下,采动诱发不同能量级别煤岩震动的震源破裂机理及强矿震动载对巷道围岩的不同冲击破坏效应,为现场煤岩冲击的预测及防治提供依据。
As the dynamic behavior of mining-induced tremor of coal-rock mass in longwall faces or roadways, rock burst is closely related to the failure of coal-rock mass associated with mining. Therefore, studies on the failure mechanisms and burst effects of mining-induced tremors are quite essential for the forecasting and prevention of rock bursts. Focusing on the seismic effects of the burst and failure of coal-rock mass associated with mining, this paper studied the failure mechanisms of typical mining-induced tremors, revealed the transmission and attenuation rules of the seismic energy radiated by tremors. Additionally, the mechanism of rock burst induced by tremor, and the influential factors of the burst effort to surrounding rock of the roadway, as well as the corresponding forecasting and control method were analyzed by theoretical analysis, laboratory physical simulation experiment, numerical simulation, field testing, and engineering practice as well.
     Mining-induced coal and rock fracturings or movements near the roadways or longwall faces will be generated by mining activity underground. Generally, the tremors induced by roof tensile fracturing, caving and bed separation have a typical tensile failure source characteristics, the tremors induced by roof rotation and compressive fracturing of coal pillar show a typical implosive failure characteristics, while the tremors induced by roof shear fracturing, rock block sliding, dynamic bursting of coal pillar and fault reaction are characterized by typical shear fracturing source model. Based on above, equivalent source models of mining-induced tremors were established based on the construction of the relation matrix between the equivalent force and the far-field displacement, then the characteristics of seismic displacement and radiated energy were studied, and the differences of failure mechanism of typical mining-induced tremors were revealed as well. Finally, different tremors were classified according to the differences of seismic displacement characteristics.
     Laboratory-scaled experiments were carried out to analyze the seismic effects and displacement field characteristics of roof, coal pillar, and fault burst and failure modes systematically. Studies indicate that the displacement fields of main shock, two aftershocks of the rock block conform to roof horizontal tensile fracturing, sliding and rotation instability, respectively, and the weak and strong burst-prone coal/rock samples under uniaxial compression approximately conform to the implosive failure and dynamic bursting of coal pillar, respectively. In addition, the seismic effects take on the evolution rules of amplitude increasing and dominant frequency decreasing with the extension of the failure radius.
     Moment tensor inversion method was used to quantitatively analyze the failure mechanisms of mining-induced tremors. Studies show that a satisfying inversion result of failure mechanism and fracturing characteristic deternimantion of mining-induced tremor can be achieved by least-square linear inversion of moment tensor, using the combination of P, S-wave displacement fields, especially P, SH-waves, or P, SV, SH-waves.
     Seismic effects during the transmission of seismic waves in coal-rock mass associated with mining process were studied by on-site testing and Siroseis monitoring. Results show that the average P-wave velocities, mean values of Comb. Max. Amplitudes and frequencies of the first arrivals were reduced greatly by roof caving, goafing expanding and intensity weakening of the overlying strata associated with mining process.
     Seismic energy transmission and attenuation modes radiated by mining-induced tremors were theoretically analyzed, and the mechanism of rock burst induced by residual dynamic load of tremor was revealed. Then, the influential factors of the burst effort to surrounding rock were simulated by using dynamic modules of FLAC2D and source-time function simulation of mining-induced tremors. Finally, the corresponding forecasting and control method of rock burst were proposed.
     Taking LW10302 in Baodian Coal Mine with strong tremor risk and LW250102 in Huating Coal Mine with high burst risk for the on-site practice. Based on SOS microseismic monitoring and the respective mining and geological conditions of the two mines, the failure mechanisms of mining-induced tremors with different energy levels and the seismic effects of strong tremors on the surrounding rocks of roadways or longwall faces were comparatively analyzed, which provides basis for the forecasting and prevention of rock burst.
引文
[1]钱鸣高,许家林.煤炭工业发展面临几个问题的讨论[J].采矿与安全工程学报,2006,23(2):127-132.
    [2]赵生才.深部高应力下的资源开采与地下工程——香山会议第175次综述[J].地球科学进展,2002,17(2):295-298.
    [3]李希勇,张修峰.典型深部重大冲击地压事故原因分析及防治对策[J].煤炭科学技术,2003,31(2):15-17.
    [4]黄福昌.兖州矿区矿震防治技术研究与探讨[J].煤炭科学技术,2006,31(1):69-72.
    [5]李伟.鲍店煤矿矿震规律初探[J].山东煤炭科技,2006,(3):41-43.
    [6]王慧明.三河尖煤矿冲击矿压的特点及治理[J].矿山压力与顶板管理,2004,(1):115-117.
    [7]李铁,蔡美峰,张少泉等.我国的采矿诱发地震[J].东北地震研究,2005,21(34):1-26.
    [8]窦林名,何学秋.冲击矿压防治理论与技术[M].徐州:中国矿业大学出版社,2001.
    [9]窦林名,何学秋.采矿地球物理学[M].徐州:中国矿业大学出版社,2001.
    [10]窦林名,赵从国,杨思光等.煤矿开采冲击矿压灾害防治[M].中国矿业大学出版社,2006.
    [11]何满潮,谢和平,彭苏萍,等.深部开采岩体力学[J].岩石力学与工程学报,2005,24(16):2803-2813.
    [11]钱鸣高.20年来采场围岩控制理论和实践的回顾[J].中国矿业大学学报,2000,19(1):1-4.
    [12]何满潮.深部的概念体系及工程评价指标[J].岩石力学与工程学报,2005,24(16):2854-2858.
    [13]齐庆新,窦林名.冲击地压理论与技术[M].中国矿业大学出版社,2008.
    [14] Gibowicz S J, Kijko A. An introduction to mining seismology[M]. San Diego: Academic Press, 1994.
    [15]曹安业,窦林名,秦玉红等.微震监测冲击矿压技术成果及其展望[J].煤矿开采,2007(1):20-23.
    [16] Ortlepp W D. Rock fracture and rockbursts[M]. Johannesburg: SAIMM, 1997.
    [17]郭然,潘长良.有岩爆倾向硬岩矿床采矿理论与技术[M].北京:冶金工业出版社,2003.
    [18]佩图霍夫.煤矿冲击地压[M].王右安译.北京:煤炭工业出版社,1980.
    [19]布霍依诺.矿山压力和冲击地压[M].李玉生译.北京:煤炭工业出版社,1985.
    [20] Ortlepp W D. High ground displacement velocities associated with rockburst damage[C]. Rockbursts and seismicity in mines, Young eds. Rotterdam: Balkema, 1993:101~106.
    [21]惠乃玲,刘耀权,杨明皓,等.抚顺老虎台煤矿矿震震源机制的研究[J].地震地磁观测与研究,1998,19(1):39-45.
    [22]赵广信,常耀广,李兰.抚顺煤田极值矿震影响范围预测[J].中国地质灾害与防治学报,2006,17(3):80-83.
    [23]钟以章,崔汝森.辽宁省北票煤田台吉井区采矿诱发的地震活动[A].中国诱发地震.北京:地震出版社,1984.
    [24]孙文福,周元夫,焦明若,等.关于抚顺矿震活动趋势分析[J].高原地震,2002,14(2):45-51.
    [25]尹涛,曹凤娟,张春宇,等.关于阜新矿震活动的初步研究[J].东北地震研究,2005,21(2):41-46.
    [26]张凤鸣,于中元,许晓艳,等.鹤岗煤矿矿震与区域天然地震活动相关性分析[J].东北地震研究,2005,21(1):9-13.
    [27]任振起.北京门头沟矿震与大同一阳高地震的关系[J].山西地震,1999(3-4):35-38.
    [28]梁冰,章梦涛.矿震发生的粘滑失稳机理及其数值模拟[J].辽宁工程技术大学学报,1997(5):521-524
    [29]肖和平.煤矿构造矿震机理[J].湖南地质,1999,18(2-3):141-146
    [30]肖和平.煤矿矿震应力窗口效应[J].华南地震,1999,19(1):85-90.
    [31]刘德军,王恩德,蒋永臻,等.煤田矿震地质灾害调查及预防措施研究[J].中国矿业,2008,17(10):49-51.
    [32]李永靖,张向东,蒋建中,等.频繁矿震作用下地裂缝扩展机理及数值模拟研究[J].中国地质灾害与防治学报,2008,19(3):73-76.
    [33]纪洪光,史明霞.频繁矿震作用下断层活化机理及其危害评价[J].中国矿业,2005,14(3):37-41.
    [34]刘万琴,李世愚,郑治真,等.破坏性矿震震前短临阶段震源过程研究[J].地震学报,1999,21(1):57-64.
    [35]李铁,冀林旺,左艳,等.预测较强矿震的地震学方法探讨[J].东北地震研究,2003,19(1):53-59
    [36]李铁,蔡美峰,孙丽,等.强矿震地球物理过程及短临阶段预测的研究[J].地球物理学进展,2004,19(4):961-967.
    [37]李铁,蔡美峰,纪洪光,等.强矿震预测的研究[J].北京科技大学学报,2005,27(3):260-263.
    [38]潘一山,赵扬锋,马瑾.中国矿震受区域应力场影响的探讨[J].岩石力学与工程学报,2005,24(16):2847-2853.
    [39]齐庆新,陈尚本,王怀新,等.冲击地压、岩爆、矿震的关系及其数值模拟研究[J].岩石力学与工程学报,2003(11):1852-1858.
    [40] Cook NGW. The application of seismic techniques to problems in rock mechanics [J]. Int Journ Rock Mesh and Min Science 1964,1:169-179.
    [41] Cook NGW. A note on rockbursts considered as a problem of stability [J]. Journ SA Inst Min and Met 1965, 437-446.
    [42] Obert L, Duvall W I. Rock Mechanics and the Design of Structures in Rock [J]. John Wiley & Sons, 1967, 650.
    [43] Bowers D, Douglas A. Characterization of large mine tremors using P observed at teleseismic distances[C]. Rockbursts and seismicity in mines, Gibowicz and Lasocki eds. Rotterdam: Balkema, 1997:55-60.
    [44]陆菜平.组合煤岩的强度弱化减冲原理及其应用[D].徐州:中国矿业大学,2008.
    [45]窦林名,何学秋,王恩元,等.冲击矿压与震动的机理及预测研究[J].矿山压力与顶板管理,1999,(zl):199-203.
    [46]潘一山,李忠华,章梦涛.我国冲击地压分布、类型、机理及防治研究[J].岩石力学与工程学报,2003,22(11):1844-1851.
    [47] Gay N C, Spencer D, Van Wyk, et al. The control of geological and mining parameters on seismicity in the Klerksdorp gold mining district[C]. Rockbursts and seismicity in mines, Gay N C and Wainwright E H eds. Johannesburg: Balkema, 1984:107-120.
    [48] Potgieter G J, Roering C. The influence of geology on the mechanisms of mining-associated seismicity in the Klerksdorp gold-field[C]. Rockbursts and seismicity in mines, Gay N C and Wainwright E H eds. Johannesburg: Balkema, 1984:45-50.
    [49] Kijko A, Drzezla B, Stankiewicz T. Bimodal character of the distribution of extreme seismic events in Polish mines[J]. Acta Geophys. Pol.,1987(35):157-166.
    [50] Krishnamurthy R, Shringarputale S B. Rockburst hazard in Kolar Gold Fields[C]. Rockbursts and seismicity in mines, Faihurst ed. Rotterdam: Balkema, 1990:249-254.
    [51] Kaiser P K, Maloney S M. Ground motion parameters for design of support in burst-prone ground[C]. Rockbursts and Seismicity in Mines, Gibowicz and Lasocki eds. Rotterdam: Balkema, 1997:337–342.
    [52] Gay N C. Rock-engineering strategies to meet the safety and production needs of the South African mining industry in the 21st century[J]. The Journal of the South African Institute of Mining and Metallurgy,1995(2):115–l35.
    [53] Horner R B, Hasegawa H S. The seismotectonics of southern Saskatchewan[J]. Can. J. Earth Sci.,1978(15):1341-1355.
    [54] Hasegawa H S, Wetmiller R J, and Gendzwill D J. Induced seismicity in mines in Canada-an overview[J]. Pure and Applied Geophysics,1989(129):423–453.
    [55]张少泉,张兆平,杨懋源,等.矿山冲击的地震学研究与开发[J].中国地震,1993,9(1):1-8.
    [56]李铁,蔡美峰,蔡明.采矿诱发地震分类的探讨[J].岩石力学与工程学报,2006,25(z2):3679-3686.
    [57] Giboicz S J. The mechanism of seismic events induced by mining- a review[C]. Rockbursts and seismicity in mines, Faihurst ed. Rotterdam:Balkema, 1990:3-27.
    [58] Ryder J A. Excess shear stress in the assessment of geologically hazardous situations. J.S. Afr. Inst. Min. Metall., 1988, 88(1):27-39.
    [59] Brady B H G, Brown E T.地下采矿岩石力学[M] .冯树仁等译.北京:煤炭工业出版社,1990.
    [60] Brady B H G, Brown E T. Energy changes and stability in underground mining:design application of boundary element methods. IMM, 1981:A61-A67.
    [61]赵本均.冲击矿压及防治[M].煤炭工业出版社,1995.
    [62]王淑坤.冲击矿压机理[J].岩石力学与工程学报. 1996年10月第15卷增刊:500-503.
    [63]李新元.“围岩-煤体”系统失稳及冲击地压预测的探讨[J].中国矿业大学学报,2000,29(6):633-636.
    [64]齐庆新,刘天泉,史元伟.冲击地压摩擦滑动失稳机理[J].矿山压力与顶板管理.1995,(4):174-177.
    [65]周晓军,鲜学福.煤矿冲击矿压理论与工程应用研究的进展[J].重庆大学学报(自然科学版):1988,21(1):126-132.
    [66]章梦涛.冲击矿压、煤和瓦斯突出的统一失稳理论初探.第二届全国岩石动力学学术会议论文集,1990.
    [67]章梦涛.冲击矿压和突出的统一失稳理论[J].煤炭学报,1991,16(4):25-31.
    [68] Kidybinski A. Bursting liability indices of coal[J].Rock Mech. Min Sci. & Geomech. , 1981(18):295-304.
    [69] Singh S P. Technical note: bursting energy release index[J].Rock Mechanics and Rock Engineering, 1988(21):149-155.
    [70] Homand F. Dynamic phenomena in mines and characteristics of rocks[C].Rockbursts and seismicity in mines, Faihurst ed. Rotterdam:Balkema, 1990:139-142.
    [71] Singh S P. Classification of mine workings according to their rockburst proneness[J].Mining Science and Technology, 1989(8):253-262.
    [72]郭然.深埋矿床开采中的岩爆问题[J].有色矿山,1998(1):10-13.
    [73] Wu Y, Zhang W. Evaluation of the bursting proneness of coal by means of its failure duration[C]. Rockbursts and Seismicity in Mines, Gibowicz and Lasocki eds. Rotterdam: Balkema, 1997:285–288.
    [74]潘长良,冯涛等.岩爆机理研究的综合评述[J].中南工业大学学报,1998,29(2):25-28.
    [75] Vardoulakis I. Rock bursting as a surface instability phenomenon [J].Int.J.Rock Mech. Sci.& Geomech. Abstr. 1984, 21(3):137-144.
    [76] Dyskin A.V. Model of rockburst caused by crack growing near free surface [C]. Rockbursts and seismicity in mines, Young eds. Rotterdam: Balkema, 1993:169-174.
    [77]黄庆享,高召宁.巷道冲击地压的损伤断裂力学模型[J].煤炭学报,2001,26(2):156-159.
    [78]张晓春,缪协兴,翟明华等.三河尖煤矿冲击矿压发生机制分析[J].岩石力学与工程学报,1998年10月第17卷第5期,508-513.
    [79]缪协兴,张晓春等.岩(煤)壁中滑移裂纹扩展的冲击矿压模型[J],中国矿业大学学报,1999,28(2):113-117.
    [80]齐庆新,高作志,王升.层状煤岩体结构破坏的冲击矿压理论[J].煤矿开采,1998(2):14-17.
    [81]齐庆新,刘天泉,史元伟.冲击地压摩擦滑动失稳机理[J].矿山压力与顶板管理.1995(4):174-177.
    [82]窦林名,何学秋.煤岩混凝土冲击破坏的弹塑脆性模型[J].第七界全国岩石力学大会论文,中国科学技术出版社,2002(9):158-160.
    [83]陆菜平.组合煤岩的强度弱化减冲原理及其应用[D].徐州:中国矿业大学,2008.
    [84]窦林名,陆菜平,牟宗龙,等.煤岩体的强度弱化减冲理论[J].河南理工大学学报,2005,24(3):169-175.
    [85]窦林名,陆菜平,牟宗龙,等.冲击矿压的强度弱化减冲理论及其应用[J].煤炭学报,2005,30(5):
    [86]陆菜平,窦林名,吴兴荣.煤岩动力灾害的弱化控制机理及其实践[J].中国矿业大学学报,2006,35(3):301-305.
    [87]窦林名,陆菜平,牟宗龙,等.组合煤岩冲击倾向性特性试验研究[J].采矿与安全工程学报,2006,23(1):43-46.
    [88]高明仕.冲击矿压巷道围岩的强弱强结构控制机理研究[D].徐州:中国矿业大学,2006.
    [89]牟宗龙.顶板岩层诱发冲击的冲能原理及其应用研究[D].徐州:中国矿业大学,2007.
    [90]李志华.采动影响下断层滑移诱发煤岩冲击机理研究[D].徐州:中国矿业大学,2009.
    [91]陈国祥.最大水平应力对冲击矿压的作用机制及其应用研究[D].徐州:中国矿业大学,2009.
    [92]李庶林,尹贤刚.矿山微震震源机制的初步研究[J].矿业研究与开发,2006,长沙矿山研究院建院50周年院庆论文集:141-146.
    [93]张少泉,关杰,刘力强等.矿山地震研究进展[J].国际地震动态,1994,(2):1-5.
    [94] Kanamori H, Stewart G S. Seismological aspects of the Guatemala earthquake of February 4, 1976[J] J. Geophys. Res., 1978 (83):3427-3434.
    [95] Rudnicki J, Kanamori H. Effects of fault interaction on moment, stress drop and strain energy release[J] J. Geophys. Res., 1981(86):1785 -1793.
    [96] Das S, Kostrow B V. Breaking of a single asperity: Rupture propagation and seismic radiation[J] J. Geophys. Res., 1983(88):4177 -4188.
    [97] Aki K, Richards P G. Quantitative Seismology: Theory and Methods[M]. San Francisco: W.H. Freeman, 1980.
    [98] Kuhnt W, Knoll P, Grosser H, et al. Seismological models for mining-induced seismic event[J]. Pure Appl. Geophys., 1989(129):513 -521.
    [99] Nur A. Dilatancy, pore fluids, and premonitory variations in ts/tp travel times[J]. Bull. Seism. Soc. Am., 1972(62):1217-1222.
    [100] Scholz C H. The Mechanics of Earthquakes and Faulting[M].Cambridge: Cambridge University Press, 1990.
    [101] Whitcomb J H, Garmony J D, Anderson D L. Earthquakes prediction: Variation of seismic velocities before the San Fernando earthquake[J]. Science, 1973(180):632 -641.
    [102]秦玉红.矿井开采引发矿震规律及其应用研究[D].徐州:中国矿业大学,2005.
    [103]宋建潮,刘大勇,王恩德,等.断层型矿震成因机理及预测方法研究[J].矿业工程,2007,5(3):16-18.
    [104]刘大勇,宋建潮,王恩德.基于双岩模式的抚顺煤田矿震成因机理探讨[J].地质灾害与环境保护,2007,18(2):9-14.
    [105]窦林名,曹其伟,何学秋,等.冲击矿压危险的电磁辐射监测技术[J].矿山压力与顶板管理,2002,(4):89-92.
    [106]窦林名,何学秋,王恩元.冲击矿压预测的电磁辐射技术及应用[J].煤炭学报,2004,29(4):396-399.
    [107]聂百胜,何学秋,王恩元,等.电磁辐射法预测煤矿冲击矿压[J].太原理工大学学报,2000,31(6):609-611.
    [108]窦林名,田京城,陆菜平.组合煤岩冲击破坏电磁辐射规律研究[J].岩石力学与工程学报,2005,24(19):3541-3544.
    [109]窦林名,王云海,何学秋,等.煤样变形破坏峰值前后电磁辐射特征研究[J].岩石力学与工程学报,2007,26(5):908-914.
    [110]窦林名,何学秋.声发射监测隧道围岩活动性[J].应用声学,2002,21(5):25-29.
    [111]姜福兴,XUN Lou.微震监测技术在矿井岩层破裂监测中的应用[J].岩土工程学报,2002,24(2):147-149.
    [112]成云海,姜福兴,程久龙,等.关键层运动诱发矿震的微震探测初步研究[J].煤炭学报,2006,31(3):273-277.
    [113]钱鸣高,石平五.矿石压力与岩层控制[M].徐州:中国矿业大学出版社,2003.
    [114]曹胜根,田京城,蒲海.巷道围岩卸压预防冲击矿压的数值模拟研究[J].矿山压力与顶板管理,2005,(3):86-88.
    [115]张永利,王艳,邰英楼,潘一山.房山矿区四槽煤冲击矿压模型试验及数值模拟研究[J].煤矿开采. 1998,(2):25-27.
    [116]梁冰,章梦涛,李国臻.坚硬顶板断裂过程的数值模拟[J].矿山压力与顶板管理,1996,(1):60-62.
    [117]蔡美峰,李治平,纪洪广,等.神经网络在开采与矿山地震活动性关系研究中的应用[J].中国矿业,2002,11(2):6-9.
    [118]蔡美峰,王金安,王双红.玲珑金矿深部开采岩体能量分析与岩爆综合预测[J].岩石力学与工程学报,2001,20(1):38-42.
    [119]蒋金泉,李洪.基于混沌时序预测方法的冲击地压预测研究[J].岩石力学与工程学报,2006,25(5):889-895.
    [120]李洪,戴仁竹,蒋金泉,等.基于最大Lyapunov指数的冲击地压预测模型[J].采矿与安全工程学报,2006,23(2):215-219.
    [121]窦林名,何学秋.煤岩冲击矿压的分级预测研究[J].中国矿业大学学报,2007,36(6):717-722.
    [122]成云海.地震定位监测在采场冲击地压防治中的应用[D].青岛:山东科技大学,2006.
    [123]姜福兴,杨淑华,成云海,等.煤矿冲击地压的微地震监测研究[J].地球物理学报,2006,49(5):1511-1516.
    [124]李志华,窦林名,管向清.矿震前兆分区监测方法及应用[J].煤炭学报,2009,34(5):614-618.
    [125] Kelly M, Luo X, Hatherly P, et al. 1999, Ground behavior about longwall faces and its effect on mining[R]. ACARP project C5017, Australia, 1999.
    [126] Luo X, Hatherly P, Wang S. Mapping of tensile failures in longwall mining through new microseismicprocedures[R]. ACARP project 8013, Australia, 2001.
    [127] Luo X, Hatherly P. Application of microseismic monitoring to characterize geomechanics conditions in longwall mining[J],Exploration Geophysics.1998(29):489-493.
    [128] Salamon MDG, Wiebols G A. Digital location of seismic events by an underground network of seismometers using arrival times of compressional waves[J]. Rock Mech., 1974(6):141–66.
    [129] Luo X, Hatherly P, Gladwin M. Application of microseismic monitoring to longwall geomechanics and safety [A], Proc.17th Conf. Ground Control in Mining (ed. SydS. Peng)[C], Morgantown, USA, 1998,72-78.
    [130] Luo X., Hatherly P, McKavanagh B. Microseismic monitoring of longwall caving processes at Gordonstone Mine, Australia [A],In Advances in Rock Mechanics [C],World Scientific Publishing Co.Pte Ltd,1998:67-79.
    [131] Zoback M D, Zinke J C. Production-induced normal faulting in the Valhall and Ekofisk oil fields. Pure and Applied Geophysics 2002 (159):403-420.
    [132] Phillips W S, Rutledge J T, House L S, et al. Induced microearthquake patterns in hydrocarbon and geothermal reservoirs: six case studies. Pure and Applied Geophysics 2002 (159):345–369.
    [133] Phillips W S. Precise microearthquake locations and fluid flow in the geothermal reservoir at Soultz-Sous-Forêts, France. Bulletin of the Seismological Society of America 2000 (90):212–228.
    [134]马其华.长壁采场覆岩“O”型空间结构及相关矿山压力研究[D],山东青岛:山东科技大学,2005.
    [135]逄焕东.岩体微地震的模式、定位及其失稳预报研究[D],山东青岛:山东科技大学,2004.
    [136] Kelly M, Luo X, Craig S. Integrating tools for longwall geomechanics assessment[J]. International Journal of Rock Mechanics & Mining Sciences, 2002(39):661-676.
    [137] Luo X, Hatherly P. Understanding of high gas emissions at appin colliery through microseismic monitoring[A]. Proc.Int.MiningTech.98Symp[C], Chongqing China, 1998, 74-79.
    [138]于克君,骆循,张兴民.煤层顶板“两带”高度的微地震监测技术[J],煤田地质与勘探, 2002,30(1):47-51.
    [139]汪华君,姜福兴,成云海,等.覆岩导水裂隙带高度的微地震(MS)监测研究[J],煤炭工程,2006(3):74-75.
    [140]汪华君.覆岩导水裂隙带井下微地震监测研究[J],矿业快报,2006(3):27-29.
    [141]张兴民,于克君,席京德.微地震技术在煤矿“两带”监测领域的研究与应用[J],煤炭学报, 2000,25(6):566-570.
    [142] Gibowicz S J. The mechanism of large mining tremors in Poland[C]. Rockbursts and seismicity in mines, Gay N C and Wainwright E H eds. Johannesburg: Balkema, 1984:17-28.
    [143] McGarr A. Some applications of seismic source mechanism studies to assessing underground hazard[C]. Rockbursts and seismicity in mines, Gay N C and Wainwright E H eds. Johannesburg: Balkema, 1984:199-208.
    [144] Westbrook J H. Estimation of the earthquake recurrence parameters for unequal observation periods for different magnitudes[J]. Bull. Seism. Soc. Am., 1980(70):1337-1346.
    [145] Kusznir N J, Al-Saigh N H, and Ashwin D P. Induced seismicity generated by longwall coal mining in the North Staffordshire coal-field, U K[C]. Rockbursts and seismicity in mines, Gay N C and Wainwright E H eds. Johannesburg: Balkema, 1984:153-160.
    [146] Potgieter G J, Roering C. T he influence of geology on the mechanisms of mining-associated seismicity in the Klerksdrop gold-field[C]. Rockbursts and seismicity in mines, Gay N C and Wainwright E H eds. Johannesburg: Balkema, 1984:45 -50.
    [147] Joughin N C, Jager A J. Fracture of rock at stope faces in South African gold mines[C]. Proc. Symp. Rockbursts: Prediction and Control, 1984:53 -66, Inst. Min. Metal., London.
    [148] Sato K, Fujii Y. Source mechanism of a large scale gas outburst at Sunagawa coal mine in Japan[J]. Pure Appl. Geophys, 1989(129):325-343.
    [149] Fujii Y, Sato K. Difference in seismic moment tensors between microseismic events associated with a gas outburst and those induced by longwall mining activity[C].Rockbursts and seismicity in mines, Faihurst ed. Rotterdam:Balkema, 1990:71-75.
    [150] Prugger A F, Gendzwill D J. Fracture mechanism of microseisms in Sakatchewan potash mines[C]. Rockbursts and seismicity in mines, Young eds. Rotterdam: Balkema, 1993:169-174.
    [151] McGarr A. An implosive component in the seismic moment tensor of mining induced tremor[J]. Geophys. Res. Lett., 1993(19):1579-1582.
    [152] McGarr A. Energy budgets of mining-induced earthquakes and their interactions with nearby stopes[J]. J. Rock Mechanics and Mining Sci., 2000(37):437-443.
    [153]李铁,蔡美峰,左艳,等.采矿诱发地震的震源机制特征—以辽宁省抚顺市老虎台煤矿为例[J] .地质通报,2005,24(2):136-144.
    [154]张凤鸣,余中元,许晓艳,等.鹤岗煤矿开采诱发地震研究[J].自然灾害学报,2005,14(1):139-143.
    [155]董积平,张少泉,张诚,等.用混合源模型研究矿山地震震源机制[J] .西北地震学报,1994,16(2):12-22.
    [156]曹安业,窦林名.采场顶板破断型震源机制及其分析[J].岩石力学与工程学报,2008,27(z2):3833-3839.
    [157] Cao Anye, Dou Linming, Chen Guo-xiang, et al. Analysis on the focal mechanism caused by fracture or burst of a coal pillar [J]. Journal of China University of Mining & Technology, 2008,18(2):153-158.
    [158]张萍,蒋秀琴,苗春兰,等.爆破、矿震与地震的波谱差异[J].地震地磁观测与研究,2005,26(3):24-34.
    [159]澳大利亚联邦科学工业研究院(CSIRO),中国矿业大学.中梁山煤矿地下煤气化燃烧区动态特征的微地震监测试验研究[R].澳大利亚布里斯班:澳大利亚联邦科学工业研究院,2007.
    [160] Luo X, Tan Q, Luo C, et al. Microseismic monitoring of burnt front in a underground coal gasification experiment[A]. 42nd US Rock Mechanics Symposium[C], San Francisco, USA, 2008, 281-285.
    [161] Luo X, Hatherly P. Precursors and new understanding of high gas emissions at Appin Colliery through microseismic monitoring[R]. ACARP project C6025, Australia, 1998.
    [162] Peter B Bolt. Acquisition and interpretation of underground microseismic dada in an outburst prone coal mine[D]. University of Wails, South Wails, 1989.
    [163]秦玉红.矿井开采引发矿震规律及其应用研究[D].徐州:中国矿业大学,2005.
    [164]陆菜平,窦林名,吴兴荣,等.岩体微震监测的频谱分析与信号识别[J].岩土工程学报,2005,27(7):772-775.
    [165]曹安业,窦林名,秦玉红,等.高应力区微震监测信号特征分析[J].采矿与安全工程学报,2007,24(2):146-149.
    [166]徐州矿务集团有限公司三河尖煤矿,中国矿业大学.三河尖煤矿矿震规律分析研究[R].江苏省徐州市:徐州矿务集团有限公司,2007.
    [167]刘正雄,李齐仁.对秦岭隧道进口端II线平导岩爆现象浅析[A].铁路工程建设科技动态报告文集—铁路隧道及地下工程[M].成都:西南交通大学出版社,1995,166-171.
    [168] Baumgardt DR, Leith W. The Kirovskiy explosion of September 29 1996: example of a CTB event notification for a routine mining blast[J]. Pure and Applied Geophysics, 2001, 158:166-171.
    [169] Huang RQ, Wang XN. Analysis of dynamic disturbance on rock burst[J]. Bulletin of Engineering Geology and the Environment, 1999, 57:281-284.
    [170]李夕兵,李地元,郭雷.动力扰动下深部高应力矿柱力学响应研究[J].岩石力学与工程学报,2007,26(5):922-928.
    [171]姜耀东,赵毅鑫,宋彦琦,等.放炮震动诱发煤矿巷道动力失稳机理分析[J].岩石力学与工程学报,2005,24(17):3131-3636.
    [172]马晓青.冲击动力学[M].北京:北京理工大学出版社. 1992.
    [173]卢爱红.应力波诱发冲击矿压的动力学机理研究[D].徐州:中国矿业大学,2005.
    [174]费鸿禄,徐曾和,唐春安.突变理论研究单轴加载失稳与实验验证[J].中国矿业,1995,14(3):53-57.
    [175]许强,黄润秋,王来贵.外界扰动诱发地质灾害的机理分析[J].岩石力学与工程学报,2002,21(2):280-284.
    [176]尹光志,鲜学福,代高飞.岩石非线性动力学理论及其应用[M].重庆大学出版社,2004.
    [177] Yi Xiaoping, P K Kaiser. Mechanism of rockmass failure and prevention strategies in rockburst condition[C]. Rockbursts and seismicity in mines, Young eds. Rotterdam: Balkema, 1993:141-145.
    [178]朱万成,唐春安,黄志平.静态和动态载荷作用下岩石劈裂破坏模式的数值模拟[J].岩石力学与工程学报,2006,24(1):1-7.
    [179]朱万成,左宇军,尚世明.动态扰动触发深部巷道发生失稳破裂的数值模拟[J].岩石力学与工程学报,2007,26(5):915-921.
    [180]左宇军,李夕兵,马春德.动静组合载荷作用下岩石失稳破坏的突变理论模型与试验研究[J].岩石力学与工程学报,2005,24(5):741-746.
    [181]刘小明.脆性岩石破坏机理试验研究及拉西瓦水电站地下洞室岩爆分析[D].武汉:武汉水利电力大学,1995.
    [182] Mintrop,L. Die Erdbebenstation der Westfalischen Berggewerkschaftskasse in Bochum[J].Ghieckauf, l909(45):357-365.
    [183] Gibowicz,S,.Magnitude and energy of subterranean shocks in Upper Silesia[J]. Studia. GeophyS. Geod., 1963,7:1-19.
    [184] Gane P G, Hales A L, Oliver H O. A seismic investigation of the Witwatersrand earth tremors[J]. Bull Seism Soc Am 1946(36):49–80.
    [185] Salamon MDG, Wiebols G A. Digital location of seismic events by an underground network of seismometers using arrival times of compressional waves[J]. Rock Mech., 1974(6):141–66.
    [186]李俊平.声发射技术在采矿工程中的应用[J],工业安全与防尘,2000(1):32-34.
    [187]张万斌,王淑坤,滕学军.我国冲击地压研究与防治的进展[J].煤炭学报,1992,17(3):27-35.
    [188]赵刚,王焕义,张银平.寿王坟铜矿采空区管理与监测[J].有色金属,1998,50(4):1-3.
    [189]王焕义,赵刚.区域性岩体微震活动的监测[J].矿治,1995,4(1):12-16.
    [190]余克圣,唐绍辉.岩体工程灾害微震监测系统的新进展[J].矿业研究与开发,1999,19(2):40-42.
    [191]姜福兴,XUN Luo.微震监测技术在矿井岩层破裂监测中的应用[J].岩土工程学报,2002,24(2):147-149.
    [192]姜福兴,XUN Luo,杨淑华.采场覆岩空间破裂与采动应力场的微震探测研究[J].岩土工程学报,2003,25(1):23-25.
    [193]姜福兴,杨淑华,XUN Luo.微地震监测揭示的采场围岩空间破裂形态[J].煤炭学报,2003,28(4):357-360.
    [194]新汶矿业集团公司,北京科技大学,山东科技大学.冲击地压前兆信息及空间应力场微震监测研究,2005年7月.
    [195]逄焕东,姜福兴,张兴民.剪应力在缺陷体声发射过程中的作用[J],岩土工程学, 2004,26(6):824-827.
    [196]潘一山,赵扬锋,官福海,等.矿震监测定位系统的研究及应力[J].岩石力学与工程学报,2007,26(5):1002-1011.
    [197]李玉,黄梅,廖国华,等.冲击地压发生前微震活动时空变化的分析特征[J].北京科技大学学报,1995,17(1):10-13.
    [198] Dessokey M M. Statistical models of the seismic hazard analysis of mining tremors and natural earthquakes[J]. Publ. Inst. Geophys., Pol. Acad. Sci.,1984, A-15 (174):1 -82.
    [199] Idziak A, Sagan G, Zuberek W M. An analysis of frequency distributions of shocks form the Upper Silesian Coal Basin[J]. Publ. Inst. Geophys., Pol. Acad. Sci.,1984, M-15 (235):163 -182.
    [200] Lasocki S. Prediction of strong mining tremors[J]. Zesz. Naukowe Akad. Gorn. Hutn. Geofiz. Stosowana, 1990 (7):1 -110.
    [201] Scholz C. The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes[J].Bull. Seism. Soc. Am., 1968 (58):399 -415.
    [202] Gibowicz S J. Space and time variations of frequency-magnitude relation for mining tremors in the Szombierki coal mine in Upper Silesia, Poland[J]. Acta. Geophys. Pol., 1979(27):39 -49.
    [203] Brink A v Z. Application of a microseismic system at Western Deep Levels[C]. Rockbursts and seismicity in mines, Faihurst ed. Rotterdam:Balkema, 1990:355-361.
    [204] Fujii Y, Ishijima Y and Goto T. Application of DDM to some rock pressure problems in Japanese deep coal mines[C]. Proc. 11th Intl. Conf. Ground Control in Mining, 1992:414-420.
    [205] Fujii Y, Ishijima Y and Deguchi G. Prediction of coal face rockbursts and microseismicity in deep longwall coal mining[J]. Int. J. Rock Mech. Min. Sci., 1997, 34(1):85-96.
    [206] Kray L, Erik W, and Peter S, et al. Three-dimensional time-lapse velocity tomography of an underground panel[J]. Int. J. Rock Mech. Min. Sci., 2008(45):478-485.
    [207] Lurka A. Location of high seismic activity zones and seismic hazard assessment in Zabrze Bielszowice coal mine using passive tomography[J]. J. China Univ Mining & Tecnol, 2008, 18(2):177-181.
    [208]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].科学出版社,2005.
    [209] Hatherly P, Galel M, Medhurst T, et al. 3D Stress effects, rock damage and longwall caving as revealed by microseismic monitoring[R]. ACARP PROJECT C9021, Australia, 2003.
    [210]文光才.煤与瓦斯突出能量的研究[J].矿业安全与环保,2003,30(6):1-4.
    [211]杜世通.地震波动力学[M].东营:石油大学出版社,1996.
    [212] Jost M L, Herrmann R B. A student’s guide to and review of moment tensors[J]. Seism. Res. Lett, 1989(60): 37-57.
    [213] Stump B W, Johnson L R. The determination of source properties by the linear inversion of seismograms[J]. Bull. Seism. Soc. Am., 1977(67): 1489-1502.
    [214] Silver P G, Jordan T H. Optimal estimation and scalar seismic moment[J]. Geophys. J. Roy. Astr. Soc., 1982(70): 755-787.
    [215]谢洪学.混凝土强度等级配合比手册[M].成都:四川科学技术出版社,1992.
    [216] Teisseyre R. Some remarks on the source mechanism of rock bursts in mines and on the possible source extension[J]. Acta Mont, 1980(55):7-13.
    [217] Nemat-Nasser S, Horii H. Compression-induced nonplanar crack extension with application to splitting, exfoliation, and rockburst[J]. J. Geophys. Res. 1982(87):6805-6821.
    [218] Seleny J. Possible mechanism of rockburst in coal mines[J]. PAGEOPH, 1986, 124(4-5):841- 855.
    [219] Seleny J. The mechanism of small mining tremors form amplitude inversion[J]. Pure Appl. Geophys, 1989(129):309-324.
    [220]陈陪善.地震矩张量及其反演[J].地震地磁观测与研究,1995,16(5):19-53.
    [221] Linzer L M. A Relative Moment Tensor Inversion Technique Applied to Seismicity Induced by Mining[J]. Rock Mechanics and Rock Engineering, 2005, 38 (2):81-104.
    [222] Gibowicz S. J. An Anatomy of a Seismic Sequence in a Deep Gold Mine[J]. Pure appl.Geophys,1997,150:393-41.
    [223] Dahm T, Manthei G, Eisenbl?tter J. Automated moment tensor inversion to estimate source mechanisms of hydraulically induced micro-seismicity in salt rock[J]. Tectonophysics, 1999,306:1-17.
    [224] Chandler N. Developing tools for excavation design at Canada’s Underground Research Laboratory[J]. International Journal of Rock Mechanics & Mining Sciences,2004,41:1229-1249.
    [225] Hazzard J F, Young R P. Dynamic modeling of induced seismicity[J]. International Journal of Rock Mechanics & Mining Sciences, 2004,41:1365–1376.
    [226] Teyssoneyre V, Feignier B, ?ileny J, et al. Moment Tensor Inversion of Regional Phases: Application to a Mine Collapse[J]. Pure appl. geophys, 2002, 159:111-130.
    [227] Hazzard J F, Young R P. Moment tensors and micromechanical models[J]. Tectonophysics, 2002, 356:181- 197.
    [228] Trifu C I, Shumila V. Reliability of Seismic Moment Tensor Inversions for Induced Microseismicity at Kidd Mine, Ontario[J]. Pure appl. geophys, 2002, 159:145-164.
    [229] Rudajev V, ?ileny J. Seismic Events with Non-shear Component: II. Rock Bursts with Implosive Source Component[J]. PAGEOPH, 1985(123):17-25.
    [230] ?ileny J, Milev A. Seismic Moment Tensor Resolution on a Local Scale: Simulated Rockburst and Mine-induced Seismic Events in the Kopanang Gold Mine, South Africa[J]. Pure appl. Geophys, 2006,163:1495-1513.
    [231] ?ileny J, Milev A. Source mechanism of mining induced seismic events- Resolution of double couple and non double couple models[J]. Tectonophysics,2008, 456:3-15.
    [232] ?ileny J. The Mechanism of Small Mining Tremors from Amplitude Inversion[J]. PAGEOPH, 1989,129:3-4.
    [233] Cezar I T, Shumila V. The use of uniaxial recordings in moment tensor inversions for induced seismic sources[J]. Tectonophysics,2002, 356:171-180.
    [234] Spottiswoode S M, Milev A M. The use of waveform similarity to define planes of mining-induced seismic events[J]. Tectonophysics,1998, 289:51–60.
    [235] ?ileny J, Baker C. Fast estimate of the focal mechanism of mining tremors from P and S amplitudes[C]. Rockbursts and Seismicity in Mines, Gibowicz and Lasocki eds. Rotterdam: Balkema, 1997:39–44.
    [236] Tarantola A. Inverse Problem Theory and Methods for Model Parameter Estimation[M]. Paris: Society for Industrial and Applied Mathematics, 2005.
    [237]阳生权.爆破地震累积效应理论和应用初步研究[D].长沙:中南大学,2002.
    [238] Guo H, Luo X, Zhou B, et al. Southern Colliery LW704 Geotechnical Study[R]. ACARP project 759, Australia, 2000.
    [239]夏致晰,缪协兴,茅献彪.爆炸应力波对深埋巷道的作用效应分析[J].河南科学,2004,22(1):88-91.
    [240]吴文,徐松林,杨春和,等.岩盐冲击特性试验研究[J].岩石与学与工程学报,2004,23(21):3613-3620.
    [241]寇绍金,虞吉林,杨根宏.石灰岩中应力衰减机制的试验研究[J].力学学报,1982,14(6):583-588.
    [242]李夕兵,陈寿如,古德生.岩石在不同加载波下的动载强度[J].中国矿冶学院学报,1994,25(3) :301–304.
    [243]叶根喜,姜福兴,郭延华,等.煤矿深部采场爆破地震波传播规律的微震原位试验研究[J].岩石力学与工程学报,2008,27(5):1053-1058.
    [244]刘天放,潘东明,李德春,等.槽波地震勘探[M].徐州:中国矿业大学出版社,1994.
    [245] Karcinovic D. Statistial aspects of the continuous damage theory[J].Int. J. Solids Structures, 1982, 18(7) :551-562.
    [246] Kleczek Z, Zorychta A. Coal bumps induced by mining tremors[C]. Rockbursts and seismicity in mines, Young eds. Rotterdam: Balkema, 1993:87-89.
    [247]闫长斌,徐国元,李夕兵.爆破震动对采空区稳定性影响的FLAC3D分析[J].岩石力学与工程学报,2005,24 (16):2894-2899.
    [248]陈占军,朱传云,周小恒.爆破荷载作用下岩石边坡动态响应的FLAC3D模拟研究[J],爆破,2005,22 (4):8-13.
    [249]雷光宇,卢爱红,茅献彪.应力波作用下巷道层裂破坏的数值模拟研究[J],岩土力学,2005,26 (5):1477-1480.
    [250] Mutke G, Lurka A and Dubinski J. Seismic monitoring and rock burst hazard assessment in deep Polish coal mines- Case study of Rock Best Wishes, Urst on April 16, 2008 in Wujke-Slask Coal Mine[A]. Rockbursts and seismicity in mines, Chun’an Tang eds. New York: New Jersey, 2009:1413 -1424.
    [251]沈明荣.岩体力学[M].上海:同济大学出版社,1999.
    [252] Gibowicz S J, Harjes H P, and Schafer M. Source parameters of seismic events at Heinrich Robert mine, Ruhr basin, Federal Republic of Germany: Evidence for nondouble-couple events[J].Bull. Seism. Soc. Am, 1990, 80, 88-109.
    [253]兖州煤业股份有限公司鲍店煤矿,北京科技大学.鲍店煤矿10302工作面安全开采技术研究[R].山东省邹城市:兖州煤业股份有限公司,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700