用户名: 密码: 验证码:
剩余污泥碱性发酵产酸性能与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮和磷元素的超标是引起水体富营养化问题的主要因素,因此防止水体富营养化的主要措施是将氮磷从污水中去除。活性污泥法是国内外污水厂处理含氮磷污水广泛采用的工艺,在生物脱氮除磷的过程中往往需要较易被利用的碳源,如短链挥发性脂肪酸(Short Chain Volatile FattyAcids, SCFAs),然而生活污水中往往存在碳源不足的问题。同时,在采用生物活性污泥法工艺的污水厂中会有大量的剩余污泥产生,剩余污泥的处理与处置成为污水厂另外一个亟待解决的重要问题。因此,有必要需找出一种既能从污水厂内部开发碳源,又能实现污泥减量的方法。
     碱性环境中,剩余污泥在发酵过程中能产生大量的SCFAs,并且污泥减量的速率和中性以及酸性条件下相比能得到大幅度提升,因此剩余污泥碱性发酵能解决上述两个问题。虽然研究者们已对剩余污泥碱性发酵的影响因素、机理和微生物学进行了研究,但还存在着何种碱和污泥浓度最佳,如何进一步提升剩余污泥碱性发酵的产酸量,如何改善碱性发酵污泥的脱水性能,如何以较低的成本回收剩余污泥中的碳源和氮磷元素等问题。本研究以剩余污泥作为研究对象,采用批式试验装置,针对以上问题提出了解决办法。
     针对污泥碱性发酵过程中最佳碱和最佳污泥浓度的选择,考察了碱的类型以及污泥浓度对剩余污泥碱性发酵的影响。碱的类型(KOH、NaOH、Ca(OH)2和Na_2CO_3)对剩余污泥的水解、产酸以及脱水性能均有重要的影响。剩余污泥的水解能力在Na_2CO_3条件下最佳,产酸能力在NaOH条件下最佳但脱水性能在该条件下最差,脱水性能在Ca(OH)2条件下最佳但水解和产酸在该条件下最差。温度15℃和35℃条件下,剩余污泥的污泥浓度(挥发性悬浮固体浓度(VolatileSuspended Solid,VSS)为1.708、3.146、5.124、6.832、8.540和11.049g/L)对碱性条件下剩余污泥的水解影响不大,但高浓度和低浓度条件下均不利于污泥产酸,最佳的产酸污泥浓度为8.540g/L。
     针对如何提高剩余污泥碱性发酵过程中的产酸量,考察了污泥发酵方式、镁粉的投加对剩余污泥碱性条件下水解和产酸的影响,以及污泥碱性发酵过程中氢氧根和金属离子的作用。首先考察了pH值对混合污泥水解酸化的影响,而后对比考察了剩余污泥和初沉污泥单独发酵以及混合发酵时的水解和产酸能力。结果表明pH值对混合污泥、剩余污泥以及初沉污泥的水解酸化的影响相似,这三种污泥均在碱性环境中有较高的水解和产酸能力,20~22℃条件下产酸均在pH值为10时达到最大。同时将剩余污泥和初沉污泥混合后不会对污泥的产酸产生抑制作用,反而会有一定的促进作用。考察了镁粉投加对剩余污泥碱性发酵的影响,结果表明镁粉投加不会对剩余污泥的溶解产生影响,但会增强蛋白酶的活性,从而提高污泥的产酸量。最佳的镁粉投加量为0.01g/g(TSS)。氢氧化钠对剩余污泥水解和产酸的促进作用一部分是靠氢氧根,一部分是靠钠离子。钠离子能够提高剩余污泥的溶解率,增加蛋白质和多糖的溶出量,同时可以抑制产甲烷生物的生长,从而提高剩余污泥的产酸量。
     剩余污泥发酵后回收发酵液作为碳源,需要将发酵液和污泥进行分离,进一步考察了使用NaOH、Ca(OH)_2以及两者的混合液控制pH为10时对剩余污泥水解产酸以及污泥脱水的影响。在NaOH条件下具有较高的产酸量,但由于发酵液中存在高浓度的钠离子,污泥的脱水性能差。剩余污泥在Ca(OH)2条件下污泥的脱水性能好,但由于发酵液中存在高浓度的钙离子,抑制了蛋白质的水解,导致污泥产酸量较低。在使用两者的混合液控制pH值时,降低了发酵液中钠离子的浓度,而且由于氢氧化钙的加入改善了污泥的脱水性能。且氢氧化钙释放的钙离子在发酵过程中可以和氢氧化钠以及二氧化碳反应生成沉淀,从而使得钙离子的浓度较低,对蛋白质的抑制作用不明显。因此使用NaOH和Ca(OH)_2的混合液控制剩余污泥pH值不仅污泥的产酸量较高,而且污泥的脱水性能也较好。
     剩余污泥在发酵过程中会释放出大量的氨氮和正磷酸盐,影响发酵液作为碳源进行脱氮除磷,因此将发酵液和污泥分离后,需要将发酵液中的氨氮和正磷酸盐进一步回收。因此考察了使用氢氧化钠,磷酸钠以及两者混合液控制pH值对剩余污泥水解产酸以及使用鸟粪石沉淀法回收氮磷的影响。发现三种条件下污泥的水解和产酸能力相当,但混合碱条件下发酵液中P/N(正磷酸盐和氨氮的比值)摩尔比比在0.9~1.4之间,最适合回收发酵液中的氨氮和正磷酸盐。且混合碱条件下能节省控制污泥pH所需的氢氧化钠以及回收氨氮和正磷酸盐时调节pH所需的盐酸的量,因此联合使用氢氧化钠和磷酸钠可以减少回收成本。
Overload of nitrogen and phosphorus in the waterbody is the main reason foreutrophication, an essential strategy for controlling eutrophication is to removenitrogen and phosphorus from wastewater before discharge. Activated sludge processis widely used for nitrogen and phosphorus removal home and abroad in the wastewater treatment plants (WWTPs). Readily degradable carbon sources, such as shortchain fatty acids (SCFAs) are need in the biological nitrogen and phosphorus removalprocess. However, carbon sources are often not adequate in the influent.Simultaneously, a large amount of waste activated sludge production in the activatedsludge process became another problem that should be solved urgently. Therefore,technology which both can produce carbon sources in the WWTPs and realize sludgereduction is needed.
     Under alkaline condition, abundant VFA could be produced in the fermentationprocess of waste activated sludge (WAS), and the reduction rate of sludge could beenhanced compared with those under neutral and acid condition, hence fermentingWAS under alkaline condition can solve the two problems mentioned above. Theinfluence factors, mechanisms and microorganisms of WAS alkaline fermentationprocess had been studied by researchers. However, which alkali and sludgeconcentration are the best, how to further improve the acid production of the WASalkaline fermentation process, how to improve the sludge dewaterability of WAS inthe alkaline fermentation process and how to recycle carbon source, nitrogen andphosphorus with a low cost still need to be discussed. A series of batch tests weredone by treating WAS under alkaline conditions to give answers to those problems.
     Effects of alkali types and sludge concentrations on WAS alkaline fermentationwere investigated to indentify which alkali and sludge concentration are the best.Alkali types (KOH、NaOH、Ca(OH)2and Na_2CO_3) influenced significantly on WAShydrolysis, acidification and dewaterability. WAS hydrolysis was the best underNa_2CO_3condition, and sludge acidification was the best but the sludge dewaterabilityis the worst under NaOH condition, the sludge dewaterability is the best but sludgeacidification was the worst under Ca(OH)2condition. Under15℃and35℃, sludgeconcentrations (volatile suspended sludge concentrations were1.708、3.146、5.124、6.832、8.540and11.049g/L, respectively) insignificantly influenced sludge hydrolysis, but high and low sludge concentrations disadvantaged VFA production of WAS, andthe best sludge concentration for acid production was8.540g/L.
     Effects of fermentation mode, adding magnesium powder on sludge hydrolysisand acidification in WAS alkaline fermentation process, and the effects of hydroxyland metal ions in the alkaline fermentation process were investigated to furtherimprove the acid production of the WAS alkaline fermentation process. The effects ofpH values on mixed sludge (mixture of primary sludge and waste activated sludge)hydrolysis and acidification were firstly studied, then hydrolysis and acidificationabilities of separately-fermented sludge and co-fermented sludge were compared. Theresults showed that the effects of pH on hydrolysis and acidification of primary sludge,waste activated sludge and mixed sludge were similar, alkaline conditions benefitedthe hydrolysis and acidification of the three types of sludge, and the best pH value foracid production were all at pH10under20~22℃. Compared withseparately-fermenting primary sludge and waste activated sludge, co-fermenting themdidn’t impede acid production but could improve acid production. Adding magnesiumpowder didn’t affect WAS solubilisation, but can enhance the activity of protease andimprove VFA production, and the optimal addition was0.01g/g (TSS).Theenhancement of NaOH on solubilisation and acidification of WAS were mainly due tohydroxyl, and partly due to sodium ion. NaCl improved the solubilisation of WAS,and sludge solubilisation efficiencies, protein and carbohydrate release all increasedwith the dosage of NaCl, NaCl also could inhibit the growth of methanogens. Theimprovement of sludge solubilisation and inhibit of the growth of methanogens byNaCl enhanced VFA production of WAS.
     Fermentation liquid should be separated from fermented sludge afterfermentation to be used as carbon source for nitrogen and phosphorus removal.Hydrolysis, acidification and dewaterability of waste activated sludge (WAS) wereinvestigated at pH10controlled by the addition of NaOH, Ca(OH)2or their mixturesat various ratios. Under the solo NaOH condition, VFA production was high. However,the sludge dewaterability was negatively affected due to a large release of Na+fromNaOH. Under the Ca(OH)2condition, the sludge dewaterability was good due to theaddition of Ca(OH)2, but the VFA production was low. Because Ca~(2+)was releasedthrough neutralizing reaction between VFA and Ca(OH)2, and a high concentration ofCa~(2+)inhibited the hydrolysis of protein, so only a small quantity of VFA could beproduced. Under the mixed alkaline condition, the concentrations of Na+in the fermentation liquid decreased and Ca(OH)2was provided simultaneously, both ofwhich could improve sludge dewaterability. Ca~(2+)released by Ca(OH)2could beprecipitated by reacting with NaOH and CO2, and little amount of Ca~(2+)could bereleased from Ca(OH)2. The low concentration of Ca~(2+)insignificantly inhibited thehydrolysis of protein, thus allowing a high level of VFA production. Thus, treatingWAS with mixtures of NaOH and Ca(OH)2could enable both high VFA productionand good sludge dewaterability.
     A significant amount of NH_4~+-N and PO_4~(3-)-P was released into the fermentationliquid in the fermentation process of WAS, which could impede fermentation liquid tobe used as carbon source for nitrogen and phosphorus removal. NH4+-N and PO43--Pshould be removed firstly before the fermentation liquid was used for nitrogen andphosphorus removal. The hydrolysis and acidification of waste activated sludge wereinvestigated under three types of alkaline conditions, which were NaOH, Na3PO4andcombination of NaOH and Na3PO4. Then the recovery of ammonia and phosphorus inthe form of struvite from the three types of alkaline fermentation liquid was conducted.The results show that the hydrolysis and acidification abilities of WAS under the threetypes of alkaline conditions were similar. However, the molar ratio of phosphorus andammonia in the sludge fermentation liquid was in the range of0.9~1.4under themixed alkaline condition, which was the most suitable for ammonia and phosphorusrecovery in the form of struvite. Under the mixed alkaline condition, the dosage ofNaOH in the alkaline fermentation process could be saved, and the dosage of HCl alsocould be saved in the nitrogen and phosphorus recovery process, so combined use ofNaOH and Na3PO4could save the cost for recycling carbon source, nitrogen andphosphorus.
引文
[1]陈水勇,吴振明,俞伟波,吕一锋.水体富营养化的形成、危害和防治[J].环境科学与技术,1999,22(2):11-15.
    [2] P Elefsiniotis, D Wareham, O Smith M. Use of volatile fatty acids from an acid-phasedigester for denitrification [J]. J Biotechnol,2004,114(3):289-297.
    [3] M Thomas, P Wright, L Blackall, V Urbain, J Keller. Optimisation of Noosa BNR plant toimprove performance and reduce operating costs [J]. Water Sci Technol,2003,47(12):141-148.
    [4] Y Peng, X Wang, B Li. Anoxic biological phosphorus uptake and the effect of excessiveaereation on biological phosphorus removal in the A2O process [J]. Desalination,2006,189(1-3):155-164.
    [5] R Moser-Engeler, K Udert, H Siegrist. Products from primary sludge fermentation and theirsuitability for nutrient removal [J]. Water Sci Technol,1998,38(1):265-273.
    [6] A Pitman, L L tter, W Alexander, S Deacon. Fermentation of raw sludge and elutriation ofresultant fatty acids to promote excess biological phosphorus removal [J]. Water Sci Technol,1992,25(4-5):185-194.
    [7]杨杨.污泥无害化助推生态建设产业链延伸践行科学发展[J].环境保护,2012,8:74.
    [8]赵庆良.污泥资源化技术[M].北京:化学工业出版社,2002.
    [9] Y Chen, S Jiang, H Yuan, Q Zhou, G Gu. Hydrolysis and acidification of waste activatedsludge at different pHs [J]. Water Res,2007,41(3):683-689.
    [10]余杰,田宁宁,王凯军,任远.中国城市污水处理厂污泥处理处置问题探讨分析[J].环境工程学报,2007,1(1):82-86.
    [11] Y Chen, A Andrew, M Terrence. The efficiency of enhanced biological phosphorus removalfrom real wastewater affected by different ratios of acetic to propionic acid [J]. Water Res,2004,38(1):27-36.
    [12] J Eastman, J Ferguson. Solubilization of particulate organic carbon during the acid phase ofanaerobic digestion [J]. J Water Pollut Control Fed,1981,53(3):266-352.
    [13] J Wingender, T Neu, H Flemming. Microbial Extracellular Polymeric Substances:Characterisation, Structure and Function [M]. Berlin: Springer,1999.
    [14] R Navia, M Soto, G Vidal. Alkaline pretreatment of kraft mill sludge to improve its anaerobicdigestion [J]. Bull Environ Contam Toxical,2002,69(6):869-876.
    [15] S Cassini, M Andrade, T Abreu. Alkaline and acid hydrolytic processes in aerobic andanaerobic sludges: effect on total EPS and fractions [J]. Water Sci Technol,2006,53(8):51-58.
    [16] H Yuan, Y Chen, H Zhang, S Jiang, Q Zhou, G Gu. Improved bioproduction of short chainfatty acids (SCFAs) from excess sludge under alkaline conditions [J]. Environ Sci Technol,2006,40(6):2025-2029.
    [17] L Feng, Y Chen, X Zheng. Enhancement of Waste Activated Sludge Protein Conversion andVolatile Fatty Acids Accumulation during Waste Activated Sludge Anaerobic Fermentationby Carbohydrate Substrate Addition: The effect of pH [J]. Environ Sci Technol,2009,172(1):4373-4380.
    [18] P Zhang, Y Chen, Q Zhou, X Zheng, X Zhu, Y Zhao. Understanding short-chain fatty acidsaccumulation enhanced in waste activated sludge alkaline fermentation: kineticas andmicrobiology [J]. Environ Sci Technol,2010,44(24):9343-9348.
    [19]何品晶,顾国维,李笃中等.城市污泥处理与利用[M].北京:科学技术出版社,2003.
    [20] E Neyens, J Baeyens, R Dewil, B Deheyder. Advanced sludge treatment affects extracellularpolymeric substances to improve activated sludge dewatering [J]. J Hazard Mater,2004,106(2-3):83-92.
    [21] B Jin, B Milén, P Lant. Impacts of morphological, physical and chemical properties of sludgeflocs on dewaterability of activated sludge [J]. Chem Eng J,2004,98(1-2):115-126.
    [22] F Ye, G Peng, Y Li. Influences of influent carbon source on extracellular polymericsubstances (EPS) and physicochemical properties of activated sludge [J]. Chemosphere,2011,84(9):1250-1255.
    [23] G Yu, P He, L Shao, P He. Stratification Structure of Sludge Flocs with Implications toDewaterability [J]. Enviro Sci Technol,2008,42(21):7944-7949.
    [24] L Shao, G Wang, H Xu, G Yu, P He. Effects of ultrasonic pretreatment on sludgedewaterability and extracellular polymeric substances distribution in mesophilic anaerobicdigestion [J]. J Enviro Sci,2010,22(3):474-480.
    [25] G Yu, P He, L Shao. Reconsideration of anaerobic fermentation from excess sludge at pH10.0as an eco-friendly process [J]. J Hazard Mater,2010,175(1-3):510-517.
    [26] L Mikkelsen, K Keiding. Physico-chemical characteristics of full scale sewage sludges withimplications to dewatering [J]. Water Res,2002,36(10):2451-2462.
    [27] J Novak, C Muller, S Murthy. Floc structure and the role of cations [J]. Water Sci Technol,2001,44(10):209-213.
    [28] J Houghton, J Quarmby, T Stephenson. Municipal wastewater sludge dewaterability and thepresence of microbial extracellular polymer [J]. Water Sci Technol,2001,44(2-3):373-379.
    [29] X Li, S Yang. Influence of loosely bound extracellular polymeric substances (EPS) on theflocculation, sedimentation and dewaterability of activated sludge [J]. Water Res,2007,41(5):1022-1030.
    [30] M Higgins, J Novak. The effect of cations on the settling and dewatering of activated sludge:Laboratory results [J]. Water Environ Res,1997,69(2):215-225.
    [31] G Erden, A Filibeli. Ultrasonic pre-treatment of biological sludge: consequences fordisintegration, anaerobic biodegradability, and filterability [J]. J Chem Technol Biotechnol2010,85(1):145-150.
    [32] J Zhou, D Mavinic, H Kelly. Effects of temperatures and extracellular proteins ondewaterability of thermophilically digested biosolids [J]. J Enviro Engin Sci,2002,1(6):409-415.
    [33] H Pei, W Hua, Q Liu. Effect of protease and cellulase on the characteristic of activatedsludge [J]. J Hazard Mater,2010,178(1-3):397-403.
    [34] I Dogǎn, F Sanin. Alkaline solubilization and microwave irradiation as a combined sludgedisintegration and minimization method [J]. Water Res,2009,43(8):2139-2148.
    [35] H Li, Y Jin, M Rasoolbux. Effects and model of alkaline waste activated sludge treatment [J].Bioresour Technol,2008,99(11):5140-5144.
    [36] Y Chen, H Yang, G Gu. Eeefect of acid surfactant treatment on activated sludge dewaeringand setting [J]. Water Res,2001,35(11):2615-2620.
    [37] D Devlin, S Esteves, R Dinsdale, Guwy. The effect of acid pretreatment on the anaerobicdigestion and dewatering of waste activated sludge [J]. Bioresour Technol,2011,102(5):4076-4082.
    [38] L Mikkelsen, A Gotfredsen, M Agerbak, P Nielsen, K Keiding. Effects of colloidal stabilityon clarification and dewatering of activated sludge [J]. Water Sci Technol,1996,34(3-4):449-457.
    [39] C Wu, J Wu. Effect of charge neutralization on the dewateringperformance of alum sludge bypolymer conditioning [J]. Water Sci Technol,2001,44(10):315-319.
    [40] J Lin, C Chang, S Chang. Enhancement of anaerobic digestion of waste activated sludge byalkaline solubilization [J]. Bioresour Technol,1997,62(3):85-90.
    [41] M Weemaes, W Verstraete. Evaluation of current wet sludge disintegration techniques [J]. JChem Technol Biotechnol,1998,73(2):83-92.
    [42]胡纪萃.废水厌氧生物处理理论与技术[M].北京:中国建筑工业出版社,2003.
    [43]陈兆波,陈志强,林海龙.污水处理系统数学模型[M].哈尔滨:哈尔滨工业大学出版社,2009.
    [44] M Cai, H Chu, Q Zhao, S Shirley, J Ren. Optimal production of polyhydroxyalkanoates(PHA) in activated sludge fed by volatile fatty acids (VFAs) generated from alkaline excess
    [45] G Parkin, W Owen. Fundamentals of anaerobic digestion of wastewater sludge [J]. J EnvironEng,1986,112(5):867-920.
    [46] A Donoso-Bravo, S Pérez-Elvira, E Aymerich, F Fdz-Polanco. Assessment of the influence ofthermal pre-treatment time on the macromolecular composition and anaerobicbiodegradability of sewage sludge [J]. Bioresour Technol,2011,102(2):660-666.
    [47] X Liu, W Wang, X Gao, Y Zhou, R Shen. Effect of thermal pretreatment on the physical andchemical properties of municipal biomass waste [J]. Waste manage,2012,32(2):249-255.
    [48] M Pijuan, Q Wang, L Ye, Z Yuan. Improving secondary sludge biodegradability using freenitrous acid treatment [J]. Bioresour Technol,2012,116:92:98.
    [49] AMontusiewicz, M Lebiocka, ARo ej, E Zacharska, LPawlowski. Freezing/thawing effectson anaerobic digestion of mixed sewage sludge [J]. Bioresour Technol,2010,101(10):3466-3473.
    [50] P Zhang, M Zhang G, W Wang. Ultrasonic treatment of biological sludge: Floc disintegration,cell lysis and inactivation [J]. Bioresour Technol,2007,98(1):207-210.
    [51] F Wang, Y Wang, M Ji. Mechanisms and kinetics models for ultrasonic waste activatedsludge disintegration [J]. J Hazard Mater,2005,123(1-3):145-150.
    [52] Y Chiu, C Chang, J Lin, S Huang. Alkaline and ultrasonic pretreatment of sludge beforeanaerobic digestion [J]. Water Sci Technol,1997,36(11):155-162.
    [53] G Xu, S Chen, J Shi, S Wang, G Zhu. Combination treatment of ultrasound and ozone forimproving solubilization and anaerobic biodegradability of waste activated sludge [J]. JHazard Mater,2010,180(1-3):340-346.
    [54] Y Ji, H Li, R Mahar, Z Wang, Y Nie. Combined alkaline and ultrasonic pretreatment ofsludge before aerobic digestion [J]. J Enviro Sci,2009,21(3):279-284.
    [55] C Song Y, J Kwon S, H Woo J. Mesophilic and thermophilic temperature co-phase anaerobicdigestion compared with single-stage mesophilic-and thermophilic digestion of sewagesludge [J]. Water Res,2004,38(7):1653-1662.
    [56] D Bolzonella, P Panvan, M Zanette, F Cecchi. Two-Phase Anaerobic Digestion of WasteActivated Sludge: Effect of an Extreme Thermophilic Prefermentation [J]. Ind Eng Chem Res,2007,46(21):6650-6655.
    [57] S Tanaka, K Kamiyama. Thermochemical pretreatment in the anaerobic digestion of wasteactivated sludge [J]. Water Sci Technol,2002,46(10):173-179.
    [58] Q Wang, C Noguchi, Y Hara, C Sharon, K Kakimoto, Y Kato. Studies on AnaerobicDigestion Mechanism: Influence of Pretreatment Temperature on Biodegradation of WasteActivated Sludge [J]. Enviro Technol,1997,18(10):999-1008.
    [59] L Appels, A Assche, K Lillems, J Degrève, J Impe, Dewil. Peracetic acid oxidation as analternative pre-treatment for the anaerobic digestion of waste activated sludge [J]. BioresourTechnol,2011,102(5):4124-4130.
    [60] S Pérez-Elvira, M Fdz-Polanco, F Plaza, Garralón. Ultrasound pre-treatment for anaerobicdigestion improvement[J].Water Science and technology [J]. Water Sci Technol,2009,60(6):1525-1532.
    [61] D Zhang, Y Chen, Y Zhao, Z Ye. A New Process for Efficiently Producing Methane fromWaste Activated Sludge: Alkaline Pretreatment of Sludge Followed by Treatment ofFermentation Liquid in an EGSB Reactor [J]. Enviro Sci Technol,2011,45(2):803-808.
    [62] M Shehu, Z Manan, R Sharifah. Optimization of thermo-alkaline disintegration of sewagesludge for enhanced biogas yield [J]. Bioresour Technol,2012,114:69-74.
    [63]陈文花,刘常青,张江山,赵由才.热处理对污泥厌氧发酵产氢的影响[J].可再生能源,2007,25(2):56-59.
    [64] M Cai, J Liu, Y Wei. Enhanced Biohydrogen Production from Sewage Sludge with AlkalinePretreatment [J]. Environ Sci Technol,2004,38(11):3195-3202.
    [65] Y Zhao, Y Chen, D Zhang, X Zhu. Waste Activated Sludge Fermentation for HydrogenProduction Enhanced by Anaerobic Process Improvement and Acetobacteria Inhibition: TheRole of Fermentation pH [J]. Environ Sci Technol,2010,44(9):3317-3323.
    [66] Y Chen, N Xiao, Y Zhao, H Mu. Enhancement of hydrogen production during wasteactivated sludge anaerobic fermentation by carbohydrate substrate addition and pH control[J]. Bioresour Technol,2012,114:349-356.
    [67]刘晓玲.城市污泥厌氧发酵产酸优化及机理研究[D].无锡:江南大学,2008.
    [68]高永青.污泥厌氧发酵碳源强化生活污水脱氮除磷及污泥减量[D].北京:北京工业大学,2011.
    [69] L Feng, Y Yan, Y Chen. Kinetic analysis of waste activated sludge hydrolysis and short-chainfatty acids production at pH10[J]. J Environ Sci,2009,21(5):589-594.
    [70] L Feng, H Wang, G Chen Y, Q Wang. Effect of solids retention time and temperature onwaste activated sludge hydrolysis and short-chain fatty acids accumulation under alkalineconditions in continuous-flow reactors [J]. Bioresour Technol,2009,100(1):44-49.
    [71] P Zhang, Y Chen, Q Zhou. Waste activated sludge hydrolysis and short-chain fatty acidsaccumulation under mesophilic and thermophilic conditions: effect of pH [J]. Water Res,2009,43(15):3735-3742.
    [72]沈萍,陈向东..微生物学[M].北京:高等教育出版社,2009.
    [73] Y Ahn, R Speece. A novel process for organic acids and nutrient recovery from municipalwastewater sludge [J]. Water Sci Technol,2006,53(12):101-109.
    [74] R Zeng, Z Yuan, J Keller. Effects of solids concentration, pH and carbon addition on theproduction rate and composition of volatile fatty acids in prefermenters using primary sewagesludge [J]. Water Sci Technol,2006,53(8):263-269.
    [75] X Kang, G Zhang, L Chen, W Dong, W Tian. Effect of Initial pH Adjustment on Hydrolysisand Acidification of Sludge by Ultrasonic Pretreatment [J]. Ind Eng Chem Res,2011,50(22):12372-12378.
    [76] P Elefsiniotis, D Wareham, A Oldham. Particulate Organic Carbon Solubilization in anAcid-Phase Upflow Anaerobic Sludge Blanket System [J]. Enviro Sci Technol,1996,30(5):1508-1514.
    [77] A Banerjee, P Elefsiniotis, D Tuhtar. Effect of HRT and temperature on the acidogeniesis ofmunicipal primary sludge and industrial wastewater [J]. Water Sci Technol,1998,38(8-9):417-423.
    [78] Y Miron, G Zeeman, J Vanlier, G Lettinga. The role of sludge retention time in the hydrolysisand acidification of lipids, carbohydrates and proteins during digestion of primary sludge inCSTR systems [J]. Water Res,2000,34(5):1705-1713.
    [79] H Xiong, J Chen, H Wang, H Shi. Influences of volatile solid concentration, temperature andsolid retention time for the hydrolysis of waste activated sludge to recover volatile fatty acids[J]. Bioresour Technol,2012,119:285-92.
    [80] Q Yuan, J Sparling, J Oleszkiewicz. Waste activated sludge fermentation: Effect of solidsretention time and biomass concentration [J]. Water Res,2009,43(20):5180-5186.
    [81]喻扬,王永红,储炬,庄英萍,张嗣良.控制发酵过程氧化还原电位优化酿酒酵母乙醇生产[J].生物工程学报,2007,23(5):779-787.
    [82]赵丹,任南琪,王爱杰. pH、ORP制约的产酸相发酵类型及顶级群落[J].重庆环境科学,2003,25(2):33-35.
    [83]周洪波, R Cor-Ruwisch,陈坚,任洪强.产酸相中氧化还原电位控制及其对葡萄糖厌氧发酵产物的影响[J].中国沼气,2000,18(4):20-23.
    [84]宋佳秀,任南琪,安东,段志杰.产酸相发酵类型的制氢转化规律及比较[J].净水技术,2006,25(6):55-59.
    [85]马文成.水解酸化-两级厌氧工艺处理甲醇废水的试验研究[D].哈尔滨:哈尔滨工业大学,2008.
    [86] X Liu, H Liu, Y Chen, G Du, J Chen. Effects of organic matter and initial carbon-nitrogenratio on the bioconversion of volatile fatty acids from sewage sludge [J]. J Chem TechnolBiotechnol,2008,83(7):1049-1055.
    [87] B Fu, J Zhang, J Fan, J Wang, H Liu. Control of C/N ratio for butyric acid production fromtextile wastewater sludge by anaerobic digestion [J]. Water Sci Technol,2012,65(5):883-889.
    [88]高永青,彭永臻,张晶宇,王淑莹,巩有奎. pH和元素摩尔比对污泥酸化液沉淀法脱氮除磷的影响[J].环境工程学报,2011,5(2):241-245.
    [89] L De-Bashan, Y Bashan. Recent advances in removing phosphorus from wastewater and itsfuture use as fertilizer (1997-2003)[J]. Water Res,2004,38(19):4222-4246.
    [90]佟娟,陈银广,顾国伟.鸟粪石除磷工艺研究进展[J].化工进展,2007,26(4):526-530.
    [91]陈静霞,李咏梅.鸟粪石沉淀法预处理高氨氮废水的镁盐研究[J].环境工程学报,2011,5(12):2663-2667.
    [92] Q Yuan, J Oleszkiewicz. Biomass fermentation to augment biological phosphorus removal [J].Chemosphere,2010,78(1):29-34.
    [93] J Tong, Y Chen. Recovery of nitrogen and phosphorus from alkaline fermentation liquid ofwaste activated sludge and application of the fermentation liquid to promote biologicalmunicipal wastewater treatment [J]. Water Res,2009,43(12):2969-2976.
    [94] H Li, Y Jin, Y Nie. Application of alkaline treatment for sludge decrement and humic acidrecovery [J]. Bioresour Technol,2009,100(24):6278-6283.
    [95] S Uludag-Demire, M Othman. Removal of ammonium and phosphate from the supernatant ofanaerobically digested waste activated sludge by chemical precipitation [J]. Biore Technol,2009,100(13):3236-3244.
    [96] I Stratful, M Scrimshaw, J Lester. Conditions influencing the precipitation of magnesiumammonium phosphate [J]. Water Res,2001,35(17):4191-4199.
    [97] N Booker, A Priestley, I Fraser. Struvite formation in wastewater treatment plants:opportunities for nutrient recovery [J]. Enviro Technol,1999,20(7):777-782.
    [98] S Jiang, Y Chen, Q Zhou, G Gu. Biological short-chain fatty acids(SCFAs) production fromwaste-activated sludge affected by surfactant [J]. Water Res,2007,41(14):3112-3120.
    [99] D Skalsky, G Daigger. Wastewater solids fermentation for volatile acid production andenhanced biological phosphorus removal [J]. Water Environ Res,1995,67(2):230-237.
    [100] P Elefsiniotis, W Oldham. Anaerobic acidogenesis of primary sludge: the role of solidsretention time.[J]. Biotech Bioeng,1994,44(1):7-13.
    [101] H Yu, X Zheng, Z Hu, G Gu. High-rate anaerobic hydrolysis and acidogenesis of sewagesludge in a modified upflow reactor [J]. Water Sci Technol,2003,48(4):69-75.
    [102] G Yu, P He, L Shao, P He. Toward understanding the mechanism of improving the productionof volatile fatty acids from activated sludge at pH10.0[J]. Water Res,2008,42(18):4637-4644.
    [103] X Liu, H Liu, J Chen, G Du, J Chen. Enhancement of solubilization and acidification ofwaste activated sludge by pretreatment [J]. Waste manage,2008,28(12):2614-2622.
    [104] Y Yan, L Feng, C Zhang, C Wisniewski, Q Zhou. Ultrasonic enhancement of waste activatedsludge hydrolysis and volatile fatty acids accumulation at pH10.0[J]. Water Res,2010,44(11):3329-3336.
    [105] X Li, H Chen, L Hu, L Yu, Y Chen, G Gu. Pilot-scale waste activated sludge alkalinefermentation, fermentation liquid separation, and application of fermentation liquid to improvebiological nutrient removal [J]. Environ Sci Technol,2011,45(5):1834-1839.
    [106]张礼平,陈银广,姜苏,杨海真,顾国维.两种表面活性剂对剩余污泥产酸影响的比较研究[J].环境科学学报,2007,27(1):96-100.
    [107] S Jiang, Y Chen, Q Zhou. Effect of sodium dodecyl sulfate on waste activated sludgehydrolysis and acidification [J]. Chem Eng J,2007,132(1-3):311-317.
    [108] S Jiang, Y Chen, Q Zhou. Influence of alkyl sulfates on waste activated sludge fermentationat ambient temperature [J]. J Hazard Mater,2007,148(1-2):110-115.
    [109] P Zhang, Y Chen, T Huang, Q Zhou. Waste activated sludge hydrolysis and short-chain fattyacids accumulation in the presence of SDBS in semi-continous flow reactors:Effects of solidsretentin time and temperature [J]. Chem Eng J,2009,148(2-3):348-353.
    [110] P Zhang, Y Chen, Q Zhou. Effect of surfactant on hydrolysis products accumulation andshort-chain fatty acids (SCFA) production during mesophilic and thermophilic fermentation ofwaste activated sludge: Kinetic studies [J]. Bioresour Technol,2010,101(18):6902-6909.
    [111] Z Ji, G Chen, Y Chen. Effects of waste activated sludge and surfactant addition on primarysludge hydrolysis and short-chain fatty acids accumulation [J]. Bioresour Technol,2010,101(10):3457-3462.
    [112] K Luo, Q Yang, J Yu, X Li, G Yang, B Xie, F Yang, W Zheng, G Zeng. Combined effect ofsodium dodecyl sulfate and enzyme on waste activated sludge hydrolysis and acidification [J].Bioresour Technol,2011,102(14):7103-7110.
    [113] X Yang, M Du, D Lee, C Wan, L Zheng, G Li. Enhanced production of volatile fatty acids(VFAs) from sewage sludge by beta-cyclodextrin [J]. Bioresour Technol,2012,110:688-91.
    [114] X Yang, M Du, D Lee, C Wan, L Zheng, F Wan. Improved volatile fatty acids productionfrom proteins of sewage sludge with anthraquinone-2,6-disulfonate (AQDS) under anaerobiccondition [J]. Bioresour Technol,2012,103(1):494-497.
    [115] J Ahn, S Shin, S Hwang. Effect of microwave irradiation on the disintegration andacidogenesis of municipal secondary sludge [J]. Chem Eng J,2009,152(1-3):145-150.
    [116] Stack, Cotta. Effect of3-Phenylpropanoic acid on growth of and cellulose utilizaiton bycellulolytic ruminal bacteria [J]. Appl Enviro Microbiol,1986,52(1):209-210.
    [117] M Myint, N Nirmalakhandan, R Speece. Anaerobic fermentation of cattle manure: Modelingof hydrolysis and acidogenesis [J]. Water Res,2007,41(2):323-332.
    [118] M Nagase, T Matsuo. Interactions between amino-acid-degrading bacteria and methanogenicbacteria in anaerobic-digestion [J]. Biotech Bioeng,1982,24(10):2227-2239.
    [119] W Gujer, A Zehnder. Conversion processes in anaerobic-digestion [J]. Water Sci Technol,1983,15(8-9):127-167.
    [120] Q Yang, K Luo, X Li, D Wang, W Zheng, G Zeng, J Liu. Enhanced efficiency of biologicalexcess sludge hydrolysis under anaerobic digestion by additional enzymes [J]. BioresourTechnol,2010,101(9):2924-2930.
    [121] H Ge, P Jensen, D Batstone. Pre-treatment mechanisms during thermophilic-mesophilictemperature phased anaerobic digestion of primary sludge [J]. Water Res,2010,44(1):123-130.
    [122] S Pavlostathis, E Giraldogomez. Kinetics of anaerobic treatment [J]. Water Sci Technol,1991,24(8):35-59.
    [123]张春杨.厌氧互营细菌的生态、资源和分子系统学研究[D].北京:中国科学院微生物研究所,2004.
    [124] K Park, J Lee, K Song, K Ahn. Ozonolysate of excess sludge as a carbon source in anenhanced biological phosphorus removal for low strength wastewater [J]. Bioresour Technol,2011,102(3):2462-2467.
    [125] K Min, K Park, Y Jung, A Khan, Y Kim. Acidogenic Fermentation: Utilization of wastedsludge as a carbon source in the denitrification process [J]. Environ Technol,2002,23(3):293-302.
    [126] P Biradar, S Roy, S Souza, A Pandit. Excess cell mass as an internal carbon source forbiological denitrification [J]. Biore Technol,2010,101(6):1787-1791.
    [127] T Kim, M Lee, C Park. Gamma ray irradiation for sludge solubilization and biologicalnitrogen removal [J]. Radiat Phys Chem,2011,80(12):1386-1390.
    [128] V Aravinthan, T Mino, S Takizawa, H Satoh, T Matsuo. Sludge hydrolysate as a carbonsource for denitrification [J]. Water Sci Technol,2001,43(1):191-199.
    [129] P Kampas, S Parsons, P Pearce, S Ledoux, P Vale, E Cartmell, A Soares. An internal carbonsource for improving biological nutrient removal [J]. Bioresour Technol,2009,100(1):149-154.
    [130] Y Gao, Y Peng, J Zhang, J Wang, L Ye. Using excess sludge as carbon source for enhancednitrogen removal and sludge reduction with hydrolysis technology [J]. Water Sci Technol,2010,62(7):1536-1543.
    [131] D Khac, J Banu, I Chunga, I Yeoma. Effect of thermochemical sludge pretreatment on sludgereduction and on performances of anoxic-aerobic membrane bioreactor treating low strengthdomestic wastewater [J]. J Chem Technol Biotechnol,2009,84(9):1350-1355.
    [132] Y Oh, Lee, K Ahn, K Ko, I Yeom. Effects of chemical sludge disintegration on theperformances of wastewater treatment by membrane bioreactor [J]. Water Res,2007,41(12):2665-2671.
    [133] Y Gao, Y Peng, J Zhang, S Wang, J Guo, L Ye. Biological sludge reduction and enhancednutrient removal in a pilot-scale system with2-step sludge alkaline fermentation and A2Oprocess [J]. Bioresour Technol,2011,102(5):4091-4097.
    [134] H Liu, F Zhao, B Mao, X Wen. Enhanced nitrogen removal in a wastewater treatment in awastewater treatment process characterized by carbon source manipulation with biologicaladsorption and sludge hydrolysis [J]. Biore Technol,2012,114:62-68.
    [135] X Zheng, Y Chen, C Liu. Waste Activated Sludge Alkaline Fermentation Liquid as CarbonSource for Biological Nutrients Removal in Anaerobic Followed by AlternatingAerobic-Anoxic Sequencing Batch Reactors [J]. CIESC J2010,18(3):478-485.
    [136] J Tong, Y Chen. Enhanced biological phosphorus removal driven by short-chain fatty acidsproduced from waste activated sludge alkaline fermentation [J]. Environ Sci Technol,2007,41(20):7126-7130.
    [137] X Zhu, Y Chen. Reduction of N2O and NO Generation in Anaerobic-Aerobic (LowDissolved Oxygen) Biological Wastewater Treatment Process by Using Sludge AlkalineFermentation Liquid [J]. Enviro Sci Technol,2011,45(6):2137-2143.
    [138] J Wang, T Zhang, J Chen, Z Hu. Retrofitting conventional primary clarifiers to activatedprimary clarifiers to enhance nutrient removal and energy conservation in WWTPs in Beijing,China [J]. Water Sci Technol,2011,63(7):1446-1452.
    [139] R Canziani, A Pollice, M Ragazzi. Feasibility of using primary-sludge mesophilic hydrolysisfor biological removal of nitrogen and phosphorus from wastewater [J]. Bioresour Technol,1995,54(3):225-260.
    [140] L Zhang, S Zhang, J Zhou, S Wang, Y Gan, Y Peng. Nitrogen removal from reject water withprimary sludge as denitrification carbon source [J]. Water Sci Technol,2010,61(12):2965-2972.
    [141] Y Peng, L Zhang, S Zhang, Y Gan, C Wu. Enhanced nitrogen removal from sludgedewatering liquor by simultaneous primary sludge fermentation and nitrate reduction in batchand continuous reactors [J]. Bioresour Technol,2011,104:144-149.
    [142] H Wu, J Gao, D Yang, Q Zhou, W Liu. Alkaline fermentation of primary sludge forshort-chain fatty acids accumulation and mechanism [J]. Chem Eng J,2010,160(1):1-7.
    [143] H Wu, D Yang, Q Zhou, Z Song. The effect of pH on anaerobic fermentation of primarysludge at room temperature [J]. J Hazard Mater,2009,172(1):196-201.
    [144] N Ferreiro, M Soto. Anaerobic hydrolysis of primary sludge: influence of sludgeconcentration and temperature [J]. Water Sci Technol,2003,47(12):239-246.
    [145]高景峰,彭永臻,王淑莹. SBR法反硝化模糊控制参数pH和ORP的变化规律[J].环境科学,2002,23(1):39-44.
    [146] J Guo, Q Yang, Y Peng, A Yang, S Wang. Biological nitrogen removal with real-time controlusing step-feed SBR technology [J]. Enzyme Microb Technol,2007,40(6):1564-1569.
    [147] O Lowry, N Rosebrough, A Farr. Protein measurement with the Folin phemo reageant [J]. JBiol Chem,1951,193:265-275.
    [148] D Herbert, P Philipps, R Strange. Methods in Enzymology [J].1971,5B:265-277.
    [149] R Goel, Minot, H Satoh, T Matsuo. Enzyme activities under anaerobic and aerobic conditionsin activated sludge sequencing batch reactor [J]. Water Res,1998,32(7):2081-2088.
    [150] C Wu, Y Peng, C Wan, S Wang. Performance and microbial population variation in aplug-flow A2O process treating domestic wastewater with low C/N ratio [J]. J Chem TechnolBiotechnol,2011,86(3):461-467.
    [151] J Bruus, P Nielsen, K Keiding. On the stability of activated sludge flocs with implications todewatering [J]. Water Res,1992,26(12):1597-1604.
    [152]肖本益,刘俊新.污水处理系统剩余污泥碱处理融胞效果研究[J].环境科学,2006,27(2):319-323.
    [153] J Kim, C Park, T Kim, S Kim, J Lee. Effects of various pretreatments for enhanced anaerobicdigestion with waste activated sludge [J]. J Biosci Bioeng,2003,95(3):271-275.
    [154]尹军,臧立新,于海侠,李丽萍,崔玉琢,刘春峰.超声与碱预处理低有机质剩余污泥特性分析[J].环境工程学报,2009,3(1):179-182.
    [155] E Neyens, J Baeyen, C Creemer. Alkaline thermal sludge hydrolysis [J]. J Hazard Mater,2003,97(1-3):285-314.
    [156] G Hatziconstantinou, P Yannakopoulos, A Andreadakis. Primary sludge hydrolysis forbiological nutrient removal [J]. Water Sci Technol,1996,34(1-2):417-423.
    [157] A Vlyssides, P Karlis. Thermal-alkaline solubilization of waste activated sludge as apre-treatment stage for anaerobic digestion [J]. Bioresour Technol,2004,91(2):201-206.
    [158] D Stuchey, P Mccarty. The effect of thermal pre-treatment on the anaerobic biodegradabilityand toxicity of waste activated sludge [J]. Water Res,1984,18(11):1343-1353.
    [159]格雷迪.废水生物处理[M].张锡辉,刘勇弟译.北京:化学出版社,2004.
    [160] A Valo, H Carrere, J Delgens. Thermal, chemical and thermo-chemical pre-treatment ofwaste activated sludge for anaerobic digestion [J]. J Chem Technol Biotechnol,2004,70(11):1197-1203.
    [161] A Erdincler, P Vesilid. Effect of sludge cell disruption on compactibility of biological sludges[J]. Water Sci Technol,2000,42(9):119-126.
    [162] M Mcinerney. Anaerobic hydrolysis and fermentation of fats and proteins/[M]. New York:John Wiley&Sons Inc,1988.
    [163] Q Yuan, R Sparling, J Oleszkiewicz. VFA generation from waste activated sludge: Effect oftemperature and mixing [J]. Chemosphere,2011,82(4):603-607.
    [164] B Guan, J Yu, H Fu, M Guo, X Xu. Improvement of activated sludge dewaterability by mildthermal treatment in CaCl2solution [J]. Water Res,2012,46(2):425-432.
    [165] K Andreasen, G Petersen, H Thomsen, R Strube. Reduction of nutrient emission by sludgehydrolysis [J]. Water Sci Technol,1997,35(10):79-85.
    [166] E Cokgor, S Oktay, D Tas, G Zengin, D Orhon. Influence of pH and temperature on solublesubstrate generation with primary sludge fermentation [J]. Bioresour Technol,2009,100(1):380-386.
    [167]苑宏英,张华星,陈银广,周琪. pH对剩余污泥厌氧发酵产生的COD、磷及氨氮的影响[J].环境科学,2006,27(7):1358-1361.
    [168] H Liu, H Fang. Extraction of extracellular polymeric substances (EPS) of sludges [J]. JBiotechnol,2002,95(3):249-256.
    [169] C Wilson, J Novak. Hydrolysis of macromolecular components of primary and secondarywastewater sludge by thermal hydrolytic pretreatment [J]. Water Res,2009,43(18):4489-4498.
    [170] Q Yuan, Baranowskim, J Oleszkiewicz. Effect of sludge type on the fermentation products [J].Chemosphere,2010,80(4):445-449.
    [171] H Bouallagui, L Marouani, M Hamdi. Performances comparison between laboratory andfull-scale anaerobic digesters treating a mixture of primary and waste activated sludge [J].Resources,conservation and recycling,2010,55(1):29-33.
    [172] A Ucisik, M Henze. Biological hydrolysis and acidification of sludge under anaerobicconditions: the effect of sludge type and origin on the production and composition of volatilefatty acids [J]. Water Res,2008,42(14):3729-3738.
    [173] L Feng, Y Yan, Y Chen. Co-fermentation of waste activated sludge with food waste forshort-chain fatty acids production: effect of pH at ambient temperature [J]. Front Environ SciEngin China,2011,5(4):623-632.
    [174] H Chen, H Wu. Optimization of volatile fatty acid production with co-substrate of foodwastes and dewatered excess sludge using response surface methodology [J]. BioresourTechnol,2010,101(14):5487-5493.
    [175] P Stroot, K Mcmahon, R Mackie, L Raskin. Anaerobic codigestion of municipal solid wasteand biosolids under various mixing conditions-I. Digester performance [J]. Water Res,2001,35(7):1806-1814.
    [176] H Lee, J Han, Z Yun. Biological nitrogen and phosphorus removal in UCT-type MBR process[J]. Water Sci Technol,2009,59(11):2093-2099.
    [177] X Wang, Z Wu, Z Wang, X Yin, X Du. Floc destruction and its impact on dewateringproperties in the process of using flat-sheet membrane for simultaneous thickening anddigestion of waste activated sludge [J]. Bioresour Technol,2009,100(6):1937-1942.
    [178]李树林.我国―十一五‖期间金属镁生产发展述评[J].轻金属,2011,12):3-5.
    [179]付羽,陈宝智.粒径对镁粉爆炸特性的影响[J].工业安全与环保,2009,35(8):36-38.
    [180]彭震.新型自热式抗结壳沼气反应器发酵特性研究[D].重庆:重庆大学,2011.
    [181]辛亮.菌株X9利用玉米秸秆的产氢能力及影响因素研究[D].哈尔滨:哈尔滨工业大学,2007.
    [182]刘轶文.零价铁强化厌氧废水处理的研究[D].大连:大连理工大学,2011.
    [183]刘士清,刘伟伟,马欢,曹成茂,伍德林,朱德泉,王继先.不同金属离子对生物质发酵产氢的影响[J].农业工程学报,2010,26(10):290-296.
    [184] P Lemos, L Serafim, M Reis. Synthesis of polyhydroxyalkanoates from different short-chainfatty acids by mixed cultures submitted to aerobic dynamic feeding [J]. J Biotechnol,2006,122(2):226-238.
    [185] P Mccarth, D Smith. Anaerobic wastewater treatment [J]. Environ Sci Technol,1986,20:1200-1206.
    [186] P Elefsinotis, W Oldham. Influence of pH on the acid-phase anaerobic-digestion of primarysludge [J]. J Chem Technol Biotechnol,1994,60(1):89-96.
    [187] Y Jiang,Y Chen,X Zheng. Efficient polyhydroxyalkanoates production from a waste activatedsludge alkaline fermentation liquid by activated sludge submitted to the aerobic feeding anddischarge process [J]. Environ Sci Technol,2009,43(20):7734-7741.
    [188] G Oh, L Zhang, D Jahng. Osmoprotectants enhance methane production from the anaerobicdigestion of food wastes containing a high content of salt [J]. J Chem Technol Biotechnol,2008,83(9):1204-1210.
    [189] A Rinzema, J Lier V, G Lettinga, P Lens. Sodium inhibition of acetoclastic methanogens ingranular sludge from a UASB reactor [J]. Enzyme Mircrob Technol,1988,10(1):24-32.
    [190] D Jeison, A Del, J Vanlier. Impact of high saline wastewaters on anaerobic granular sludgefunctionalities [J]. Water Sci Technol,2008,57(6):815-819.
    [191] M Vallero, L Pol, G Lettinga. Effect of NaCl on thermophilic (55℃) methanl degradation insulfate reducing granular sludge reactors [J]. Water Res,2003,37(10):2269-2280.
    [192]崔有为,丁洁然,陈叶菲,苏贺.盐度入侵城市污水处理厂对淡水活性污泥的毒性抑制[J].化工学报,2012,63(5):1566-1573.
    [193] S Aslan, E Simsek. Influence of salinity on partial nitrification in a submerged biofilter [J].Bioresour Technol,2012,118:24-29.
    [194] H Kroiss. What is the potential for utilizing the resource in sludge?[J]. Water Sci Technol,2004,49(10):1-10.
    [195] V Penaud, J Delgenès, R Moltetta. Thermo-chemical pretreatment of a microbial biomass:influence of sodium hydroxide addition on solubilization and anaerobic biodegradability [J].Enzyme Microb Technol,1999,25(3-5):258-263.
    [196]苏高强,彭永臻,汪传新,高永青,霍明昕,朱遂一.污泥类型对污泥碱性发酵的影响[J].化工学报,2011,62(12):3492-3427.
    [197] J Matthew, Y John. The effect of cations on the settling and dewatering of activated sludges:Laboratory results [J]. Water Environ Res,1997,69(2):215-224.
    [198]张亚雷,杨鸿瑞,周雪飞,朱洪光.鸟粪石—絮凝强化工艺处理鸡粪发酵废水[J].同济大学学报,2012,40(2):256-261.
    [199]张记市,王玉松.鸟粪石结晶法回收垃圾渗滤液氨氮研究[J].环境工程学报,2009,3(11):2017-2020.
    [200] Z Ji, Y Chen. Using Sludge Fermentation Liquid To Improve Wastewater Short-CutNitrification-Denitrification and Denitrifying Phosphorus Removal via Nitrite [J]. Enviro SciTechnol,2010,44(23):8957-8963.
    [201] S Zhang, J Wang, Z Jiang, M Chen. Nitrite accumulation in an attapulgas clay biofilm reactorby fulvic acids [J]. Bioresour Technol,2000,73(1):91-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700