用户名: 密码: 验证码:
玄武岩纤维及其改性沥青的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的迅速发展,高速公路的交通路况呈现重载荷、高流量和渠道化明显等特点,对沥青路面的质量要求越来越高。另外,冰冻灾害、高低温周期交替及酸雨侵蚀等自然现象也会使沥青路面出现大量的早期病害现象。由于沥青材料具有高温容易流淌、低温容易变硬变脆且感温性大等缺点,严重限制了沥青材料在工程中的应用,因此对沥青进行改性,提高沥青的高、低温性能和路用性能成为建材领域研究的紧迫任务。纤维改性剂因其对沥青显著的改性效果引起了科研工作者的广泛关注,其中研究较多的有玄武岩纤维、木质素纤维、聚酯纤维、玻璃纤维等。
     玄武岩纤维是近年来出现的新型高性能沥青改性剂,与其他纤维相比,玄武岩纤维在沥青路面的应用中表现出显著的优势,如力学性能优异、工作范围大、比表面积大、耐酸碱性、耐老化和水稳定性好等。研究者在纤维增强沥青混凝土的路用性能方面积累了大量数据,但对玄武岩纤维材料自身的结构、物化性能和改性机理方面研究不足。玄武岩的微观结构和基本的理化性能如化学稳定性、热稳定性等,都是纤维能够在沥青路面中发挥作用的基本前提,对揭示纤维改性沥青的作用机理起着基础和关键性的作用。纤维加入沥青材料后,纤维与沥青两相的结合状态是纤维改性沥青的基本先决条件。在沥青材料中添加纤维改性剂后,沥青材料自身的组分和结构会发生变化,从而使沥青材料的流变性能发生相应的变化。纤维改性剂是如何改变沥青材料的流变性能、改性过程中哪些因素能产生明显的改性效果以及改性剂改性的作用机理等,都需要用流变理论和流变模型来阐释和预测。因而对沥青流变特性的研究可从根本上揭示纤维改性剂的改性效果和作用机理,对纤维改性沥青胶浆的流变性能进行系统研究具有十分重要的意义。
     本文采用SEM、EDS、FTIR和Raman光谱分别对玄武岩纤维的微观形貌、成分及分子结构进行研究;用X射线衍射仪对玄武岩纤维的矿物物相进行研究,并通过高斯拟合以及准谢乐公式计算得到纤维的近程有序度;利用无规网络学说,结合玄武岩纤维的成分计算得到纤维的无规网络参数,并对玄武岩纤维的结构和性能做进一步的预测。
     对化学稳定性的研究,首先利用SEM、EDS、XRD、FTIR等测试方法表征酸碱处理后玄武岩纤维的微观形貌、成分、矿物物相、近程有序度以及分子结构,并借助质量保留率、强度保留率、弹性模量保留率等参数来表征其质量和力学性能的损伤规律,最后经综合分析获得玄武岩纤维的酸碱侵蚀机理。
     对热稳定性的研究则先利用不同气氛下的TG-DSC曲线分析玄武岩纤维在热处理过程中可能发生的理化反应,然后利用金相显微镜、拉伸试验和FTIR光谱获得热处理对玄武岩纤维形貌、力学性能及分子结构的影响,并通过XRD研究玄武岩纤维热处理前后的析晶物相的变化,获得玄武岩纤维的析晶规律以及原理。
     对纤维沥青结合状态的研究,借助旋转粘度计、维卡仪、网篮析出实验、FTIR光谱、软化点仪分别研究玄武岩纤维对沥青胶浆的粘度和针入度的影响、不同种类纤维对沥青的吸附性能、各种纤维与沥青的两相结合的类型以及玄武岩纤维与棉状纤维分别对沥青胶浆软化点的影响规律。
     利用动态剪切流变仪研究纤维沥青胶浆的动态剪切流变性能,实验中研究了玄武岩纤维的不同掺量、试验温度、纤维种类、载荷作用频率和纤维的长径比分别对纤维沥青胶浆的动态剪切流变性能的影响规律,并利用美国公路战略研究计划(SHRP)中定义的车辙因子来表征纤维沥青胶浆的抗永久变形的能力。最后利用软件将玄武岩纤维沥青胶浆的车辙因子和温度的关系进行拟合,获得车辙因子和温度的拟合关系方程,并赋予方程中的拟合参数一定的物理意义。
     取得的主要认识如下:
     1.玄武岩纤维是一种无机硅铝酸盐玻璃质纤维材料,其具备规则的圆柱状形貌和微观尺寸上的架状结构。纤维具有规则的圆柱状形貌,表面较光滑,但存在数百nm的不规则凸起缺陷。纤维具有近程有序、远程无序的玻璃态结构,计算求得其近程有序度为4.12A。纤维在1002cm-1处出现Si—Onb极性键,说明其主要成分为硅酸盐,碱(碱土)金属破坏了其骨架结构,使其出现一定量的非桥氧。450cm-1处的中强峰由Al—Obr—Al对称弯曲振动引起,说明纤维中的部分Al取代Si进入骨架结构发挥网络形成体的作用。720cm-1处弱峰由AlⅣ—Onb对称伸缩振动引起,说明少量Al—Obr—Al被碱(碱土)金属破坏形成非桥氧键,使其网络结构的聚合度和有序度降低。计算得到纤维的无规网络参数X、Y、R、Z,发现其网络参数与Na2O·0.5Al2O3·2SiO2玻璃非常接近,说明纤维的网络结构基本为架状结构。
     2.酸性侵蚀呈现整体侵蚀的特点,与侵蚀介质主要发生离子交换作用,最终形成高硅氧骨架结构;碱性侵蚀出现逐层侵蚀的特点,侵蚀介质破坏了纤维的硅氧骨架结构,形成明显的皮芯结构。酸处理后的纤维仍保持圆柱状形貌,表面光泽度明显降低,出现少量的层状脱落和凹坑现象。大部分纤维的酸侵蚀程度都很高,纤维的主体结构趋向于只含有Si、O。酸处理使纤维的近程有序度变大、力学性能明显下降并趋于稳定值,这说明酸处理过程的开始阶段是A13+等阳离子与介质发生反应,并以离子形式进入到侵蚀介质溶液中,最终使纤维形成高硅氧的骨架结构。碱处理后的纤维呈现明显的皮芯结构,表面具有层状脱落物和粗糙的表面,并在脱落处形成新的光滑表面。碱处理使纤维的近程有序度变小、力学性能的降幅开始较小后期非常明显,这说明碱处理过程中开始阶段以阳离子离子的交换作用为主,后期介质已经破坏了纤维的网络骨架结构,导致严重的层状脱落现象,从而形成了皮芯结构。
     3.玄武岩纤维在700-1050℃内析出钙长石和透辉石晶相,600℃以下和1050℃以上的范围内均不发生析晶现象,前者没有足够的过冷度使晶体生长,后者没有晶核存在。纤维中的Fe2+发生的氧化反应造成了50%的增重,700℃以下的放热过程为纤维的内能减小的阶段,700℃以上的过程比较复杂,需借助其他实验结果分析。400℃处理后的纤维表面出现明显的不规则点状以及结瘤等表面缺陷,500℃处理后的样品局部出现更大的结瘤和点缺陷,600℃处理后的样品出现了面积更大的点状和凹坑缺陷,700℃热处理后的纤维出现显著的细条状和椭圆状缺陷。XRD结果表明600℃以下和1050℃以上的热处理条件下,玄武岩纤维不产生析晶;在700-1050℃的温度范围内,玄武岩纤维发生析晶现象,并且900℃是最大析晶现象对应的温度,在这个阶段内玄武岩纤维既能形成晶核,又有晶核长大的条件,析晶过程中先形成钙长石相再生成透辉石相。FTIR结果表明,红外吸收峰出现明显的变尖和峰的分裂现象,说明纤维材料结构变得更加规则,有更规则排列的基团形成,这可能是由透辉石和钙长石析晶相造成的。
     4.各种纤维与沥青间主要是物理作用,玄武岩纤维比棉状纤维具有更好的分散性和工程性能。与其他工程纤维相比,玄武岩纤维与沥青结合更加牢固,两相界面能够形成稳固的结构沥青膜,从而能够明显提高沥青胶浆的粘结性能并降低其温度敏感性。加入玄武岩纤维后的沥青胶浆粘度迅速升高,在150-185℃的范围内,沥青胶浆的粘度保持在8.0Pa·s左右,且感温性非常小。矿粉对沥青胶浆的作用高温不明显、低温更明显,且针入度与温度的关系符合波尔兹曼方程。矿粉对沥青胶浆只具有增加粘度的作用,粘度的幅度不如玄武岩纤维的大。当纤维掺量低于3.5%时,棉状纤维沥青胶浆的软化点的增幅比玄武岩纤维的高;当纤维掺量高于3.5%时,棉状纤维沥青胶浆的软化点下降,玄武岩纤维的快速升高。这说明玄武岩纤维在沥青中分散性好,一直都能充分发挥其增强和稳定作用;棉状纤维在高掺量下,不能在沥青中充分分散。玄武岩纤维的沥青吸附量随温度升高下降,在100-140℃内其沥青吸附量降幅较小,吸附量保持在13.0~17.5g;当温度高于140℃时,纤维的沥青吸附量急剧下降,这说明出现明显的两相分离现象。纤维沥青胶浆的红外谱图中未发现纤维的特征峰,仅对沥青的特征峰有一定的削弱,这说明纤维在沥青胶浆中的确存在,可能因为纤维的加入量较少,同时纤维的特征吸收峰较弱,从而被沥青的吸收峰掩盖。各种纤维的显微结构表明,木质素纤维表面粗糙,具有枝权状和类空管结构,玻璃纤维和聚酯纤维均具有表面较光滑的圆柱状结构。玻璃纤维结构中的特征基团最少,聚酯纤维的最复杂,表面有明显的羰基、醚基等结构,这些有利于与沥青表面很好的亲和。
     5.玄武岩纤维可以增加沥青材料的粘性和产生永久变形所消耗的能量,纤维对沥青胶浆的增弹作用比增粘作用强。高掺量的玄武岩纤维沥青胶浆在高温出现了平台,说明纤维已与沥青形成了完整的网络结构。将玄武岩纤维沥青胶浆的车辙因子和温度拟合,发现两者的关系符合ExpDecl模型,并赋予拟合参数以感温性和极限车辙因子的物理意义。随着温度的升高,沥青胶浆的车辙因子、复数模量和损失模量变大,相位角变小,随纤维掺量的增加流变参数相应的变幅更大,尤其在高温范围内。玄武岩纤维始终保持最高的车辙因子,仅在70~80℃范围内比聚酯纤维稍低,这说明在整个温度范围内玄武岩纤维的增强性能最稳定,能够使沥青胶浆保持最高的抵抗永久变形的能力。在30~50℃范围内,聚酯纤维比玻璃纤维的小,温度高于50℃时聚酯纤维的车辙因子快速增大,后来趋于最大值。这说明聚酯纤维在沥青胶浆中发挥着明显的作用,在低温区不明显,在高温区其能够逐渐发挥增强作用最终达到最优值。在低频载荷作用下,玄武岩纤维能够较好地提高沥青胶浆的车辙因子,随着纤维掺量的增加沥青胶浆的车辙因子的增幅逐渐变大;在高频载荷作用下,玄武岩纤维沥青胶浆的车辙因子随纤维掺量增加而增加,但当纤维掺量增至7.5%,其车辙因子反而下降,与3.5%掺量时相近。这可能是高掺量下玄武岩纤维在沥青中分散不均匀造成的。在不同的纤维掺量下,长度对沥青胶浆的流变参数的影响幅值都较小,这可能与实验中选取的长度取值差距较小有关,仍需补充差距更加大的实验。
The heavier vehicle loads, higher traffic volumes and worse serving environment have accelerated deterioration and eventual failure of asphalt concrete. The asphalt concrete has an obvious tendency to become brittle at low temperatures and soft at high temperatures (so called "temperature susceptibility"). To improve the pavement performance of asphalt, various types of fibers such as cellulose fiber, asbestos, glass fiber, polymer fiber and basalt fiber were used as modifiers in asphalt concrete. Recently, researchers draw more attention to basalt fiber due to its excellent mechanical properties, good thermal stability, and relatively low cost. Some papers dealt with the introduction of basalt fiber for improving asphalt, while the microstructure and property of basalt fiber and the detailed rheological properties of asphalt mortar are still poorly understood. The microstructure, chemical stability and thermal stability of basalt fiber are the basic premise for playing its role of reinforcement, are the key technique to reveal the interaction mechanism of between fiber and asphalt in the asphalt mortar.
     In this paper, SEM, EDS, FTIR and Raman spectra were used to characterize the morphology, components and molecular structure of basalt fiber. The phase of basalt fiber was characterized by X-Ray diffractometer, and the order in the short range was calculated by the quasi Scherrer formula and Gaussian fitting. In addition, the random network parameters were obtained by components results of basalt fibers. For the study of chemical stability, SEM, EDS, XRD and FTIR were were used to characterize the morphology, components, phase, order in the short range and molecular structure of acid-treated and alkali-treated basalt fibers. Also, weight loss experiment and tensile test were used to study the damage rule of mass and mechanical properties of acid-treated and alkali-treated basalt fibers. For the study of thermal stability, TG-DSC curves in different atmosphere were used to study the physical and chemical reactions of basalt fibers during the whole process of heat treatment. Then, metallographic microscope, FTIR spectrum and tensile testing were used to study effect of heat treatment on the morphology, molecular structure and mechanical properties of acid-treated and alkali-treated basalt fibers. X-Ray diffractometer was used to study the phase changes of heat-treated fibers, and then obtain the crystallization rules. For the study of combination state of basalt fiber and asphalt, rotational viscometer, Vicat apparatus, mesh-basket draindown experiment, softening point testing and FTIR spectra were used to evaluate the effect of fibers on viscosity, penetration, absorption, and softening point of asphalt mortar. Dynamic shear rheometer test was used to study the rheological property of fiber modified asphalt mortar. And then we research the effect of fiber's mixing amount, tesing temperature, fiber species, load frequency and aspect ratio of fibers on the rheological property of fiber modified asphalt mortar. At last, we give a regression relation between the rutting parameters of asphalt mortar and tesing temperature. The fitting parameters in the fitting equation were endued with some meanings.
     The main conclusions in this paper are summarized as follows:
     1. Basalt fiber has a regular cylindrical geometry with a relatively smooth surface except for some protuberances. The similar morphology may form in the fiber spinning process because the surface area of the molten would shrink into minimum cylindrical shape due to surface tension effects. Major portion of basalt fiber remains glassy and the order in the short range is4.12A, that is to say, basalt fiber is of an ordered structure in the short range and of a disordered structure in the long range. In the FTIR spectrum, the strongest absorption band at1001cm-1is attributed to the anti-symmetric stretching of Si—O—Si (Al). The corresponding symmetric stretching vibration and the bending vibration of Si—O—Si (Al) appear at725and450cm-1respectively. Based on the Random Network Models, the random network parameters of basalt fiber were obtained, and those parameters were similar to the random network parameters of Na2O·0.5Al2O3·2SiO2. That is to say, basalt fibers almost all have the framework structure.
     2. The acid-treated basalt fiber has cylinder-like shape, and its components are nearly Si and O. This fiber still keeps glassy, and the order in the short range becomes higher. And in FTIR finger region the peaks become sharper and move to high frequency region. In addition, the Si—OH also appears in this FTIR spectrum. The values of tensile strength retention and modulus retention of basalt fiber decline and gradually reach a steady value with different etching time. This suggests that at the beginning stage, Al3+and other cations react with acid medium, and then enter into the acid solution. At last, the random network of basalt fiber turn into the random network composed of high content of Si and O. The alkali-treated basalt fiber had skin-core structure, and its surface became very rough. There were some exfoliated materials on the surfaces of fibers. The alkali-treated fiber still keeps glassy, and the order in the short range becomes lower. Also, the values of tensile strength retention and modulus retention of basalt fiber decline slowly at first, and then decline quickly. This suggests that at the beginning stage, there are still cations changing with the alkali medium. At the later stage, the network has been destroyed by the medium and the skin-core structure appeared.
     3. The oxidation of the iron happened about1000℃during the crystallization process, and this process caused50%of the weight gain. This formation of magnetite is the beginning of crystal nucleation. When the temperature was above700℃, the process about crystallization is complicated. For the samples heat-treated at400℃, some irregular punctuate and warty defects were found on the surfaces of fibers. For the samples heat-treated at500℃, the bigger warty defects appear on the surfaces of fibers. For the samples heat-treated at600℃,some pits appear on the surfaces of fibers. When the temperature reaches700℃, many cracks have been found on the surface of basalt fibers. The crystallization behavior appears during the temperature region700-1050℃. And the corresponding crystal phases are the main phase diopside and the minor phase anorthite. The absorption bands of heat-treated samples in FTIR spectra become relatively sharp and split into several peaks. All the spited bands are attributed to the characteristic absorption bands of diopside and anorthite. When the temperature is below700℃, crystal nucleus appeared but crystals cannot grow. When the temperature is above1050℃, there are no crystal nucleuses formed.
     4. After the basalt fiber added, the viscosity of asphalt mortar increases rapidly in the temperature region of150-185℃, and the valules of viscosity keeps about8.0Pa-s. And the viscosity changes very little with the temperature. For the mineral powder modified asphlt mortar, the penetration declines with temperature, and the relationship between penetration and temperature is in accord with the Boltzmann equation. The effect of mineral powder on the asphalt mortar is more obvious at high temperature region than the one at the low temperature region. For the softening point testing, the softening point of the rock wool modified asphalt mortar increases more quickly than the one of basalt fiber modified asphalt mortar when the fiber's mixing amount is below3.5%. However, the effect of basalt fiber on the asphalt mortar is more obvious than the effcet of rock wool. This indicates that basalt fibers can disperse uniformly in the asphalt mortar at the high fiber's mixing amount. In the mesh-basket draindown experiment, the asphalt adsorption of basalt fiber decreases with the temperature. When the temperature is above140℃, the asphalt adsorption decreases more qucikly than the asphalt adsorption at the temperature region of100-140℃. Compared with other kinds of fibers, the asphalt adsorption of basalt fiber changes the least with the tesing time and temperature. This suggests that basalt fibers can combine with asphalt firmly, and the firm structural asphalt form at the interface of fiber and asphalt. Also, there is no new band found in the FTIR spectrum of fiber modified asphalt mortar, this may be caused by the low fiber's mixing amount or the weak absorption peaks of fibers. In addtion, asbestos fibers have dendritic and hollow structure. The glass fiber and polymer fiber both have cylindrical structure. And the characteristic group of polymer fiber is the most complex, such as carbonyl group and ether group. All the groups are beneficial to the combination degree with asphalt mortar.
     5. The basalt fiber causes an increase in complex modulus, storage modulus, loss modulus and rutting parameters, while decrease in the phase angle and temperature susceptibility of asphalt mortar remarkablely, especially in the high temperature region. These suggest that the asphalt mortar becomes more viscous and has better rutting resistance. The regression relation between the rutting parameters and temperature closely fits Model ExpDec1. This improvement effect may be closely related to the microstructure of fibers such as large surface, polar groups on the surface, and the distribution state of fibers in asphalt mortar. The rutting parameters keep the highest valule when the fiber's mixing amount is1.0%. And at the temperature region of30-50℃, the rutting papameters of polymer fiber are lower than those of basalt fiber. When the temperature is above50℃, the the rutting papameters of polymer fiber increase rapidly. This indicates that the polymer fiber can not play the reinforcment role sufficiently at the low temperature region. Under the high frequency load, the rutting papameters of basalt fiber increase with the fiber's mixing amount. The rutting papameters of the7.5%sample decrease, and the value is near the rutting papameters of the3.5%sample. This is because the basalt fiber can not disperse uniformly in the asphalt mortar system. In addtion, the effect of aspect ratio of fibers on the rheological property of the asphalt mortar is very unconspicuous. This is possibility beause that the difference between the selected values of the aspect ratio is not big enough, so we need to add more experiments about more aspect ratio of fibers.
引文
[1]刘周洲.高速公路沥青路面病害成因分析及防治对策[J].中国水运(下半月),2010,10(2):164-165.
    [2]杨树萍,鹿中山,程新春.半刚性基层沥青路面病害的原因与防治[J].合肥工业大学学报(自然科学版),2002,25(5):748-752.
    [3]李金平,章金钊,盛煜.冻土区水泥和沥青路面病害分布规律探讨[J].公路交通科技,2010,27(7):18-24.
    [4]吴长添,方精思.高速公路沥青路面病害养护防治分析[J].公路与汽运,2006,(1):39-41.
    [5]Cho T J. Prediction of Cyclic freeze-thaw damage in concrete structures based on an improved response surface method[J]. International Journal of Railway,2010,3(1):7-13.
    [6]Chiasson A D, Yavuzturk C, Ksaibati K. Linearized approach for predicting thermal stresses in asphalt pavements due to environmental conditions[J]. Journal of materials in civil engineering,2008,20(2):118-127.
    [7]Huang S, Robertson R E, Branthaver J F, et al. Impact of lime modification of asphalt and freeze-thaw cycling on the asphalt-aggregate interaction and moisture resistance to moisture damage [J]. Journal of materials in civil engineering,2005,17(6):711-718.
    [8]李松伟.浅谈沥青路面病害产生原因及处治方法[J].科技风,2010,(20):195-196.
    [9]梁法强,陈柳江,丁林祥.浅谈沥青路面病害的原因及其根治方法[J].价值工程,2010,29(9):101.
    [10]张洪刚.水-温冻融条件下沥青路面病害特征及发展机理[D].长沙理工大学,2010.
    [11]张争奇,王永财.沥青胶浆对沥青混合料高低温性能的影响[J].长安大学学报(自然科学版),2006,26(2):1-5.
    [12]贾渝.美国公路战略研究计划二期(SHRP2)项目简介[J].中外公路,2007,27(6):20-23.
    [13]Losa M, Leandri P, Cerchiai M. Improvement of pavement sustainability by the use of crumb rubber modified asphalt concrete for wearing courses[J], International Journal of Pavement Research and Technology,2012,5(6):395-404.
    [14]冯新军.SBS聚合物改性沥青热储存稳定性研究[D].长安大学,2004.
    [15]梁晓莉.SBS改性沥青试验特性研究[D].长安大学,2005.
    [16]李平.SBS改性沥青老化性能及存储稳定性能研究[D].长安大学,2005.
    [17]肖敏敏.废胶粉改性沥青性能及机理研究[D].南京航空航天大学,2005.
    [18]余剑英,罗小锋,吴少鹏,等.阻燃SBS改性沥青的制备及性能[J].中国公路学报,2007,20(2):35-39.
    [19]张争奇,李平,王秉纲.SBS改性沥青性能及老化的影响[J].公路,2005,(9):150-155.
    [20]Jeong K, Lee S, Amirkhanian S N, et al. Interaction effects of crumb rubber modified asphalt binders[J]. Construction and Building Materials,2010,24(5):824-831.
    [21]姜海涛.层状硅酸盐纳米改性沥青及其混合料动态力学性能研究[D].武汉理工大学,2009.
    [22]陈晓龙,孙永升,韩跃新,等.硅藻土复合木质纤维改性沥青性能研究[J].东北大学学报(自然科学版),2010,31(12):1782-1785.
    [23]唐新德,韩念凤,贺忠国,等.蒙脱土/SBS复合改性沥青性能研究[J].建筑材料学报,2010,13(4):550-554.
    [24]汪林.蒙脱土/SBS改性沥青的制备与性能研究[D].武汉理工大学,2007.
    [25]肖鹏,周鑫,张吴红.纳米ZnO/SBS改性沥青微观结构与宏观性能关系研究[J].中外公路,2010,30(3):244-247.
    [26]李清泉.有机化蒙脱土改性沥青的性能研究p].长沙理工大学,2010.
    [27]王华才,薛理辉.有机化蒙脱土改性沥青微观机理研究[J].中国科技论文在线,2010,5(4):301-306.
    [28]王骁,余剑英,汪林,等.有机蒙脱土/SBS改性沥青的制备与性能研究[J].武汉理工大学学报,2007,(9):81-83.
    [29]李玲丽.不同路用纤维对沥青胶浆影响机理研究[J].交通世界(建养.机械),2010,(5):263-264.
    [30]谢晶.不同纤维对SMA疲劳性能的影响[J].公路,2008,(10):214-217
    [31]谢晶.掺加不同纤维对SMA高温性能的影响[J].建筑材料学报,2008,11(6):746-751.
    [32]丁智勇,戴经梁,王振军.大尺寸纤维沥青拉伸断裂与抗裂性能研究[J].筑路机械与施工机械化,2011,28(5):50-53.
    [33]罗福兰,施兵,杨红辉.德兰尼特AS纤维沥青混合料路用性能研究[J].中外公路,2004,24(4):132-133.
    [34]娄嵩.短切沥青碳纤维在沥青混凝土路面的应用研究[D].济南大学,2009.
    [35]杨洪生,郑毅.合成微纤维沥青混凝土在寒区重点路段的应用[J].黑龙江交通科技,2010,33(10):62-63.
    [36]朱新生.合成纤维改性道路沥青及其制备方法[P].中国,发明专利,CN200610097580.6.2006.
    [37]岳红波.混杂纤维改性沥青混合料性能研究[D].武汉理工大学,2008.
    [38]郎森,陆海军,蔡光华.秸秆纤维路用性能试验研究[J].武汉工业学院学报,2011,30(1):84-87.
    [39]Abtahi S M, Sheikhzadeh M, Hejazi S M. Fiber-reinforced asphalt-concrete-A review[J]. Construction and Building Materials,2010,24(6):871-877.
    [40]Zhang, Y, Yu C, Chu P K, et al. Mechanical and thermal properties of basalt fiber reinforced poly (butylene succinate) composites[J]. Materials Chemistry and Physics, 2012,133(2-3):845-849.
    [41]Yilmaz S, Ozkan O T, Gunay V. Crystallization kinetics of basalt glass[J]. Ceramics International,1996,22(6):477-481.
    [42]Liu T, Yu F, Yu X, et al. Basalt fiber reinforced and elastomer toughened polylactide composites:Mechanical properties, rheology, crystallization, and morphology[J]. Journal of Applied Polymer Science,2012,125(2):1292-1301.
    [43]石钱华.国外连续玄武岩纤维的发展及其应用[J].玻璃纤维,2003,(4):27-31.
    [44]王明超,张佐光,孙志杰,等.连续玄武岩纤维及其复合材料耐腐蚀特性[J].北京航空航天大学学报,2006,32(10):1255-1258.
    [45]齐风杰,李锦文,李传校,等.连续玄武岩纤维研究综述[J].高科技纤维与应用,2006,31(2):42-46.
    [46]胡显奇,申屠年.连续玄武岩纤维在军工及民用领域的应用[J].高科技纤维与应用,2005,30(6):7-13.
    [47]刘嘉麒.绿色高新材料—玄武岩纤维具有广阔前景[J].科技导报,2009,27(9):1.
    [48]王孙富,钟琳娜.绿色环保的玄武岩纤维[J].新材料产业,2011,(9):43-45.
    [49]胡显奇,陈绍杰.世界复合材料现状及其连续玄武岩纤维的发展良机-欧洲2005年JEC复合材料展会巡视[J].高科技纤维与应用,2005,30(3):9-12.
    [50]胡显奇.我国连续玄武岩纤维的进展及发展建议[J].高科技纤维与应用,2008,33(6):12-18.
    [51]谢尔盖,李中郢.玄武岩纤维材料的应用前景[J].纤维复合材料,2003,20(3):17-20.
    [52]谢尔盖.玄武岩纤维的特性及其在中国的应用前景[J].玻璃纤维,2005,(5):47-51.
    [53]雷静,党新安,李建军.玄武岩纤维的性能应用及最新进展[J].化工新型材料,2007,35(3):9-11.
    [54]Fan W X, Kang H G, Zheng Y X. Experimental study of pavement performance of basalt fiber-modified asphalt mixture[J]. Journal of Southeast University (English Edition), 2010,26(4):614-617.
    [55]杨勇新,岳清瑞.玄武岩纤维及其应用中的几个问题[J].工业建筑,2007,37(6):1-4.
    [56]王帅,倪卓,邢锋.玄武岩纤维在建筑材料中的应用[J].科技创新导报,2011,(26):28-29.
    [57]Wu S P. Effects of fibers on the dynamic properties of asphalt mixtures[J]. Journal of Wuhan University of Technology (Materials Science Edition),2007,(4):733-736.
    [58]Chen H X, Xu Q W, Chen S F, et al. Evaluation and design of fiber-reinforced asphalt mixtures[J]. Materials & Design,2009,30(7):2595-2603.
    [59]Airey G. Fundamental binder and practical mixture evaluation of polymer modified bituminous materials[J]. International Journal of Pavement Engineering,2004,5(3):137-51.
    [60]Ye Q S, Wu S P, Li N. Investigation of the dynamic and fatigue properties of fiber-modified asphalt mixtures[J]. International Journal of Fatigue,2009,31(10):1598-1602.
    [61]马士杰,王林,陈江.不同胶结料与稳定剂SMA设计与性能的比较[J].公路,2005,(2):104-107.
    [62]拾方治,孙大权,董兆辉.不同纤维对SMA混合料性能影响的试验研究[C].第五届全国路面材料及新技术研讨会,2004,74-83.
    [63]王辉.不同纤维对SMA路用性能影响研究[D].长沙理工大学,2007.
    [64]谢晶,李娉婷.掺加不同纤维对SMA疲劳性能的影响[J].公路工程,2008,33(5):150-153.
    [65]沈金安.改性沥青与SMA路面.北京:人民交通出版社,1999.
    [66]田怀念,张健.掺加矿物纤维的SMA沥青混合料性能研究[J].现代交通技术,2010,7(2):5-7.
    [67]夏飞,黄永刚.掺加矿物纤维对混合料性能的影响[J].公路,2009,(8):39-41.
    [68]李达辉,翁琬甯,孙文州.道路用矿物纤维的路用性能研究[J].中国市政工程,2008,(5):86-87.
    [69]彭广银,钱振东,傅栋梁.短切玄武岩纤维沥青混合料路用性能研究[J].石油沥青,2009,23(1):8-11.
    [70]李花歌.矿物纤维对SMA混合料性能影响的试验研究[J].开封大学学报,2010,24(4):90-93.
    [71]吴少鹏,叶群山,刘至飞.矿物纤维改善沥青混合料高温稳定性研究[J].公路交通科技,2008,25(11):20-23.
    [72]舒翔,邱志雄,张国炳.矿物纤维改性沥青在粤赣高速公路路面上的应用[J].公路,2006,(4):212-215.
    [73]杨朋,张肖宁.矿物纤维沥青混合料路用性能研究[J].中外公路,2009,(6):254-257.
    [74]卢辉,张肖宁,胡玲玲.矿物纤维沥青混合料在长陡坡路段的应用[J].筑路机械与施工机械化,2007,27(3):15-17.
    [75]黄卫卫.矿物纤维沥青混凝土路用性能研究[D].哈尔滨工业大学,2009.
    [76]甄娜娜.沥青混合料中掺加玄武岩纤维对路用性能的改善研究[J].现代商贸工业,2009,(5):296-297.
    [77]汤寄予,高丹盈,韩菊红.玄武岩纤维对沥青混合料水稳定性影响的研究[J].公路,2008,(1):188-195.
    [78]Newman J K. Dynamic shear rheological properties of polymer-modified asphalt binders[J]. Journal of Elastomers and Plastics,1998,30(3):245-263.
    [79]Fini E H, Kalberer E W, Shahbazi A, et al. Chemical characterization of biobinder from swine manure:sustainable modifier for asphalt binder[J]. Journal of Materials in Civil Engineering, 2011,23(11S1):1506-1513.
    [80]Goh S W, Akin M, You Z P, et al. Effect of deicing solutions on the tensile strength of micro-or nano-modified asphalt mixture[J]. Construction and Building Materials,2011,25(1): 195-200.
    [81]Cong P L, Chen S F, Chen H X. Effects of diatomite on the properties of asphalt binder[J]. Construction and Building Materials,2012,30:495-499.
    [82]Xiao F P, Punith V S, Amirkhanian S N. Effects of non-foaming WMA additives on asphalt binders at high performance temperatures[J]. Fuel,2012,94(1):144-155.
    [83]Garcia A, Schlangen E, Van de Ven M, et al. Electrical conductivity of asphalt mortar containing conductive fibers and fillers[J]. Construction and Building Materials,2009,23(10): 3175-3181.
    [84]Chen Z, Wu S P, Zhu Z H, et al. Experimental evaluation on high temperature rheological properties of various fiber modified asphalt binders[J]. Journal of Central South University of Technology,2008,151:135-139.
    [85]Chen H X, Xu Q W. Experimental study of fibers in stabilizing and reinforcing asphalt binder[J]. Fuel,2010,89(7):1616-1622.
    [86]Liu G, Van de Ven M, Wu S P, et al. Influence of organo-montmorillonites on fatigue properties of bitumen and mortar[J]. International Journal of Fatigue,2011,33(12): 1574-1582.
    [87]Wu S P, Ye Q S, Li N. Investigation of rheological and fatigue properties of asphalt mixtures containing polyester fibers[J]. Construction and Building Materials,2008,22(10):2111-2115.
    [88]Botev M, Betchev H, Bikiaris D, et al. Mechanical properties and viscoelastic behavior of basalt fiber-reinforced polypropylene[J]. Journal of Applied Polymer Science,1999,74(3): 523-531.
    [89]Shivokhin M, Garcia-Morales M, Partal P, et al. Rheological behaviour of polymer-modified bituminous mastics:A comparative analysis between physical and chemical modification[J]. Construction and Building Materials,2012,27(1):234-240.
    [90]Feng Z G, Yu J Y, Wu S P. Rheological evaluation of bitumen containing different ultraviolet absorbers[J]. Construction and Building Materials,2012,29:591-596.
    [91]Wu S P, Han J,Pang L, et al. Rheological properties for aged bitumen containing ultraviolate light resistant materials[J]. Construction and Building Materials,2012,33:133-138.
    [92]Ye Q S, Wu S P, Chen Z, et al. Rheological properties of asphalt mixtures containing various fibers[J]. Journal of Central South University of Technology,2008,151:333-336.
    [93]Wang J S, Wu S P, Han J, et al. Rheological properties of asphalt modified by supramolecular UV resistant material-LDHs[J]. Journal of Wuhan University of Technology-Materials Science Edition,2012,27(4):805-809.
    [94]Polacco G, Filippi S, Paci M, et al. Structural and rheological characterization of wax modified bitumens[J]. Fuel,2012,95(1):407-416.
    [95]田华,曾梦澜,吴超凡,等.玻璃纤维和木质素纤维对沥青胶浆老化前后的高温流变性能影响[J].公路工程,2008,33(4):37-41.
    [96]王恒斌,葛折圣.布敦岩沥青改性沥青胶浆高温动态流变性能的试验研究[J].公路交通科技,2008,25(9):63-66.
    [97]Gur'Ev V V, Neproshin E I, Mostovoi G E. The effect of basalt fiber production technology on mechanical properties of fiber[J]. Glass and Ceramics,2001,58(1-2):62-65.
    [98]李建军,刘艳春,陈继生.绿色玄武岩纤维成型的数值模拟方法[J].硅酸盐通报,2008,27(5):1076-1080.
    [99]刘艳春,王芬,李建军.略阳玄武岩制造连续纤维的研究[J].硅酸盐通报,2008,27(1):160-164.
    [100]李建军,刘艳春,陈继生.陕西略阳玄武岩连续纤维的物化性能[J].岩矿测试,2008,27(3):201-203.
    [101]胡琳娜,尚德库,王广健,等.玄武岩熔体粘度的实验研究[J].河北工业大学学报,2002,31(4):50-54.
    [102]雷静.玄武岩纤维成形过程模拟[D].陕西科技大学,2008.
    [103]闫全英,谈和平,尚德库,等.玄武岩纤维成型区粘性流动过程的数值模拟[J].哈尔滨工业大学学报,2002,34(1):49-53.
    [104]梁磊,梁玉舫,李谨.玄武岩纤维物化性能的研究[J].玻璃纤维,2006,(1):15-19.
    [105]李建军,张浩,刘艳春.玄武岩纤维原矿的化学成分和物相分析[J].玻璃纤维,2007,(6): 1-4.
    [106]闫全英,高春梅.玄武岩纤维制备的研究[J].新型建筑材料,2003,(11):58-59.
    [107]Lund M. Tensile strength of glass fibres[M]. Aalborg University,2010.
    [108]胡琳娜,陈济舟.玄武岩纤维微观结构的初步研究[C].第八届全国X射线衍射学术会议,2003,194-197.
    [109]Zhuravlev L T. The surface chemistry of amorphous silica. Zhuravlev model[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects,2000,173(1-3):1-38.
    [110]郭亚杰,王广健,胡琳娜.无机玄武岩纤维微观结构的光谱学特征研究[J].淮北煤炭师范学院学报(自然科学版),2010,31(3):22-26.
    [111]曹海琳,郎海军,孟松鹤.连续玄武岩纤维结构与性能试验研究[J].高科技纤维与应用,2007,32(5):8-13.
    [112]郭振华,尚德库,梁金生,等.海泡石对玄武岩纤维的改性研究[J].复合材料学报,2004,21(6):137-142.
    [113]Gao S L, Mader E, Plonka R. Nanostructured-coatings of glass fibers:Improvement of alkali resistance and mechanical properties[J]. Acta Materialia,2007,55(3):1043-1052.
    [114]王广健,尚德库,胡琳娜,等.玄武岩纤维的表面修饰及生态环境复合过滤材料的制备与性能研究[J].复合材料学报,2004,(1):38-44.
    [115]Sim J, Park C, Moon D Y. Characteristics of basalt fiber as a strengthening material for concrete structures[J]. Composites Part B-Engineering,2005,36(6-7):504-512.
    [116]Rabinovich F N, Zueva V N, Makeeva L V. Stability of basalt fibers in a medium of hydrating cement[J]. Glass and Ceramics,2001,58(11-12):431-434.
    [117]Wei B, Cao H L, Song S H. Tensile behavior contrast of basalt and glass fibers after chemical treatment[J]. Materials & Design,2010,31(9):4244-4250.
    [118]Scheffler C, Forster T, Mader E, et al. Aging of alkali-resistant glass and basalt fibers in alkaline solutions:Evaluation of the failure stress by Weibull distribution function[J]. Journal of Non-Crystalline Solids,2009,355(52-54):2588-2595.
    [119]Ramachandran B E, Velpari V, Balasubramanian N. Chemical durability studies on basalt fibres[J]. Journal of Materials Science,1981,16(12):3393-3397.
    [120]霍文静,张佐光,王明超,等.复合材料用玄武岩纤维耐酸碱性实验研究[J].复合材料学报,2007,24(6):77-82.
    [121]Kopecsk O K. Durability of Glass Fibres[C].6th International RILEM Symposium on Fibre Reinforced Concretes,2004,583-592.
    [122]Gu H. Behaviours of glass fibre/unsaturated polyester composites under seawater environment[J]. Materials & Design,2009,30(4):1337-1340.
    [123]郝立才,于伟东.玄武岩/玻璃纤维形态结构和热稳定性对比研究(英文)[J].西安工程大学学报,2009,(2):327-332.
    [124]Smedskjaer M M, Solvang M, Yue Y Z. Crystallisation behaviour and high-temperature stability of stone wool fibres[J]. Journal of the European Ceramic Society,2010,30(6): 1287-1295.
    [125]Lubas M, Sitarz M, Fojud Z. Structure of multicomponent SiO2-Al2O3-Fe2O3-CaO-MgO glasses for the preparation of fibrous insulating materials[J]. Journal of Molecular Structure, 2005,744(S1):615-619.
    [126]顾期斌.热历史对连续玄武岩纤维力学性质的影响[J].武汉科技学院学报,2007,20(4):23-25.
    [127]Yue Y Z, Korsgaard M, Kirkegaard L F, et al. Formation of a nanocrystalline layer on the surface of stone wool fibers[J]. Journal of the American Ceramic Society,2009,92(1):62-67.
    [128]Militky J, Kovacic V, Rubnerova J. Influence of thermal treatment on tensile failure of basalt fibers[J]. Engineering Fracture Mechanics,2002,69(9):1025-1033.
    [129]Makhova M F. Crystallization of basalt fibers[J]. Glass and Ceramics,1968,25(11):672.
    [130]Lund M D, Yue Y Z. Influences of chemical aging on the surface morphology and crystallization behavior of basaltic glass fibers[J]. Journal of Non-Crystalline Solids,2008, 354(12-13):1151-1154.
    [131]Burkhard D, Scherer T. The effect of initial oxidation state on crystallization of basaltic glass[J]. Journal of Non-Crystalline Solids,2006,352(38-39):3961-3969.
    [132]黄勇生,项新里.排水沥青路面混合料试验研究[J].国外公路,2001,21(01):42-47.
    [133]王文,周永平,张忠彬,刘雨梅.全球石棉的控制与禁用[N].中国安全生产报,(8).
    [134]冉龙飞,黄维蓉,朱宝华.纳米膨润土改性沥青机理研究[J].重庆交通大学学报(自然科学版),2008,27(1):73-76.
    [135]丁智勇,刘绍宁,彭波,等.路用纤维沥青性能的研究[J].武汉理工大学学报(交通科学与工程版),2007,31(5):827-830.
    [136]陈华鑫,张争奇,胡长顺.纤维沥青路用性能机理[J].长安大学学报(自然科学版),2002,22(6):5-7.
    [137]许俊强,高伟斌,全学军,等.长径比不同的玻纤对硬质聚氨酯的形态结构和力学性能的影响[J].塑料工业,2009,37(01):38-41.
    [138]张立群,金日光,耿海萍,等.短纤维橡胶复合材料临界长径比数学模型研究[J].复合材料学报,1998,15(03):87-92.
    [139]王云彤.纤维沥青纤维合理用量及长度研究[J].山西建筑,2010,36(23):188-189.
    [140]封基良.纤维沥青混合料增强机理及其性能研究[D].东南大学,2006.
    [141]陈振来.纤维沥青低温性能的试验研究[J].城市道桥与防洪,2008,(6):137-140.
    [142]王建刚.纤维长度对沥青混合料疲劳性能影响分析[J].山西交通科技,2010,(5):28-29.
    [143]王涛,张玉贞.用针入度评价改性沥青流变性的研究[J].新型建筑材料,2010,37(2):61-63.
    [144]叶群山.纤维改性沥青胶浆与混合料流变特性研究[D].武汉理工大学,2007.
    [145]吴玉财.沥青混合料抗车辙性能试验研究[J].西部交通科技,2007,(4):19-21.
    [146]高丹盈,汤寄予,李花歌.纤维对沥青玛蹄脂碎石混合料(SMA)路用性能的影响[J].建筑材料学报,2008,11(6):741-745.
    [147]延西利,封晨辉,梁春雨.沥青与沥青混合料的流变特性比较[J].长安大学学报(自然科学版),2002,22(5):5-8.
    [148]李晓军,江丽华.沥青砂浆粘弹特性试验与模型参数分析[J].武汉理工大学学报,2011,33(3):82-86.
    [149]Aksoy A, Samlioglu K, Tayfur S, et al. Effects of various additives on the moisture damage sensitivity of asphalt mixtures[J]. Construction and building materials,2005,19(1):11-18.
    [150]郭乃胜,赵颖华.纤维沥青混凝土的低温抗裂机理研究[J].公路,2004,(12):108-111.
    [151]李金锋.纤维沥青混合料的增强作用机理研究与应用[J].交通世界(建养.机械),2009,(07):208-209.
    [152]鲁华英,陈小丽,郭彦章,等.纤维沥青混凝土的作用及机理[J].中外公路,2004,24(04):143-146.
    [153]倪良松,陈华鑫,胡长顺,等.纤维沥青混合料增强作用机理分析[J].合肥工业大学学报(自然科学版),2003,26(5):1033-1037.
    [154]叶群山,吴少鹏.聚酯纤维沥青胶浆流变特性研究[J].公路交通科技,2009,26(9):37-40.
    [155]李喜.纤维沥青混合料的界面性能[J].内蒙古公路与运输,2007,(3):59-62.
    [156]马健,李辉忠,张军辉,等.纤维沥青混合料防治路面裂缝机理研究[J].中外公路,2007,27(4):77-78.
    [157]刘立新.纤维在沥青混合料中的作用机理[C].第六届全国路面材料及新技术研讨会论文集,2005,172-180.
    [158]Bertoluzza A, Fagnano C, Antonietta Morelli M, et al. Raman and infrared spectra on silica gel evolving toward glass[J]. Journal of Non-Crystalline Solids,1982,48(1):117-128.
    [159]闻辂.矿物红外光谱学[M].重庆:重庆大学出版社,1989.
    [160]Zachariasen W H. The atomic arrangement in glass[J]. Journal of the American Chemical Society,1932,54(10):3841-3851.
    [161]张耀明,李巨白,姜肇中.玻璃纤维与矿物棉全书[M].化学工业出版社,2001.
    [162]赵永田.玻璃工艺学[M].武汉工业大学出版社,1993.
    [163]Javid M A, Mirza M W. Characterization of polymer modified asphalt for rutting and cracking potential using dynamic shear rheometer[C].2nd International Conference on Transportation Geotechnics,2012,541-546.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700