用户名: 密码: 验证码:
光学镜面离子束修形理论与工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着光学性能要求的不断提高,武器装备、太空观测、激光核聚变、极紫外光刻等领域对光学元件的精度要求越来越高,且数量要求越来越大,使光学元件的加工面临严峻的挑战。目前的计算机控制光学表面成形(CCOS)工艺虽然与传统的加工相比能大大提高加工效率,但是仍然不能满足要求,主要是加工精度低、面形收敛慢、容易产生中高频误差、存在边缘效应等。离子束修形(IBF)工艺利用离子源发射的离子束轰击光学镜面时发生的物理溅射效应,达到去除光学元件表面材料的目的。由于IBF工艺独特的材料去除方式,使IBF工艺的去除函数非常稳定,对加工距离、工件表面起伏、环境振动、工件支撑都不敏感,并且去除函数形状好、无边缘效应。这些优点决定了IBF工艺加工光学镜面精度高、面形收敛快,使其成为了高精度光学镜面特别是高精度非球光学镜面加工的有效方法。
     虽然国外从90年代初以来就有IBF技术的成功应用,但由于IBF技术工艺相对复杂、成本相对较高,国内基本未开展相关研究。由于IBF技术在军事上和商业上的巨大应用价值,必须对相关的理论和工艺进行研究,力争实现高精度光学镜面的IBF加工。论文针对IBF工艺的去除函数、驻留时间、修形能力、加工误差和加工工艺等关键问题展开深入研究,并进行了充分的试验验证。论文的研究工作包括以下几部分:
     1.对去除函数进行了建模和分析。利用Sigmund溅射理论建立了去除函数的理论模型,根据建立的理论模型分析了去除函数的特性,主要分析了表面曲率和入射角度偏差对去除函数的影响;讨论了利用试验估计去除函数的方法,提出了线扫描试验法;在自研的IBF设备KDIFS-500上进行了去除函数试验,研究了去除函数的形状、稳定性和保形性。
     2.驻留时间求解问题是IBF工艺中的关键问题,为了解决驻留时间求解中的边缘效应问题和参数优化问题,本文研究了两种驻留时间求解方法。首先引入了CEH模型,该模型能完全消除边缘效应,采用了TSVD正则化算法求解该模型,定义了加工预测曲线(加工时间Vs.加工残差),发现该曲线具有字母“L”形状,利用加工预测曲线的这一性质可以确定出TSVD算法中合理的正则化参数。其次由于TSVD算法计算速度慢,研究了计算速度快的迭代算法,使用了边缘平滑延拓方法减小了迭代法中的边缘效应,应用加工预测曲线实现了迭代法中的参数优化,使迭代法进一步实用。
     3.对修形能力进行了理论研究和试验验证。针对确定性抛光工艺过程对不同频率误差的修正能力,即修形能力,提出了量化评价指标——材料去除有效率,它定义为期望去除的材料量体积与实际去除的材料量体积之比;首先分析了高斯型去除函数的修形能力,分析得出IBF工艺对不同频率误差的修正能力与离子束直径有关,并得出了定量关系;然后进一步分析了任意形状去除函数的修形能力,并具体分析了回转对称型去除函数的修形能力和一维加工情况下的修形能力;最后进行了3个正弦面形的刻蚀试验,验证了修形能力分析的预测结果。
     4.对IBF工艺中的主要误差源进行了分析。以确定性抛光工艺过程的二维卷积模型为基础分析了定位误差和去除函数误差对加工结果的影响,分析得出:定位误差引起的加工残差近似等于面形梯度矢量和定位误差矢量的内积,去除函数误差引入的加工残差正比于加工量。
     5.对加工工艺进行了改进。为了减小定位误差,提出并实现了定位优化方法;为了缩短加工时间,实现了速度加工模式;为了优化加工路径,提出并实现了等面积增长螺旋线加工路径。这些工艺的改进有利于提高面形收敛比和提高加工精度。
     6.最后进行了大量的IBF试验和应用,所加工的光学镜面包括平面镜、球面镜和非球面镜,材料包括微晶玻璃和SiC,形状包括圆形和椭圆形,加工结果的面形精度(RMS值)都小于10nm(最好为3.1nm),试验结果验证了本文研究所得出的结论。
With the ever-increasing demands on performances, optics used in modern optical systems such as weapons, telescopes, laser fusion systems and extreme ultraviolet lithography (EUVL) systems demand higher accuracy and more quantity. The present widely used computer controlled optical surfacing (CCOS) technique, although gains more efficiency than conventioanal polishing methods, can not satisfy the critical demands due to its lower accuracy and lower convergence ratio. Moreover, it often causes high-middle frequency error and edge effects on optical surface. Ion beam figuring (IBF), which removes surface material by physical sputtering, hold very stable beam removal function (BRF) due to its unique manner to remove material. It is insensitive to machining distance, surface curvature, environment vibration and optics support. Moreover, its BRF is in Gaussian shape and is free of edge effect. Consequently, IBF process can obtain high accuracy and high convergence ratio than other deterministic process, which makes it an effective and applicable technique to produce high accuracy optical surfaces, especially aspheric surfaces.
     Although IBF process has been successfully applied since the early 90s, there is little work on it at home due to its relative complexity and its high cost. Because it is a key technology to produce high precision optical surfaces used in both military and commerce, we should develop it. This thesis is dedicated to the theory and technology of IBF process, including removal function, dwell time, error correcting ability, error sources, processing technique and plentiful experiments. The major research efforts include the following points.
     1. The BRF in IBF process is modeled and studied. First, the theoretical model of BRF is founded using the Sigmund theory. Then the characteristics of BRF are investigated according to the model. The methods to estimate BRF by experiments are discussed and a new method named line scan method is proposed. Using line scan method the stability of BRF can be investigated. Finally, some experiments are performed on KDIFS-500 to test the shape, stability and conformability of BRF.
     2. In order to determine dwell time, which is the key input variable for successful figuring processes, two approaches are investigated with emphases on edge effect and parameter optimization. First, the CEH model is introduced, which can completely eliminate edge effect. The TSVD regularization algorithm is also introduced in order to solve the CEH model, and to determine a reasonable regularization parameter in the TSVD algorithm. A new curve named figuring prediction curve is proposed and applied, which is defined as process time vs. residual accuracy. Lastly, the iterative method to determine dwell time is also investigated due to its less computing time. Some improvements are proposed to reduce edge effect and to determine a reasonable dwell time, which makes the iterative method more practical.
     3. To evaluate the correcting ability of a figuring process to different spatial frequency figure error, a quantitative criterion named material removal availability (MRA) is proposed, which is defined as the ratio of the volume of desired material removal to that of the real material removal. First, the correcting ability of a Gaussian BRF is investigated and the investigation indicates that the correcting ability of an IBF process is determined by the diameter of the ion beam, and the quantitative relationship is given. Then, the correcting ability of an arbitrary BRF is investigated. Furthermore, the correcting ability of circular symmetrical BRF and the correcting ability of one dimensional figuring process are discussed. Lastly, three sine figures are etched by IBF processes and the figuring results agree with the theoretical predictions.
     4. The major error sources, the positioning error and the BRF's error, are discussed based on the two-dimensional convolution model. The investigation shows that the residual error resulted from positioning error is the dot product of the figure error gradient vector and the positioning error vector, and the residual error resulted from a constant bias error of BRF is proportional to the material removal.
     5. Several improvements are made on processing technique. A positioning method is proposed and realized in order to reduce positioning error. The velocity process mode is realized in order to reduce processing time. And a novel spiral scan path named uniform-area-growth-ratio spiral path is proposed and realized to optimize processing path. These improvements are of great benefits to IBF process with higher convergence ratio and less residual error.
     6. Finally, IBF experiments are performed on a variety of optical surfaces including flats, sphere and aspheres, on materials including Zerodur glass and SiC, and on shapes including circle and ellipse. The final residual errors after IBF process are all less than 10nm RMS (the best value is 3.1 nm RMS). The successful figuring results prove the validity and advantages of the proposed algorithms and the proposed process improvements.
引文
[1]Stahl H P. Optic Needs for Future Space Telescopes. SPIE,2003,5180:1-5
    [2]Nelson J, Dierickx P, Parks R et al.. Optics in Astrophysics:Springer Netherlands 2006
    [3]杨力.先进光学制造技术.北京:科学出版社2001
    [4]张建明.大力发展精密工程技术,加速国防科技工业现代化(一).航空精密制造技术,2004,40(4):1~4
    [5]Trotta P A. Precision conformal optics technology program. SPIE,2001,4375: 96~107
    [6]Mills J P. Conformal optics:theory and practice. SPIE,2003,4442:101~107
    [7]张建明.大力发展精密工程技术,加速国防科技工业现代化(二).航空精密制造技术,2004,40(5):1~5
    [8]杨福兴.激光核聚变光学元件超精密加工技术的研究.光学技术,2003,29(6):649~651
    [9]苏毅,万敏.高能激光系统.北京:国防工业出版社2004
    [10]Harvey J E, Kotha A. Scattering effects from residual optical fabrication errors. SPIE,1995,2576:155~174
    [11]Aikens D M. The origin and evolution of the optics for the National Ignition Facility. SPIE,1995,2536:2-12
    [12]Lawson J K, Auerbach J M, English R E. NIF optical specification-the important of the RMS gradient.1998, LLLNL report UCRL-JC-130032. p.7~12.
    [13]Lawson J K, Worfe C R, Manes K R et al.. Specification of optical components using the power spectral density function. SPIE,1995,2536:38-50
    [14]Aikens D M, Wolfe C R, Lawson J K. The use of Power Spectral Density (PSD) functions in specifying optics for the National Ignition Facility. SPIE,1995,2536: 281~292
    [15]王占山.极紫外光刻给光学技术带来的挑战.全国光电技术学术交流会.2006.
    [16]Taylor J S, Sommargren G E, Sweeney D W et al.. Fabrication and testing of optics for EUV projection lithography. SPIE,1998,3331:580~590
    [17]Haensel T, Seidel P, Nickel A et al.. Deterministic ion beam figuring of surface errors in the sub-millimeter spatial wavelength range.6th EUSPEN intl. conf. 2006. Baden, Vienna, Austria.
    [18]Drueding T W, Bifano T G, Fawcett S C. Contouring algorithm for ion figuring. Precision Engineering,1995,17:10~21
    [19]Rupp W J. The development of optical surfaces during the grinding process.
    Applied Optics,1965,4(6):743~748
    [20]Aspden R, Mcdonough R, Nitchie F R. Computer assisted optical surfacing. Applied Optics,1972,11(12):2739~2747
    [21]Jones R A. Optimization of computer controlled polishing. Applied Optics,1977, 16(1):218~224
    [22]Jones R A. Fabrication using the computer controlled polisher. Applied Optics, 1978,17(12):1889
    [23]Jones R A. Fabrication of small nonsymmetrical aspheric surface. Applied Optics, 1979,18(8):1244
    [24]Jones R A. Computer controlled polisher demonstration. Applied Optics,1980, 19(12):2072~2076
    [25]Jones R A. Computer-controlled grinding of optical surface. Applied Optics, 1982,21(5):1134~1138
    [26]Jones R A. Segmented mirror polishing experiment. Applied Optics,1982,21(3): 561
    [27]Jones R A. Computer controlled optical surfacing with orbital tool motion. Optics Engineering,1986,25(6)
    [28]Jones R A, Plante R L. Rapid fabrication of large aspheric optics. Precision Engineering,1987,9(2):65
    [29]Jones R A. Automated optical surfacing. SPIE,1990,1293:704
    [30]Jones R A, Rupp W J. Rapid optical fabrication with CCOS. SPIE,1990,1333: 34
    [31]Jones R A. Computer simulation of smoothing during computer-controlled optical polishing. Applied Optics,1995,34(7):1162~1169
    [32]Jones R A. Building the Hubble space telescope. Sky and Telescope,1989
    [33]Geyl R. From VLT to GTC and the ELTs. SPIE,2005,5965:25
    [34]Semenov a P, Savelev a S, Abdulkadyrov M A. Analysis of errors of automated shaping of optical surfaces on the AD series of machines using the 'AD1' program. Sov. J. Opt. Technol.,1990,57(1):44~46
    [35]Evteev G V, Nikitin D B, Podgorbunskikh I V. Package of applied processing programs for the automated finishing of large optical components. Sov. J. Opt. Technol.,1992,59(7):421~423
    [36]Gallagher B. JWST mirror manufacturing status. Talk for NASA Technology Days(http://optics.nasa.gov/tech days/),2006
    [37]张学军.数控非球面加工过程的优化研究:学位论文.1997,中国科学院长春光机所.
    [38]郑为民.高陡度光学非球面自动成形的研究:学位论文.1998,浙江大学.
    [39]王权陡.计算机控制离轴非球面制造技术研究:学位论文.2001,中国科学
    院长春光机所.
    [40]范镝.大口径碳化硅质反射镜数控光学加工的研究:学位论文.2004,中国科学院长春光机所.
    [41]张学军,张云峰,余景池等.FSGJ-非球面自动化加工及在线检测系统.光学精密工程,1997,5(2):70~75
    [42]Zhang X J, Zhang Z Y, Zheng L G. Manufacturing and Testing SiC Aspherical mirrors in Space telescopes. SPIE,2005,6024:602402-1-5
    [43]王贵林.SiC光学材料超精密研抛关键技术研究:学位论文.2002,长沙:国防科技大学.
    [44]王贵林,戴一帆,李圣怡.光学非球面加工中研抛盘尺寸合理选择的研究.机械工程学报,2004,40(1):147~150
    [45]戴一帆,尚文锦,周旭升.计算机控制小工具抛光技术中磨盘材料对去除函数的影响.国防科大学报,2006,28(2)
    [46]周旭升,李圣怡,戴一帆.光学表面中频误差的控制方法——确定区域修正法.光学精密工程,2007(11)
    [47]Zhou X, Li S, Dai Y. An optimized method for manufacturing large aspheric surfaces. SPIE,2007,6721
    [48]周旭升.大中型非球面计算机控制研抛工艺方法研究:学位论文.2007,国防科技大学:长沙.
    [49]Martin H M,Allen R G,Burge J H et al..Fabrication of mirrors for the MagellanTelescopes and the Large Binocular Telescope. SPIE,2003,4837:1~10
    [50]Martin H M, Allen R G, Cuerden B et al.. Manufacture of the second 8.4 m primary mirror for the Large Binocular Telescope. SPIE,2006,6273:6273-011
    [51]范斌,万勇建,杨力等.大型非球面主镜能动磨盘加工模型.光电工程,2005,32(12):59~62
    [52]范斌,杨力,曾志革等.应力盘智能控制盘面面形的表征方法及检测技术的研究.光学技术,2005,31(5):751~753
    [53]范斌,万勇建,陈伟等.能动磨盘加工与数控加工特性分析.中国激光,2006,33(1):128~132
    [54]万勇建,袁家虎,范斌等.光学加工中边缘问题的数控处理方法.红外与激光工程,2007,36(1):92~96
    [55]汪达兴,李颖,杨世海等.主动抛光盘磨制非球面镜面控制技术的研究.光学技术,2005,31(3)
    [56]崔向群,高比烈,汪达兴等.一种大口径大非球面度天文镜面磨制新技术.光学学报,2005,25(3):402~407
    [57]Kordonsky W I, William I, Prokhorov I V. Magnetorheological polishing devices and method. Patent U S, Editor.1995.
    [58]Kordonsky W I, Jacobs S D. Magnetorheological finishing. International Journal of Modern Physics B,1996,10:2837~2848
    [59]Golini D. Precision optics manufcturing using magnetorheological finishing(MRF). SPIE,1999,3739:78~85
    [60]Tricard M, Dumas P, Forbes G et al.. Recent advances in sub-aperture approaches to finishing and metrology. SPIE,2006,6149(3)
    [61]Supranowitz C, Hall C, Dumas P et al. Improving surface figure and microroughness of IR materials and diamond turned surfaces with Magnetorheological Finishing (MRF(?)). SPIE,2007,6545:65450S-1-11
    [62]Messnera W, Halla C, Dumasa P et al.. Manufacturing Meter-scale Aspheric Optics. SPIE,2007,6671:667106-1-8
    [63]Dumas P, Hall C, Hallock B et al. Complete sub-aperture pre-polishing & finishing solution to improve speed and determinism in asphere manufacture. SPIE,2007,6671:667111-1-11
    [64]张峰,余景池,张学军.磁流变抛光技术.光学精密工程,1999,7(5):1~7
    [65]张峰,潘守甫,张学军等.磁流变抛光材料去除的研究.光学技术,2001,27(6):522~524
    [66]康桂文,张飞虎,董申.磁流变技术研究及其在光学加工中的应用.光学技术,2004,30(3):354~356
    [67]康桂文,张飞虎,仇中军等.精密磁流变抛光机床的研制.制造技术与机床,2005(7):47~49
    [68]孙希威,张飞虎,董申.磁流变抛光去除模型及驻留时间算法研究.新技术新工艺,2006(2):73~75
    [69]张云.光学非球面数控磁流变抛光技术的研究:学位论文.2003,北京:清华大学.
    [70]程灏波,冯之敬,王英伟.磁流变抛光超光滑光学表面.哈尔滨工业大学学报,,2005,37(4):433~436
    [71]程颢波.基于空间频率评价磁流变抛光非球面中频误差.哈尔滨工业大学学报,2006,38(6):917~919
    [72]彭小强,戴一帆,李圣怡等.基于矩阵的回转对称非球面磁流变抛光驻留时间算法研究.国防科技大学学报,2004,26(3):89~92
    [73]彭小强,戴一帆,李圣怡.磁流变抛光的材料去除数学模型.机械工程学报,2004(4)
    [74]Peng X, Dai Y, Li S et al.. Experimental research on processing parameters of MRF. Proceedings of the 6th euspen International Conference.2006. Baden, Vienna, Austria.
    [75]彭小强,戴一帆,唐宇.基于灰色预测控制的磁流变抛光液循环控制系统.光学精密工程,2007,15(1):100~105
    [76]Faehnle O W, Brug H, Frankena H J. Fluid polishing of optical surface. Applied Optics,1998,37(28):6671~6673
    [77]Kordonsky W I, Sekeres A. Jet-induced finishing of substrate surface. Patent U S, Editor.2004.
    [78]方慧,郭培基,余景池.液体喷射抛光材料去除机理的研究.光学技术,2004,30(2):248~250
    [79]张学成.磁射流抛光技术研究:学位论文.2007,长沙:国防科技大学.
    [80]Kordonsky W I. Apparatus and method for abrasive jet finishing of deeply concave surfaces using magnetorheological fluid. Patent U S, Editor.2003.
    [81]Shorey A, Kordonski W, Tricard M. Dterministic precision finishing of domes and conformal optics. SPIE,5786:310~318
    [82]张学成,戴一帆,李圣怡等.磁射流抛光时几种工艺参数对材料去除的影响.光学精密工程,2006,14(6):1004~1008
    [83]张学成,戴一帆,李圣怡等.基于CFD的磁射流抛光去除机理分析.国防科技大学学报,2007,29(4)
    [84]Kaufman H R, Reader P D, Isaacson G C. Ion Sources for Ion Machining Applications. AIAA Journal,1977,15(6):843~847
    [85]Kaufman H R. Technology of ion beam sources used in sputtering. J. Vac. Sci. Technol.,1978,15(2):272~276
    [86]刘金生.离子束技术及应用.北京:国防工业出版社1995
    [87]王登峰.光学镜面离子束抛光系统工艺参数研究:硕士学位论文.2007,长沙:国防科技大学.
    [88]辛企明,孙雨南,谢敬辉.近代光学制造技术.北京:国防工业出版社1997
    [89]Shen J, Liu S H, Yi K. Subsurface damage in optical substrates. Optik,2005,116: 288~294
    [90]Meinel a B, Bushkin S, Loomis D A. Controlled figuring of optical surfaces by energetic ionic beams. Appl. Opts.,1965,4:1674
    [91]Gale a J. Ion machining of optical components. Optical Society of America Annual Meeting Conference Proceedings.1978.
    [92]Wilson S R, Mcneil J R. Neutral ion beam figuring of large optical surface. SPIE, 1987,818:320~324
    [93]Wilson S R, Reicher D W, Mcneil J R. Surface figuring using neutral ion beams. SPIE,1989,966:74~81
    [94]Allen L N, Keim R E. An ion figuring system for large optic fabrication. SPIE, 1989,1168:33~50
    [95]Allen L N, Romig H W. Demonstration of an ion figuring process. SPIE,1990, 1333:22-33
    [96]Allen L N, Robert E K, Timothy S L. Surface error correction of a Keck 10m telescope primary mirror segment by ion figuring. SPIE,1991,1531:195~204
    [97]Allen L N, Hannon J J, Wambach R W. Final surface error correction of an off-axis aspheric petal by ion figuring. SPIE,1991,1543:190~200
    [98]Allen L N. Progress in ion figuring large optics. SPIE,1994,2428:237~247
    [99]Carnal C L, Egert C M, Hylton K W. Advanced matrix-based algorithm for ion beam milling of optical components. SPIE,1992,1752:54~62
    [100]The Ion Beam Figuring Facility at CSL. www.promoptica.be,
    [101]www.ion-leipzig.de.
    [102]Aschke L, Schweizer M, Alkemper J et al.. Substrate for the micro-lithography and process of manufacturing thereof. Patent U S, Editor.2004, Schott AG.
    [103]Nakajima K, Nakajima T, Owari Y. Low thermal expansion substrate material for EUVL components application. Proceedings of the SPIE-The International Society for Optical Engineering,2005,5751(1):165~76
    [104]Miura T, Murakami K, Suzuki K et al.. Nikon EUVL development progress summary. SPIE,2006:20-9
    [105]Canon technology highlights. www.canon.com.
    [106]褚家如,黄文浩,洪义麟等.离子束抛光硅片纳米级微观形貌的原子力显微镜研究.电子显微学报,1995(1):53~58
    [107]洪义麟.用氩离子束抛光制作石英超光滑表面.科学通报,1995,40(5)
    [108]洪义麟,付绍军,陶晓明等.硅的离子束抛光技术研究.真空科学与技术,1995,15(6):429~431
    [109]Sigmund P. J. Mater. Sci.,1973,8:1545
    [110]www.srim.org.
    [111]Bradley R M, Harper J M E. Theory of ripple topography induced by ion bombardment. J. Vac. Sci. Technol. A,1988,6(4):2390~2395
    [112]Savvides N. Correction masks for large-area ion beam etching and figuring of optics. J. Appl. Phys.,2006,99(9):094912
    [113]Zhou L, Xie X, Dai Y et al.. Ion beam figuring system in NUDT. SPIE,2007, 6722(4A)
    [114]梁成.光学镜面离子束加工系统设计与分析:硕士学位论文.2006,长沙:国防科技大学.
    [115]Jiao C, Xie X, Li S et al.. Design of ion beam figuring machine for optics mirrors. Key Engineering Materials,2008,364:756~761
    [116]Wilson S R, Reicher D R, Mcneil J R. Surface figuring using neutral ion beams. SPIE,1988,966:74~81
    [117]Shanbhag P M, Feinberg M R, Sandri G et al.. Ion-beam machining of millimeter scale optics. Appl. Opts.,2000,39(4):599~611
    [118]周林,戴一帆,解旭辉等.Model and method to determine dwell time in ion beam figuring.纳米技术与精密工程,2007,5(2):107~112
    [119]邹谋炎.反卷积和信号复原.北京:国防工业出版社2001
    [120]Hansen P C, Nagy J G, O'leary D P. Deblurring Images:Matrices Spectra and Filtering. Philadelphia:SIAM 2006
    [121]Hansen P C. Truncated Singular Decomposition Solutions to Discrete Ill-posed Problems with Ill-Determined Numerical Rank. SIAM, J. Sci. Comput.,1990, 11(3):503~518
    [122]辛企明,孙雨南,谢敬辉.近代光学制造技术.北京:国防工业出版社1997.9
    [123]Jansson P A. Deconvolution:with applications in spectroscopy. Orlando Florida: Academic Press 1984
    [124]Ghigo M, Canestrari R, Spiga D et al.. Correction of high spatial frequency errors on optical surfaces by means of ion beam figuring. SPIE,2007,6671:667114
    [125]Zhou L, Dai Y, Xie X et al.. Analysis of correcting ability of ion beam figuring. Key Engineering Materials,2008,364:470~475
    [126]Jun T, Iwao M, Koutarou I et al.. Surface roughness of optical substrate finished by ion beam figuring. EUV Symposium.2003.
    [127]周林,戴一帆,解旭辉等.光学镜面离子束加工的可达性.光学精密工程,2007,15(2):160~166
    [128]Niku S B,孙富春译.机器人学导论:分析、系统及应用.北京:电子工业出版社2004
    [129]陈善勇.非球面子孔径拼接干涉测量的几何方法研究:学位论文.2006,长沙:国防科技大学.
    [130]潘君骅.非球面设计、加工与检测.北京:科学出版社1994
    [131]Spano P. Challenges in optics for Extremely Large Telescope instrumentation. Astron. Nachr.,2006,327(7):649~673
    [132]Makeev M A. Morphology of ion-sputtered surfaces. Nuclear Unstruments and Methods in Physics Researh B,2002,197:185~227
    [133]Chen H H. Surfaces in solid dynamics and fluid statics.2005, Harvard University.
    [134]Kim B Y, Lee J S, Kim K R et al.. Development of ion beam sputtering technology for surface smoothing of materials. Nuclear Instruments and Methods in Physics Research Section B,2007,261(1-2):682~685

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700