用户名: 密码: 验证码:
城轨交通非接触受流及储能方案参数研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非接触感应耦合电能传输系统(ICPT)克服了传统供电方式所产生的电火花、磨损及接触不良等缺陷,使供电系统更加安全、可靠、灵活、环保,其具有广阔的应用前景。本文充分利用其优点将其应用于城轨交通供电系统。
     本文以松耦合变压器的互感等效模型为基础,对非接触感应耦合电能传输系统(ICPT)(?)的电路、耦合变压器进行了分析研究,并设计出满足城轨交通非接触受流的供电系统参数,同时对非接触受流储能系统进行了研究,得到了车载超级电容组参数。主要内容包括以下几个方面:
     1.首先对城轨交通非接触受流系统进行了概述,并对城轨交通非接触受流系统在国内外的研究现状进行了总结,给出了本文的研究意义和研究内容。
     2.对非接触感应耦合电能传输系统的电路结构进行研究,重点研究四种谐振补偿电路,其原理是为增加传输功率而在初、次级边增加谐振电容。并分析了次级品质因数和耦合系数对电压增益、电流增益和传输功率的影响。
     3.针对四种补偿拓扑结构中的频率分叉现象进行研究,得出了避免频率分叉现象的条件。同时考虑到初级谐振补偿电容是关于负载的函数,因此为了避免负载变化而引起的电路不谐振,对初级端进行了相控电感动态补偿以使系统工作在谐振状态。
     4.对非接触感应耦合电能传输系统的核心变压器进行了研究,初、次级选择矩形空心线圈,根据单匝线圈的自感和互感计算公式,计算并分析了初、次级单匝线圈时,耦合系数随初、次级气隙、偏移量、线圈尺寸的变化。同时在单匝线圈的研究基础上,在考虑线圈导体直径下,推导出了初、次级多匝线圈的自感和互感的计算公式,并结合Matlab编程计算出了耦合系数随匝数、气隙、偏移量、初、次级线圈尺寸的变化曲线并对其进行了分析。
     5.结合城轨的参数要求,给出了城轨非接触受流参数设计流程图,并通过Matlab软件编程计算出了城轨非接触受流参数。同时对非接触受流储能系统进行了研究,得到了车载超级电容组参数。
Contactless inductively coupled power transfer (ICPT) technology overcomes the wear and tear electric spark and poor contact of traditional power transfer method. It makes the power supply system more secure, reliable, flexible, and eco-friendly, and has broad application prospects. This paper makes full use of its advantages and makes it applied in urban rail transportation power supply system.
     1. Based on the mutual inductance equivalent model of loosely coupled transformer, This article analyses the circuit, coupling transformer of Contactless inductively coupled power transfer (ICPT) system and has designed parameters that meet the requirements of urban rail transportation contactless current collection system. Also energy storage system of contactless current collection is studied, parameters of vehicle-mounted super capacitor pack are obtained. Main contents are as follows:
     2. Firstly, urban rail transportation contactless current collection system is reviewed, and the research status at home and abroad of urban rail transportation contactless current collection system is summarized. At last, the research significance and research content of this paper are given.
     3. The circuit structure of contactless inductive coupling is studied. Four kinds of compensation circuits are mainly studied whose principles are to increase the resonant capacitance in the primary and secondary side to increase the transmission power. And the influence that secondary quality factor and the coupling coefficient impact on voltage gain, the current gain and transmission power gain is analyzed。
     4. Bifurcation phenomenas of the four kinds of compensation topologies are studied, and the operating conditions are achieved. At the same time, considering that the primary resonance compensation capacitance is a function of load, in order to avoid changes of system resonance caused by load, phase control inductance dynamic compensation is added on the primary side so as to make the system work in resonance condition.
     5. The transformer of contactless inductively coupled power transfer is studied, whose coils are rectangular air-core coils. According to the self-induction and mutual inductance calculation formulas of a single-turn coil, the influence that air gap, coil size, offset affect coupling coefficient is calculated is studied. On the basis of the research on single-turn coil.the self inductance and mutual inductance calculation formulas of coils are derived under considering the coil conductor diameter condition. The influence that number of turns, air gap, coil size, offset affect the coupling coefficient is calculated and studied by using Matlab software.
     6. Combining the parameters of the urban rail transit parameters design flow chart of Urban rail contactless current collection is given. And parameters of urban rail contactless current collection system are calculated by using Matlab software. Also energy storage system of contactless current collection is studied, parameters of vehicle-mounted super capacitor pack are obtained.
引文
[1]张学敏.MATLAB基础及应用[M].中国电力出版社,2009
    [2]毛保华,姜帆,刘迁等.城市轨道交通[M].科学出版社,2002
    [3]冯慈璋,马西奎.工程电磁场导论[M],高等教育出版社,2000
    [4]张宗明.非接触电能传输系统电磁机构研究[D].重庆大学硕士学位论文,2007
    [5]曲立楠.磁耦合谐振式无线能量传输机理的研究[D].哈尔滨工业大学工学硕士学位论文,2010
    [6]张旭.感应耦合式电能传输系统的理论与技术研究[D].中国矿业大学博士学位论文,201]
    [7]夏晨阳.感应耦合电能传输系统能效特性的分析与优化研究[D].重庆大学博士学位论文,2010
    [8]王小霞.非接触电能传输系统控制技术研究与实现[D].重庆大学硕士学位论文,2009
    [9]刘建.基于松耦合变压器的全桥谐振变换器的研究[D].南京航空航天大学硕士学位论文,2008
    [10]封阿明.基于全桥谐振:变换器的非接触电能传输系统基本特性研究[D].南京航空航天大学硕士学位论文,2011
    [11]周雯琪.感应耦合电能传输系统的特性与设计研究[D].浙江大学博士学位论文,2008
    [12]吴亮亮.自动导向小车(AGV)无接触供电关键技术研究[D].南京航空航天大学硕士学位论文,2011
    [13]Chwei-Sen Wang, Oskar H Stielau, and Govic. Design considerations for a contactless electric vehicle battery charger[J]. IEEE transactions on industrial electronics,2005, VOL.5 :1308-1314
    [14]Jesus Sallan,Andres Llombart, and Jose Fco. Sanz. Optimal Design of ICPT Systems Applied to Electric Vehicle Battery Charge[J]. IEEE transactions on industrial electronics,2009. VOL,6:2140-2149
    [15]Wenqi Zhou, Hao Ma. Winging structure and circuit design of contactless power transfer platform[C], IEEE IECON,2008:1063-1068
    [16]H. Hertz, Dictionary of scientific biography, vol.Vl[M].New York:washburm,1944.
    [17]W.C.Brown.The history of Power transmission by radio waves[J].IEEE Trans.on Microwave Theory and Techniques.1984, vol.9:1230-124
    [18]O.H.Stielau, G.A.Covic.Design of loosely coupled inductive Power transfer systems. IEEE Power System Technology, PowerCon2000, vol.1:85-90
    [19]Wen.H.Ko,Sheau P.Liang, Cliff D. F. Fung. Design of a radio-frequency powered coils for implant instruments[J]. Medical and Biological Engineering and Computing.1077, 11(15):634-640
    [20]M.Soma, D.C.Galbraith, R.L.White.Radio-frequency coil in implantable devices misalignment analysis and design Procedure[J].IEEE Trans.on Biomedical Engineering. 1987,4:276-282
    [21]D.C.Galbraith, M.Soma, R.L.White.wide-band efficient inductive transdermal power and data link with coupling insensitive gain[J]..IEEE Trans.on Biomedical Engineering.1987,4:265-275
    [22]P.Si, A.P.Hu, J.W.Hsu, et al.Wireless Power supply for implantable biomedical device Based on primary input voltage regulation[e].in Proc2nd, IEEE Conf.Industrial Electronics and Applications.2007:235-239
    [23]Chun-Hung Hu Ching-Mu Chen Ying-Shing Shiao Tung-Jung Chan Tsair-Rong Chen Development of a Universal Contactless Charger for Handheld Devices 978-1-4244-1666-0/08/'2008 IEEE
    [24]陈荣.动态功率因数补偿研究[J].电气技术与自动化,2002,7(29):66-69
    [25]李宏.感应电能传输一电力电子及电气自动化的新领域[J].电气传动,2001,(2):62-64.
    [26]刘修泉,曾昭瑞,黄平.空心线圈电感的计算与实验分析[J].工程设计学报,2008,4:149-153
    [27]杨民生,王耀南,欧阳红林.无接触电能传输系统的补偿及性能分析[J].电力自动化设备,2008,9:15-18
    [28]武瑛,严陆光,徐善刚.新型无接触电能传输系统的稳定性[J].中国电机工程学报,2004,24(5):63-66
    [29]武瑛.新型无接触供电系统的研究[D].中国科学院电工所博士学位论文,2004
    [30]武瑛,严陆光,徐善刚.运动设备无接触供电系统耦合特性的研究[J].电工电能新技术,2005,24(3):5-8
    [31]孙跃,朱军峰,王智慧等.CPT系统输出稳压控制技术[J].重庆工学院学报(自然科学),2008,22(3):1-4
    [32]张峰,王慧贞,秦海鸿等.松耦合全桥谐振变换器的原理分析与实现[J].电力电子技术,2007,41(2):16-1
    [33]张峰,王慧贞.非接触感应能量传输系统中松耦合变压器的研究[J].电源技术应用, 2007,10(4):54-58
    [34]周雯琪,马皓,何湘宁.感应耦合电能传输系统不同补偿拓扑的研究[J].电工技术学报,2009,24(1):133-139
    [35]秦海鸿,朱德明,严仰光.电动汽车充电器电路拓扑的设计考虑[J]电源技术应用,2004.7(2):97-104
    [36]张峰,王慧贞,姜田贵.电压型松祸合全桥谐振变换器原理分析与实现[J].电力电子技术.2007,41(4):28-30
    [37]武瑛,严陆光,徐善刚等.新型无接触电能传输系统的性能分析[J].电工电能新技术,2003,22(4):10-1
    [38]H. Sakamoto, K. Harada, S. Washimiya, et al. Large air-gap coupler for inductive charger[for electric vehicles] [J].IEEE Trans. On Magnetics,1999,35(5):3526-3528
    [39]Y. Matsuda,H. Sakamoto. Non-contact magnetic coupled power and data transferring System for an electric vehicle[J]. Journal of Magnetism and Magnetic Materials,2007, 310(2):2853-2855
    [40]J.T.Boys, G. A. Covic, A. W. Green. Stability and control of inductively coupled Power transfer systems[J]. IEEE Proceedings-Electric Power Applications 2000,147(1):37-43
    [41]D. Kacprzaak, G. A. Covic, j. T. Boys. An improved magnetic design for inductively coupled power transfer system pickups[A]. The 7th International Power Engineering Conference,2005.IPEC 2005[C].2005:1133-1136
    [42]Stielau Oskar H, Covic Grant A. Design of loosely Coupled Inductive Power Transfer Systems[C], PowerCon 2000,1:85-90
    [43]Yong X X, Boys J T, Covic G A. Modeling and Controller Design of ICPT Pick-ups [C]. PowerCon 2002,2002,3:1602-1606.
    [44]Jesus Sallan, Member,Villa, Andres Llombart, and Jose Fco. Sanz Optimal Design of ICPT Systems Applied to Electric Vehicle Battery Charge IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL.56, NO.6, JUNE 2009
    [45]J.G Hayes.Battery charging systems for electrical vehicles. Electric Vehicles. A Technology Roadmap for the Future (Digest No.1998/262), IEEE Colloquium on, 1998:4/1-4/8
    [46]A. Esser. Contactlesschargingandeornmunieationforeleetrievehicles[J] · IEEE Industry Applications Magazine.1995,1(6):4-11
    [47]Junji Hirai, Tae-Woong, Atsuo Kawamura. Study on intelligent battery charging using inductive transmission of power and information[J]. IEEE Trans. On Power electronics 2000,15(2):335-345
    [48]P. R. Troyk, M. A. K. Schwan. Closed-loop class E transcutaneous power and data link for microimlants[J]. IEEE Trans. On Biomedical Engineering,39(6):589-599
    [49]赵毅,唐治德,张绝,黄立华.基于植入电子器件体导电能量传递模型的研究计算机仿真,2009,26(1):339-34
    [50]韩腾,卓放,闫军凯等.非接触电能传输系统频率分叉现象研究[J],电工电能新技术,24(2),2005:44-47
    [51]韩腾,卓放,刘涛等.可分离变压器实现的非接触电能传输系统研究[J],电力电子技术,38(5),2004:28-30
    [52]耿成帮,朱均,李忠.成都地铁1号线一期工程地铁车辆[J],铁道机车车辆,31(3),2011:55-59
    [53]陈英,陈燕.成都地铁1号线车辆电气牵引系统[J],铁道机车车辆,29(5),2009:52-55
    [54]王迅.城市轨道交通车载超级电容储能系统控制策略的研究[D].北京交通大学硕士学位论文,2010,6
    [55]武利斌.基于超级电容器的城轨再生制动储能仿真研究[D].西南交通大学硕士学位论文,2011,5
    [56]王雪迪.基于城市轨道交通乍辆的超级电容储能系统的研究[D].北京交通大学硕士学位论文,2008,6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700