用户名: 密码: 验证码:
医用碳/碳复合材料表面改性及其生物医学应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳/碳复合材料是材料领域中重点发展的一种新型材料,作为医用植入物的研究已经有30多年的历史了,生物相容性较好、力学参数与人骨接近,有良好的应用前景,但是到目前为止还没有真正在临床中应用。本文围绕碳/碳复合材料应用中的基本问题,着重研究了医用碳/碳复合材料的制备及生物相容性、表面改性、耐磨性能提高、个体化人工骨制备以及在放射治疗中对剂量的影响。
     本文针对碳/碳复合材料杂质甚至有毒元素含量偏高的现状,提出了延长高温(2800~3200℃)石墨化处理时间以降低碳/碳复合材料杂质(有毒元素)含量,按照中华人民共和国国家医疗器械标准要求,对其进行生物安全性研究,认为经过12h高温处理后,碳/碳复合材料是符合国家医疗器械生物安全标准要求的。研究了不同工艺制备的碳/碳复合材料对成骨细胞生长的影响,对影响细胞生长的因素进行了分析;同时也研究了成骨细胞在碳/碳复合材料表面的粘附特性,对其粘附机制进行了探讨和解释。
     通过梯度化学气相沉积法(CVD)改变医用碳/碳复合材料表面热解碳的结构分布来提高摩擦性能,得到了梯度CVD法制备医用碳/碳复合材料涂层的工艺流程,解决了医用碳/碳复合材料易磨损的问题,同时借助扫描电镜(SEM)、X射线衍射(XRD)、摩擦实验机等测试手段分析了梯度CVD法制备的医用碳/碳复合材料涂层耐摩擦的机制。
     在等离子喷涂的基础上,发展了一种制备羟基磷灰石涂层的新工艺—用等离子体预处理碳/碳复合材料,再进行等离子喷涂,涂层的结合强度得到改善。借助扫描电镜(SEM)、X射线衍射(XRD)、红外光谱(FT-IR)、划痕仪等分析手段,探讨等离子体预处理碳/碳复合材料等离子喷涂涂层的形成机理,发现在等离子体预处理后,碳/碳复合材料表面出现活性基团,亦可去除碳纤维周围热解碳表面的缺陷并形成刻蚀凹坑,这些因素有利于提高涂层的结合强度。
     对碳/碳复合材料表面等离子喷涂羟基磷灰石涂层进行体内外生物学性能研究,羟基磷灰石涂层能在体内和体外诱导沉积出新的类骨磷灰石涂层,并可进一步诱导新生骨组织的形成。在体外,成骨细胞在涂层表面生长良好。动物实验证明,羟基磷灰石涂层能诱导新生骨组织的快速生长,同时借助扫描电镜(SEM)和病理切片对涂层界面处骨组织的修复进行了系统的研究。通过血常规、生化指标等检查分析,发现羟基磷灰石涂层和碳/碳复合材料生物安全性好。
     对碳/碳复合材料植入物在放射治疗的应用前景进行了研究,与金属植入物相比,碳/碳复合材料植入物在放射治疗各个步骤中都有不可比拟的优势,借助蒙特卡罗方法详细分析了植入物对射线入射面和出射面的剂量影响及在实际计划设计中植入物对剂量的影响,得到使用碳/碳复合材料植入物不会引起射线入射面剂量增加,也不会引起射线出射面剂量急剧减少的结论。对吸收了一定放射治疗剂量的碳/碳复合材料植入物进行力学性能测试,认为放射治疗的剂量不会对碳/碳复合材料力学性能产生影响,适合做需要放射治疗植入物的材料。
     发展了一种快速制备个体化碳/碳复合材料人工骨的新方法,该方法把DICOM格式的骨骼模型转换为机械加工软件可识别的非均匀有理B样条格式,借助手术效果可视化评估的新方法指导人工骨的轮廓的勾画,通过数控加工中心加工出个体化碳/碳复合材料人工骨。
Carbon/carbon composites is a developed material in material science. It has been studied for30yearsas a medical implant. With good biological compatibility, chemical stability, good mechanicalproperties and elastic modulus similar to human bones, carbon/carbon composites have good prospectfor application. But so far, they have not being actually clinically used. This dissertation mainlystudies carbon/carbon composites preparation, biological compatibility, surface modification,theimprovement of wear resistance,the preparation of individual artificial bone and the effect on thedosage in radiotherapy.
     In this dissertation, according to the present situation that carbon/carbon composites has shortcomingsfor the use in the field of medicine such as the impurities or even high content of toxic elements, wepropose that the high temperature (2800-3200℃) processing time be extended to reducecarbon/carbon composite material impurity (toxicity) content. Research on biological safety has beencarried out according to the National Standards for Medical Equipment of the People's Republic ofChina. We believe that the carbon/carbon composite material which is processed at2800-3200℃for12h is in line with the national standards of medical devices. We studied the effects on osteoblastgrowth with carbon/carbon composite by different preparation processes, and analyzed the cell growthfactors.We also studied adhesion characteristics of osteoblastic cells on carbon/carbon compositesurface, discussed and explained adhesion mechanism.
     Pyrolytic carbon structure distribution of medical carbon/carbon composites surface modified bygradient chemical vapor deposition(CVD)can improve the surface wear resistance and obtain thetechniques for preparing medical carbon/carbon composite coating by gradient CVD was obtained.This technique can solve the problem of easy abrasion of medical carbon/carbon composite. Also themechanism of friction resistance by gradient CVD was explored by scanning electron microscope(SEM), X ray diffraction (XRD), friction test machine.
     A novel technology of plasma pre-treatment was developed for preparation of hydroxyapatite coatingon carbon/carbon composite by plasma spraying.This technique provides improved adhesive coating.By scanning electron microscope (SEM), X ray diffraction (XRD), infrared spectroscopy(FT-IR) and scratch test analysis, we found active groups and pyrolytic carbon defects removed oncarbon/carbon composite surface after plasma pretreatment. These factors are beneficial for theimprovement of the bond strength of the coatings.
     The research of biological properties was carried out in vivo and in vitro. New apatite layer can bedeposited on the hydroxyapatite coatings in vivo and in vitro. These new apatite coating can inducenew bone formation. In vitro, the growth of osteoblasts on the surface of the coating is good. Animalexperiment proved that hydroxyapatite coatings can induce the rapid growth of new bone tissue.At thesame time, systematic research has been done about the bone tissue repair at the interface of coatingusing scanning electron microscope (SEM) and pathological sections. From the routine bloodexamination and biochemical examination analysis, we found that hydroxyapatite coating andcarbon/carbon composite material have good biological safety
     We studied the prospect of the carbon/carbon composite implants in radiation therapy. Compared withmetal implants, the carbon/carbon composite implants have incomparable superiority in radiotherapyfor the treatment of various steps. With Monte Carlo simulation, we analyzed in detail the incidentsurface dose and the exit surface dose of implant. We also study the dose effect of implants in theactual plan design. The mechanical properties of carbon/carbon composite implants after absorbingdifferent radiation therapy dose were tested.That radiation therapy dose does not have impact onmechanical properties of carbon/carbon composites.Therefore, they are more suitable to patients inneed of radiotherapy.It is found that carbon plates will neither increase the incident surface dose, norlead to the sharp decrease of exit surface dose (the effect of a second build-up). Carbon fiberorthopedic implants have a good prospect for radiotherapy patients because they have minimalperturbation effects on the radiotherapy dose distribution.
     Finally, a novel method that can rapidly prepare individual artificial bone of carbon/carbon compositewas developed.The DICOM format of the skeletal model is converted to non-uniform rational B-spineformat that can be identified by mechanical processing software. Individual artificial bone contourwas sketched with the help of visual operation effect. Individual artificial bone of carbon/carboncomposite was prepared through the CNC Machining Center.
引文
[1]Gott VL,Whiffen JD,Dutten RC. Heparin bonding colloidal graphite surfaces. Science1963,142:1279-1298.
    [2]Bokros JC.Carbon biomedical devices. Carbon,1977,5:355-371
    [3]马晓红,建国,鲍居宇.炭材料在生物医学领域的应用和进展.生物骨科材料与临床研究,2009,6(3):1-5
    [4]郭小天,许海燕.碳纳米管及其复合材料在生物医学领域的研究进展.生物医学工程学杂志,2006,23(2):438-441
    [5]Pesáková V, Klézl Z, Balík K, et al. Biomechanical and biological properties of the implant materialcarbon-carbon composite covered with pyrolytic carbon. J Mater Sci: Mater Med.2000,11(12):793-798
    [6]Sharma S,McMurty K,Chalapathy N,et a1.Mechanical aortic valve without anticoagulation fortwenty-three years. Interact CardioVasc Thorac Surg,2009,8(2):263-264.
    [7]Montezuma SR,Loewenstein J,Scholz C,et al.Biocompatibility of materials implanted into thesubretinal space of Yucatan pigs.Invest Ophthalmol Vis Sci,2006,47(8):3514-3522.
    [8]Meier R, Schulz M, Krimmer H, et a1.Proximal interphalangeal joint replacement with pyrolyticcarbon prostheses.Oper Orthop Traumatol,2007,19(11):1-15.
    [9]Tsao AK,Jones LC, Lewallen DG,et a1.What patient and surgical factors contribute to implantwear and osteolysis in total joint arthroplasty?. J Am Acad Orthop Surg,2008,16(1):S7-S13.
    [10]倪昕晔,汤晓斌,林涛,等.不同骨科植入物对放射治疗的影响.中国生物医学工程学报,2011,30(3):632-635
    [11]陈东,张鹏,刘国辉.人工骨生物材料的研究进展.临床骨科杂志,2007,10(4):366-369
    [12]李文武,周必光.人工骨修复骨缺损的研究进展.华中医药杂志,2007,31(2):150-151
    [13]李干,李奇.金属对金属髋关节置换术后金属离子的影响及有关对策.中华关节外科杂志(电子版),2010,4(5):666-670
    [14]Niki Y,Matsumoto H,Suda Y,et al. Metal ions induce bone-resorbing cytokine production throughthe redox pathway in synoviocytes and bone marrow macrophages. Biomaterials2003,24(8):1447-1457
    [15《]中国组织工程研究与临床康复》杂志社学术部.医用高分子材料及其相关产品的临床应用.中国组织工程研究与临床康复,2011,15(47):8877-8878
    [16]王涛,田卫东,李声伟,等.纳米双相磷酸钙陶瓷组织工程支架复合大鼠自体骨髓基质干细胞修复极量颅骨缺损.中国组织工程研究与临床康,2008,12(14):26016-2610
    [17]钱卫庆,王宸.生物活性陶瓷复合材料在脊柱融合中的应用.国际骨科学杂志,2006,27(4):218-220
    [18]张慧茹.碳/碳复合材料概述.碳/碳复合材料概述.合成纤维,2011,40(1):1-7
    [19]Delhaès P,Trinquecoste M,Lines J F,et al. Chemical vapor infiltration of C/C composites: Fastdensification processes and matrix characterizations. Carbon,2005,43(4):681~691.
    [20]Fathollahi B,Chau P C,White J L. Injection and stabilization of mesophase pitch in the fabricationof carbon–carbon composites. Part I. Injection process. Carbon,2005,43(1):125~133.
    [21]高燕,宋怀河,陈晓红.C/C复合材料的研究进展.材料导报,2002,16(7):44-47
    [22]李贺军,曾燮榕,李克智.炭/炭复合材料研究应用现状及思考.炭素技术,2001,(5):24~27.
    [23]Christ K,Hüttinger K J. Carbon-fiber-reinforced carbon composites fabricated with mesophasepitch. Carbon,1993,31(5):731-750
    [24]黄启忠.高性能炭/炭复合材料的制备、结构与应用.长沙:南大学出版社,2010:5-7
    [25]Gong Q M,Huang P Y,Huang Q Z,et al.Friction and wear properties of pitch/resin densifiedcarbon—carbon composites used for airbrakes.Transactions of Nonferrous Metals Society of China,2002,12(3):480-484
    [26]Fitzer E.The Future of Carbon--Carbon Composites. Carbon,1987,25(2):163-190
    [27]Houlle M, Deneuve A, Amadou J,et al. Mechanical enhancement of C/C composites via theformation of a machinable carbon nanofiber interphase.Carbon,2008,46(1):76-83
    [28]Wang G,Yu S,Zhu S,et al. Study on implant material of carbon/carbon composites. Sheng Wu YiXue Gong Cheng Xue Za Zhi,2010,27(6):1286-1291
    [29]Wang GH,Yu S,Zhu SH,et al. Biological properties of carbon/carbon implant composites withunique manufacturing processes. J Mater Sci Mater Med,2009,20(12):2487-2492
    [30]Cao N,Dong J,Wang Q,et al. Plasma-sprayed hydroxyapatite coating on carbon/carbon compositescaffolds for bone tissue engineering and related tests in ν νο. Journal of biomedical materialsresearch. Part A,2010,92(3):1019-1027
    [31]Adams D,Williams DF,Hill J. Carbon fiber-reinforced carbon as a potential implant material. J.Biomed. Mater. Res.1978,12(1):35-42
    [32] Szabó G,Barabás J,Németh Z,et al. Carbon/carbon implants in the oral and maxillofacial surgery-Part1. Orv Hetil,2012,153(7):57-262
    [33]Mukherjee DP,Saha S. The application of new composite materials for total joint arthroplasty. JLong Term Eff Med Implants,1993,3(2):131-141.
    [34]Evans SL,Gregson PJ. Composite technology in load bearingorthopaedic implants. Biomaterials,1998,19(15):329-1342.
    [35]隋金玲,李木森,吕宇鹏.人体承重骨替换用碳/碳复合材料的研究现状.生物医学工程学杂志,2004,21(4):686-689.
    [36]张磊磊,李贺军,李克智,等.碳/碳复合材料表面粗糙度对成骨细胞生长行为的影响.无机材料学报,2008,23(2):41-345
    [37]Baquey C,Bordenave L,More N,et al.Biocompatibility of carbon-carbon materials: bloodtolerability. Biomaterials,1989,10(7):435-440
    [38]Pesáková V, Smetana K Jr, Balík K, et al. Biological and biochemical properties of the carboncomposite and polyethylene implant materials. J Mater Sci: Mater Med,2003,14(6):531–537.
    [39]侯向辉.碳/碳复合材料快速CVI致密化技术及模拟研究.西北工业大学博士学位论文,1998:68
    [40]曹宁.表面改性医用碳/碳复合材料及其性能研究.山东大学博士学位论文,2010:2
    [41]俞能宝,董天华,孙俊英.复合材料股骨头的假体生物力学评价.中国矫形外科杂志,2001,8(12):1157-1159
    [42]Shimmin A,Beaulé PE,Campbell P. Metal-on-Metal Hip Resurfacing Arthroplasty.J Bone JointSurg Am,2008,90(3)637-654.
    [43]熊信柏,李贺军,黄剑锋,等.生物医用碳/碳复合材料碳化硅涂层的研究.西北工业大学学报,21(3):356-359
    [44]赵晓兵,刘宣勇,陈志刚,等.等离子体喷涂氧化钛涂层的生物活性研究.无机材料学报,2008,23(5):1021-1026
    [45]沈霞,徐华顺,韩栋伟.硅灰石及二氧化钛涂层材料的生物学性能.同济大学学报(医学版),2007,28(5):30-34,39
    [46]Lopa S,De Girolamo L,Arrigoni E,et al.Enhanced biological performance of human adipose-derived stem cells cultured on titanium-based biomaterials and silicon carbide sheets for orthopaedicapplications. J. Biol. Regul. Homeost,2011,25(2Suppl):s35-s42
    [47]Chen D,Bertollo N,Lau A,et al.Osseointegration of porous titanium implants with and without anelectrochemically deposited DCPD coating in an ovine model. Journal of orthopaedic surgery andresearch,2011,6(1):56
    [48]Dinarvand P,Seyedjafari E,Shafiee A,et al.A new approach to bone tissue engeenering:simultaneous application of hydroxyapatite and bioactive glass coated on poly(L-lactic acid) scaffold.ACS Appl Mater Interfaces,2011,3(11):4518-4524
    [49]Felício-Fernandes G,Laranjeira MCM.Calcium phosphate biomaterials from marine algae.Hydrothermal synthesis and characterization. Química Nova,2000,23(4):441-446
    [50]K. De Groot,R.Geesink,C.P.A.T.Klein,et al. Plasma sprayed coatings of hydroxylapatite. Journalof Biomedical Materials Research,1987,21(12):1375-1381
    [51]Sui JL, Li MS, Lu YP,et al.Plasma-sprayed hydroxyapatite coatings on carbon/carboncomposites.Surface and Coatings Technology,2004,17(6)188-192.
    [52]Caouette C,Yahia LH,Bureau MN. Reduced stress shielding with limited micromotions using acarbon fibre composite biomimetic hip stem: a finite element model. Proc Inst Mech EngH,2011,225(9):907-919
    [53]Hacking SA,Pauyo T,Lim L,et al. Tissue response to the components of a hydroxyapatite-coatedcomposite femoral implant. Journal of biomedical materials research,Part A,2010,94(3):953-60
    [54]Suetsugu Y, Ikoma T, Tanaka J. Single Crystal Growth and Structure Analysis of MonoclinicHydroxyapatite. Key Engineering Materials,2001,192(195):287-290
    [55]吕莉,郭灵虹,张允湘.羟基磷灰石生物陶瓷结构模拟与解析.硅酸盐学报,2004,32(2):177-181
    [56]Fujishiro Y, Yabuki H, Kawamura K, et al. Preparation of needle-like hydroxyapatite byhomogeneous precipitation under hydrothermal conditions. J Chem Technol Biotechnol,1993,57(4):349-353.
    [57]Xiong XB, Zeng XR, Zou Cl.Preparation of enhanced HA coating on H2O2-treated carbon/carboncomposite by induction heating and hydrothermal treatment methods. Materials Chemistry andPhysics,2009,114(1):434-438
    [58]Qiu CF, Xiao XF, Liu RF, et al. Biomimetic synthesis of spherical nano-hydroxyapatite withpolyvinylpyrrolidone as template. Mater Sci Tech,2008,24(5):612-617.
    [59]Gao WM,Li QY,Ruan CX,et al. Morphology tailoring of hydroxyapatite nanoparticles byhydrothermal processing with amino acids. Key Eng Mater,2005,280(part2):1533-1536.
    [60]孙艳荣,范涛,黄勇,等.羟基磷灰石生物陶瓷材料的研究趋势及展望.硅酸盐学报,2010,36(8):1145-1150
    [61]Roy DM,Linnehan SK. Hydroxyapatite formed from coral skeletal carbonate by hydrothermalexchange. Nature,1974,247(438):220-222.
    [62]Monma H,Kamiya T.Preparation of hydroxyapatite by the hydrolysis of brushite. Journal ofMaterials Science,1987,22(12):4247-4250
    [63]Liu DM, Troczynski T, Tseng WJ.Water-based sol-gelsynthesis of hydroxyapatite: processdevelopment. Biomaterials.2001,22(13):1721-1730
    [64]Nasser Y. Mostafa,Paul W. Brown.Computer simulation of stoichiometric hydroxyapatite:Structure and substitutions. Journal of Physics and Chemistry of Solids,2007,68(3):431-437
    [65]郑岳华,腾伟,曲炳仪,等.CCH种植体界面成骨作用研究.生物医学工程学杂志,1999,16(Z1):14-16
    [66]熊信柏.声电化学法制备碳/碳复合材料磷酸钙生物活性涂层研究.西北工业大学博士学位论文,2004:13
    [67]王静,李慕勤,温广武.短碳纤维增强羟基磷灰石生物材料的制备与性能.稀有金属材料与工程,2007,26(3):86-89
    [68]熊信柏,李贺军,黄剑锋,等.碳/碳复合材料表面声电沉积/碱热处理复合下艺制备羟基磷灰石生物活性涂层研究.稀有金属材料与工程,2005,34(9):1489-1492
    [69]朱广燕,黄剑锋,曹丽云,等.温度对C/C复合材料表面HAP涂层的影响.武汉理工大学学报,2007,29(12):52-54.
    [70]Fu T,Han Y,Xu KW,et al. Induction of calcium phosphate on IBED-TiOx-coated carbon-carboncomposite. Materials Letters,2002,57(1):77-81.
    [71]Li SH,Zheng Z,Liu Q,et al. Collagen/apatite coating on3-dimensional carbon/carbon composite.Journal of Biomedical Materials Research,1998,40(4):520-529
    [72]WAN C,Li KZ,Zhai YQ,et al.Study of fluorh-hydroxyapatite coatings on carbon/carboncomposites.Surface and Coatings Technology,2009,203(13):1771-1775.
    [73]熊信柏,曾燮榕,万怡灶,等.碳/碳复合材料表面制备羟基磷灰石涂层的研究进展.机械工程材料,2009,33(7):1-4
    [74]付涛,憨勇,宋忠孝,等.碳/碳复合材料表面诱导沉积生理磷灰石层.无机材料学报,2002,17(1):189-192
    [75]Buma P,Gardeniers J.W.Tissue reactions around a hydroxyapatite-coated hip prosthesis. Casereport of a retrieved specimen.Journal of Arthroplasty,1995,10(3):389-395.
    [76]朱广燕,黄剑锋,吴建鹏,等.碳/碳复合材料表面羟基磷灰石生物涂层的研究进展.稀有金属材料与工程,2007,36(2):749-753
    [77]Jin-Ling Sui,Mu-Sen Li,Yu-Peng Lu,et al. The effect of plasma spraying power on the structureand mechanical properties of hydroxyapatite deposited onto carbon/carbon composites. Surface&Coatings Technology,2005,190:287-292
    [78]Balasundaram G,Sato M,Webster TJ.Using hydroxyapatite nanoparticles and decreasedcrystallinity to promote osteoblast adhesion similar to functionalizing with RGD. Biomaterials,2006,27(14):2798-2805
    [79]Cao N,Bai YQ,Ma QS,et al.Biological behaVior of hydroxyapatite coatings on carbon/carboncomposites produced by plasma spraying. NEW CARBON MATERIALS,2008,23(2):145-148
    [80]黄荔海,李贺军,胡志彪.石墨化度对2.5D碳/碳复合材料在低能条件下的摩擦学性能影响.材料科学与工程学报,2005,23(5):487-450
    [81]李新春,易茂中,冯一雷v等.C/C复合材料特性对其摩擦磨损性能的影响.新型炭材料,2005,20(2):151-156
    [82]Xiong X,Huang BY,Li JH,et al. Friction behaviors of carbon/carbon composites with differentpyrolytic carbon textures. Carbon,2006,44(3):463-467
    [83]Huttona T J,Johnsona D,McEnaney B. Effects of fibre orientation on the tribology of a modelcarbon-carbon composite. Wear,2001,249(8):647-655.
    [84]胡志彪,李贺军,陈强,等.碳/碳复合材料摩擦学性能及摩擦机制研究进展.材料工程,2004,12:59-62
    [85]袁小兵,陈岚,孙宏伟,等.碳质股骨头生物相容性的动物实验.中国组织工程研究与临床康复,2009,13(38):7503-7506
    [86]沈向前,孙乐民,张永振.2D沥青基碳/碳复合材料摩擦学性能研究.润滑与密封,2004,4:43-45
    [87]葛毅成,易茂中,彭可,等.PAN炭纤维预制体对C/C复合材料滑动摩擦磨损行为的影响.摩擦学学报,2010,30(1);19-25
    [88]肖志超,陈青华,金志浩.热处理温度对碳纤维增强碳复合材料摩擦学性能的影响.硅酸盐学报,2008,36(8):1153-1158
    [89]张磊磊,胡涛,李贺军,等.炭/炭复合材料人工髋关节磨损颗粒研究.无机材料学报,2010,2(54):349-353
    [90]Bowman SM,Guo XE,Cheng DW,et al. Creep contributes to the fatigue behavior of bovinetrabecular bone. J Biomech Eng,1998,120(5):647-654.
    [91]Martini F,Sell S,Kremling E, et al.Determination of periprosthetic bone density with the DEXAmethod after implantation of custom-made uncemented femoral stems. Int Orthop,1996,20(4):218-221.
    [92]Kaneuji A,Matsumoto T,Nishino M,et al. Three-dimensional morphological analysis of theproximal femoral canal, using computer-aided design system, in Japanese patients with osteoarthrosisof the hip. J Orthop Sci,2000,5(4):361-368.
    [93]伍卫刚,郑启新.快速成型技术在骨科的应用研究进展.国际生物医学工程杂志,2009,32(6):375-378
    [94]杨立军,齐艳梅,党新安,等.个体化人工骨外形的三维建模技术及应用.青岛大学学报(工程技术版),2011,26(3):61-65
    [95]Dai KR,Yan MN,Zhu ZA,et a1.Computer—aided custom—made hemipelvic prosthesis used inextensive pelvic lesions.J Arthroplasty,2007,22(7):981-986
    [96]Peltola SM,Melchels FP,Grijpma DW,et al. A review of rapid prototyping techniques for tissueengineering purposes. Ann Med,2008,40(4):268-280
    [97]涂强,丁焕文.快速成型制造个体化金属植入物在骨科应用的展望.中国矫形外科杂志,2009,17(19):1469-1472
    [98]夏德林,付光新,马征,等. CAD/CAM预制个体化钛合金修复体颅骨缺损术.中国组织工程研究与临床,2010,14(39):7254-7258
    [99] Gopakumar S.RP in medicine: a case study in cranial reconstructive surgery. Rapid PrototypingJournal,2004,10(3):207-211
    [100]吴纪楠,龚振宇,陈觉尧,等.基于快速成型技术制作个体化下颌人工骨的临床应用.中华口腔医学研究杂志(电子版),2011,5(2):161-168
    [101]季庆,李佳,郝继山,等.计算机辅助设计的个体化塑形钛网用于颅骨修补的临床研究.中华创伤杂志,2007,23(4):250-252
    [102]姜开宇,王敏杰,宋满仓,等.碳/碳复合材料人工骨骼RPM—CVI复合成形技术的初步研究进展.中国临床康复,2002,6(22):3378-3379
    [103]姜开宇,段旭明,王敏杰.工艺参数对炭/炭人工骨骼RPM—CVI复合成形效果的影响.材料工程,2004,6:12-15
    [104]宿庆财,李木森,王菁华,等.C/C复合材料人工股骨的应力分析.机械工程材料,2001,25(10):28-30
    [105]胡逸民.肿瘤放射物理学.北京,原子能出版社,1999:544-549
    [106]冯宁远.实用放射治疗物理学.北京,北京医科大学中国协和医科大学联合出版社,1998:211
    [107]Bortfeld T,Bürkelbach J, Boesecke R,et al.Methods of image reconstruction from projectionsapplied to conformation radiotherapy. Phys. Med. Biol.,1990,35(10):1423-1434
    [108]于金明,李宝生.调强放射治疗研究进展.中华放射肿瘤学杂志,2001,10(4):279-281
    [109]戴建荣,胡逸民.调强放疗的计划设计.中国医疗器械信息,2005,11(2):9-12
    [110]祁振宇,黄劭敏,邓小武.放疗计划CT值的校准检测及其影响因素分析.癌症,2006,25(1):110-114
    [111]ICRU Report50.Prescribing,Recording,and Reporting Photon Beam Therapy.Bethesda,MD,Intemational Commission on Radiation Units and Measurements,1993:3-18
    [112]ICRU Report62.Prescribing,Recording,and Reporting Photon Beam Therapy(Supplement toICRU Report50).Bethesda,MD,International Commission on Radiation Units and Measurements,1999:4-20
    [113]胡永成,马宏庆.全国骨转移瘤治疗专题座谈会会议纪要.中华骨科杂志,2003,23(6)323-325
    [114]袁文,贾连顺,肖建如,等.带锁钢板在颈椎肿瘤手术中的应用.临床骨科杂志,2000,3(4):254-256
    [115]Sakaura H,Hosono N,Mukai Y,et al. Outcome of total en bloc spondylectomy for solitarymetastasis of the thoracolumbar spine.J Spinal Disord Tech,2004,17(4):297-300
    [116]Pekmezci M,Dirican B,Yapici B,et al. Spinal implants and radiation therapy: the effect ofvarious configurations of titanium implant systems in a single-level vertebral metastasis model. JBone Joint Surg Am,2006,88(05):1093-1100
    [117]Son SH,Kang YN,Ryu MR.The effect of metallic implants on radiation therapy in spinal tumorpatients with metallic spinal implants. Med Dosim,2011,37(1):98-107
    [118]Chatzigiannis C,Lymperopoulou G,Sandilos P,et al.Dose perturbation in the radiotherapy ofbreast cancer patients implanted with the Magna-Site: a Monte Carlo study. J Appl Clin MedPhys,2011,12(2):58-70
    [119]Chin DW,Treister N,Friedland B,et al. Effect of dental restorations and prostheses onradiotherapy dose distribution: a Monte Carlo study. J Appl Clin Med Phys,2009,10(01);80-89
    [120]Aubin M,Morin O,Chen J,et al. The use of megavoltage cone-beam CT to complement CT fortarget definition in pelvic radiotherapy in the presence of hip replacement. Br J Radiol,2006,79(947):918-921
    [121] Dalal T,Kalra MK,Rizzo SM,et al.Metallic prosthesis: technique to avoid increase in CTradiation dose with automatic tube current modulation in a phantom and patients. Radiology,2005,236(02):671-675
    [122]周泽俊,胡永胜,高斌,等.多层螺旋cT图像伪影的分析.中国CT和MRI杂志,2008,6(5):72-73.
    [123]惠萍,王新江,崔志鹏,等. CT能谱成像在消除金属移植物伪影中的应用价值.中华放射学杂志,2011,45(8):740-742
    [124]Lin SY,Chu TC,Lin JP,et al.The effect of a metal hip prosthesis on the radiation dose intherapeutic photon beam irradiations. Appl Radiat Isot,2002,57(01):17-23
    [125]李晓莉,冯卫华,董诚.CT能谱成像技术减除金属植入物伪影的定量实验研究.中华放射学杂志,2011,45(8):736-739
    [126]谷建伟,张丽,陈志强,等.基于投影的CT图像金属伪影非线性权重校正.清华大学学报-自然科学版,2006,46(6):825-828
    [127]Wang G,Snyder DL,O’Sullivan JA,et a1. Iterative deblurring for CT metal anifactreduction.IEEE Trans Med Imaging,1996,15(5):657-664.
    [128]刘明,李兴德,牛庆国,等.体内金属植入物对放疗剂量分布影响.中华放射肿瘤学杂志,2010,19(5):459-462
    [129]Reft C,Alecu R,Das IJ, et al, Dosimetric considerations for patients with HIP prosthesesundergoing pelvic irradiation. Report of the AAPM Radiation Therapy Committee Task Group63.Med Phys,2003,30(6):1162–1182.
    [130]倪昕晔,汤晓斌,张志明,等.用蒙特卡罗方法模拟实验体内金属植入物对放疗剂量分布影响.中华放射肿瘤学杂志,2011,20(5):432-434
    [131]Mian TA,van Putten,Kramer DC,et al. Backscatter radiation at bone-titanium interface fromhigh-energy X and gamma rays. Int J Radiat Oncol Biol Phys,1987,13(12):1943-1947
    [132]Das IJ,Kahn FM. Backscatter dose perturbation at high atomic number interfaces in megavoltagephoton beams. Med Phys,1989,16(3):367-375
    [133]倪昕晔,汤晓斌,刘云鹏,等.背向散射因子在放射治疗中的作用.辐射防护,2011,31(1):30-33
    [134]Ravikumar M,Ravichandran R,Sathiyan S,et al.Backscattered dose perturbation effects atmetallic interfaces irradiated by high-energy X-and gamma-ray therapeutic beams. StrahlentherOnkol,2004,180(03):173-178
    [135]Mesbahi A,Nejad FS. Dose attenuation effect of hip prostheses in a9-MV photon beam:commercial treatment planning system versus Monte Carlo calculations. Radiat Med,2007,25(10):529-35
    [136]中国国家标准化管理化委员会. GB/T14232.2-2005医用输液、输血、注射器具检验方法第2部分:生物学试验方法.北京:中国标准出版社,2005
    [137]中国国家标准化管理化委员会. GB/T16886.5-2003医疗器械生物学评价第5部分:体外细胞毒性试验.北京:中国标准出版社,2003
    [138]中国国家标准化管理化委员会. GB/T16886.11-1997医疗器械生物学评价第11部分:全身毒性试验.北京:中国标准出版社,1997
    [139]中国国家标准化管理化委员会. GB/T16886.4-2003医疗器械生物学评价第4部分:与血液相互作用试验选择.北京:中国标准出版社,2003
    [140]中国国家标准化管理化委员会. GB/T16886.6-1997医疗器械生物学评价第6部分:植入后局部反应试验.北京:中国标准出版社,1997
    [141]夏露. bFGF对在钛片上复合培养的成骨细胞整合素表达的影响.四川大学博士论文,2006:23
    [142]Liddington RC,Ginsberg MH. Integrin activation takes shape. J. Cell Biol,2002,158(05)833-839
    [143]曹宁,李木森,李和胜.等离子喷涂HA涂层的制备工艺优化与表征研究进展.材料工程,2009,2:79-84
    [144]Meister K,Cobb A,Bentley G.Treatment of painful articular cartilage defects of the patella bycarbon fibre Implants.J bone joint Surg Br,1998,80(6):965-970.
    [145]Bacáková L,Stary V,Kofronová O,et al. Polishing and coating carbon fiber-reinforced carboncomposites with a carbon-titanium layer enhances adhesion and growth of osteoblast-like MG63cellsand vascular smooth muscle cells in vitro. J. Biomed. Mater. Res,2001,54(04):567-578
    [146]侯向辉,陈强,喻春红,等.碳/碳复合材料的生物相容性及生物应用.功能材料,2000,31(5):460-463
    [147]夏露,王培志,王国平.碱性成纤维细胞生长因子对成骨细胞粘附的调控作用.口腔医学,2009,29(1):38-40
    [148]Maekawa K,Yoshida Y,Mine A,et al.Effect of polyphosphoric acid pre-treatment of titanium onattachment, proliferation, and differentiation of osteoblast-like cells (MC3T3-E1). Clin OralImplants Res,2008,19(03):320-325
    [149]Matsuzaka K,Walboomers XF,Yoshinari M,et al. The attachment and growth behavior ofosteoblast-like cells on microtextured surfaces. Biomaterials,2003,24(16):2711-2719
    [150]Roehlecke C,Witt M,Kasper M,et al. Synergistic effect of titanium alloy and collagen type I oncell adhesion, proliferation and differentiation of osteoblast-like cells. Cells Tissues Organs (Print),2001,168(03):178-187
    [151]Papaioannou KA,Markopoulou CE,Gioni V,et al. Attachment and Proliferation of HumanOsteoblast-like Cells on Guided Bone Regeneration (GBR) Membranes in the Absence or Presence ofNicotine: An In Vitro Study. Int J Oral Maxillofac Implants,2011,26(3):509-519
    [152]盛晓阳.儿童微量元素缺乏的评估及干预.临床儿科杂志,2010,28(10):998-1000
    [153]戴闽,袁晓军,程细高,等.钴铬离子对成骨细胞细胞毒性及对其分泌骨保护素及其配体的影响.中国矫形外科杂志,2009,17(19):1489-1491
    [154]张文彬,刘藩.铬离子对孕鼠的生理和生殖毒性.安徽医学,2011,32(4):473-476
    [155]王亮亮,张晓时,石玄,等.铬对小鼠卵母细胞凋亡及DNA损伤的影响.上海交通大学学报(农业科学版),2009,28(6):561-565
    [156]Hsieh YC,Yu HP,Suzuki T,et al. Upregulation of mitochondrial respiratory complex IV byestrogen receptor-beta is critical for inhibiting mitochondrial apoptotic signaling and restoring cardiacfunctions following trauma-hemorrhage. J. Mol. Cell,Cardiol,2006,41(03):511-521
    [157]钱海雷.氟、镉对骨的效应.复旦大学博士学位论文,2006:79-80
    [158]Koizumi T,Li Z G,Tatsumoto H.DNA damaging activity of cadmium in Leydig cells, a targetcell population for cadmium carcinogenesis in the rat testis. Toxicol. Lett,1992,63(2):211-20
    [159]万双秀,王俊东.汞对人体神经的毒性及其危害.微量元素与健康研究,2005,22(2):67-69
    [160]张海英,汪维伟.汞、硒、砷的胚胎毒性及致畸性研究进展.国外医学(卫生学分册),2003,30(6):334-337
    [161]Annabi BA,Nehdi A,Hajjaji N,et a1.Antioxidant enzymes activities and bilirubin level in adultrat treated with lead.C. R. Biol,2007,330(08):581-588
    [162]靳翠红,蔡原,周平,等.铅对乳鼠成骨细胞增殖分化的影响.工业卫生与职业病,2007,33(1):9-11
    [163]靳翠红,刘秋芳,蔡原,等.铅对成骨细胞的功能标志物的影响.中国工业医学杂志,2006,19(2):84-85.
    [164]庞洁.铝对人体的毒性及相关食品安全问题研究进展.内科,2011,6(5):470-473
    [165]胡晓磐,周建华,时夕金,等.汞、镉、铅联合染毒对小鼠DNA损伤的研究.苏州大学学报(医学版),2004,24(5):595-597
    [166]Powell JJ,Burden TJ,Thompson RP. In vitro mineral availability from digested tea: a rich dietarysource of managanese. Analyst,1998,123(08):1721-1724
    [167]Ba gel S,Erdemo lu SB. Determination of mineral and trace elements in some medicinal herbsand their infusions consumed in Turkey. Sci. Total Environ,2006,359(1-3):82-89
    [168]中国国家标准化管理化委员会. GB4234-2003外科植入物用不锈钢.北京:中国标准出版社,2003
    [169]中华人民共和国药典.2010年版一部.北京:中国医药科技出版社,2010:71
    [170]张加玲,刘桂英.铝对人体的危害、铝的来源及测定方法研究进展.临床医药实践,2005,14(1):3-6
    [171]谭志强,吴鹏,徐开来,等.ICP-OES和ICP-MS法研究中草药中元素的溶出特性.化学研究与应用,2008,22(2):193-197
    [172]黄启忠.高性能炭/炭复合材料的制备、结构与应用.长沙:中南大学出版社,2010:6
    [173]窦文浩,翟士岭,孙克宜.一定速度下中长跑步频变化对跑步效率的影响.北京体育学院学报,1990,47(1):44-50,57
    [174]胡侦明,罗先正.髋关节的生物力学.中华骨科杂志,2006,26(7):498-500
    [175]郭云良,刘丰春,李相民.股骨头的直径、表面积和体积的计算及其意义.佳木斯医学院学报,1993,16(3):6-8
    [176]Zhou L,Kato K,Vurens G,et al.The effect of slider surface texture on flyability and lubricantmigration under near contact conditions. Tribology International,2003,36(4-6):269-277
    [177]Uehara Y, Wakuda M, Yamauchi Y,et al.Tribological properties of dimpled silicon nitride underoil lubrication. Journal of the European Ceramic Society,2004,24(2):369-373
    [178]历建全,朱华.表面织构及其对摩擦学性能的影响.润滑与密封,2009,24(2):94-97,103
    [179]伍战容,刘更,彭雄奇,等.膝关节矢状面接触分析的研究.计算机仿真,2008,25(2):190-193
    [180]刘庆,周一新.人工髋关节摩擦学研究进展.国际骨科学杂志,2009,30(2):74-77
    [181]Duong CT, Nam JS, Seo EM,等.全髋关节置换术中钴一铬股骨头不同磨损部位的摩擦学特性.中华骨科杂志,2011,31(9):1009-1014
    [182]姜海波,葛世荣.人工髋臼接触力学特性的有限元分析.航天医学与医学工程,2007,20(3):223-226
    [183]隋金玲,李木森,周海.喷涂功率对碳/碳复合材料表面羟基磷灰石涂层抗剪强度的影响,2006,30(8):22-24
    [184]隋金玲,李木森,吕宇鹏.粉末粒度对碳/碳基体上羟基磷灰石涂层的影响.机械工程材料,2005,29(2):21-23
    [185]Hwanga K, Song J,Kang B,et al.Sol–gel derived hydroxyapatitefilms on alumina substrates.Surface and Coatings Technology,2000,123(2-3):252-255
    [186]Soballe K,Hansen ES,Brockstedt-Rasmussen H,et al.Hydroxyapatite coating converts fibroustissue to bone around loaded implants. J Bone Joint Surg Br.1993,75(2):270-278
    [187]王峰,陈东阳,邱旭升,等.生物型髋关节假体涂层脱落的临床分期和预防.中国骨伤,2009,22(6):413-416
    [188]郑先锋,马志斌,张磊,等.直流辉光氧等离子体刻蚀金刚石膜的研究.金刚石与磨料磨具工程,2007,157(1):35-38
    [189]Sirineni G,Naseem H,Malshe A,et al. Reactive ion etching of diamond as a means of enhancingchemically-assi-sted mechanical polishing efficiency. DiamondRelated Materials,1997,6(8):952-958.
    [190]伍沅,周玉新.水热法合成羟基磷灰石.无机盐工业,1991,1:5-8
    [191]李建华,刘雁.医用羟基磷灰石颗粒的制备与生物学评价.陶瓷研究,1996,11(3):128-130
    [192]訾学军.羟基磷灰石的水热合成.陶瓷,1994,5:39-41
    [193]Wang B C,Lee T M,Chang E.The shear strength and the failure mode of plasma-sprayedhydroxyapatite coating to bone:the effect of coating thickness. Journal of Biomedical MaterialsResearch,1993,27(10):1215-1227.
    [194]Sun LM, Berndt CC, Grey CP. Phase, structural and microstructural investigations of plasmasprayed hydroxyapatite coatings. Materials Science and Engineering A,2003,360(1-2):70-84
    [195]中国国家标准化管理化委员会. GB23101.1-2010外科植入物羟基磷灰石第3部分:结晶度和相纯度的化学分析和表征.北京:中国标准出版社,2010
    [196]赵秋颖,贺定勇,李晓延,等.热处理对微束等离子喷涂羟基磷灰石涂层的影响.中国表面工程,2010,23(4):60-64,69
    [197]陈海生.现代光谱分析.北京,人民卫生出版社,2010:44
    [198]Anee TK, Ashok M, Palanichamy M, et al.A novel technique to synthesize hydroxyapatite atlow temperature. Materials Chemistry and Physics,2003,80(3):725-730.
    [199]Wang YJ, Chen JD, Wei K,et al.Surfactant-assisted synthesis of hydroxyapatite particles.Materials Letters,2006,60(27):3227-3231.
    [200]Ashok M,Sundaram NM,Kalkura SN.Crystallization of hydroxyapatite at physiologicaltemperature. Materials Letters,2003,57(13-14):2066-2070
    [201]Wang Al,Liu D,Yin HB,et al. Size-controlled synthesis of hydroxyapatite nanorods in thepresence of organic modifiers. Materials Letters,2007,61(10):2084-2088
    [202]Xiong XB,Zeng XR,Zou CL. Preparation of enhanced HA coating on H2O2-treated carbon/carbon composite by induction heating and hydrothermal treatment methods. Materials Chemistryand Physics,2009,114(1):434-438
    [203]曹宁.表面改性医用碳/碳复合材料及其性能研究.山东大学博士学位论文,2010:52
    [204]熊信柏,李贺军,黄剑锋,等.一种制备仿生生物活性钙磷涂层的新方法.稀有金属材料与工程,2004,33(3):313-316
    [205]田伟.实用骨科学.北京,人民卫生出版社,2007:5
    [206]巫向前.临床检验结果的评价.北京,人民卫生出版社,2000:311
    [207]边洁,葛建华.热喷涂铝过渡层对FEP涂层与钢基体结合强度的影响.材料热处理学报,2010,31(8):136-139
    [208]Hong B S,Han J H,Kim S T,et al. Endurable water-repellent glass for automobiles. Thin SolidFilms,1999,351(1-2):274-278.
    [209]杨晖,潘少明.基体表面粗糙度对涂层结合强度的影响.热加工工艺,2008,15:118-121
    [210]顾彪,陈茹.辉光放电等离子体对聚丙烯纤维的表面改性.高分子通报,2003,2:51-58
    [211]Tanaka H, Yasukawa A, Kandori K. Surface modification of calcium hydroxyapatite with hexyland decyl phosphates.Colloids and Surfaces,1997,125:53-62
    [212]Qiu XY, Chen L, Hu JL, et al.Surface-modified hydroxyapatite linked by L-lactic acid oligomer inthe absence of catalyst. Journal of Polymer Science Part A: Polymer Chemistry,2005,43(21):5177-5185
    [213]Weinlaender M.Bone growth around dental implants. Dent. Clin. North Am,1991,35(3):585-601
    [214]Yuan H,Kurashina K,de Bruijn JD,et al. A preliminary study on osteoinduction of two kinds ofcalcium phosphate ceramics. Biomaterials,1999,20(19):1799-1806
    [215]Fazan F,Marquis PM. Dissolution behavior of plasma-sprayed hydroxyapatite coatings. J MaterSci Mater Med,2000,11(12):787-792
    [216] Juste B,Miro R,Gallardo S,et al. Considerations of MCNP Monte Carlo code to be used as aradiotherapy treatment planning tool[C]//Proceedings of the2005IEEE. Engineering in Medicineand Biology27th Annual Conference,2005:1-4.
    [217]Verhaegen F,Seuntjens J. Monte carlo modelling of external radiotherapy photon beams. PhysMed Biol,2003,48(21):107-164.
    [218]Sheikh-Bagheri D,Rogers DWO,Ross CK,et al. Comparison of measured and Monte Carlocalculated dose distributions from the NRC linac. Med Phys,2000,27(10):2256-2266
    [219]Rogers DWO,Faddegon BA,Ding GX,et al. BEAM: A Monte Carlo code to simulateradiotherapy treatment units. Med Phys,1995,22(5):503-524
    [220]Mesbahi A,Fix M,Allahverdi M, et al. Monte Carlo calculation of Varian2300C/D Linac photonbeam characteristics: a comparison between MCNP4C, GEANT3and measurements.Appl RadiatIsot,2005,62(3):469-477
    [221]Deng J,Jiang SB,Kapur A,et al. Photon beam characterization and modelling for Monte Carlotreatment planning. Phys Med Biol,2000,45(2):411-427
    [222]胡逸民.肿瘤放射物理学.北京,原子能出版社,1999:497
    [223]David M. Shepard,Gustavo Olivera,Lisa Angelos,et al. A simple model for examining issues inradiotherapy optimization. Med. Phys,1999,26(7):1212-1221
    [224]刘莹,刁焕荣,毕立,等.CM治疗计划系统照射野剂量计算的验证.中华放射肿瘤学杂志,2004,13(2):117-119
    [225]Kawrakow I.Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc,the new EGS4version. Med Phys,2000,27(3):485-498
    [226]Miften M,Wiesmeyer M,Monthofer S,et al.Implementation of FFT convolution and multigridsuperposition models in the FOCUS RTP system. Phys Med Biol,2000,45(04):817-833
    [227]谷铣之.肿瘤放射治疗学.北京,中国协和医科大学出版社,2008:1195
    [228]倪昕晔,杨建华,孙苏平.肺癌放射治疗的物理研究进展.国际肿瘤学杂志,2007,34(10):61-764
    [229]廖晓玲,李贺军,李新涛,等.3DC/C复合材料的弯曲行为.材料工程,2006,6:54-57
    [230]袁辉.碳/碳复合材料刚度与强度预测模型研究.南京航空航天大学博士学位论文,2009:32
    [231]ICRU Report No.24. Determination of absorbed dose in a patient irradiated by beams of X or γrays in radiotherapy procedures.1976
    [232]李峻青,黄玉东,王卓,等.Y-射线辐照对碳纤维表面结构以及强度的影响.航空材料学报.2005,25(6):52-56
    [233]马恒怡,黄玉东,张志谦.碳纤维Y射线辐照处理对其复合材料界面性能的影响.材料工程.2000,4:26-29
    [234]马恒怡,黄玉东,张志谦.Y-射线辐照对碳纤维结构的影响.高技术通讯.2001,3:101-103
    [235]Checter R,Rodica A,Das IJ,et al.Dosimetric considerations for patients with HIP prosthesesundergoing pelvic irradiation. Report of the AAPM Radiation Therapy Committee Task Group63.Medical Physics,2003,30:1162-1182
    [236]张绍虎,吴爱东,闰冰,等.6MV与15MV X线在肺癌调强放疗中的剂量学比较.中国医学物理学杂志,2008,25(5):2833-2835
    [237]Brown GA,Firoozbakhsh K,DeCoster TA, et al. Rapid prototyping: the future of trauma surgery?J Bone Joint Surg Am,2003,85(4):49-55.
    [238]Lorensen WE, Cline HE. Marching cubes: A high resolution3D surface construction algorithm.ACM Siggraph Computer Graphics,1987,21(4):163-169
    [239]Su R,Campbell GM,Boyd SK.Establishment of an architecture-specific experimental validationapproach for finite element modeling of bone by rapid prototyping and high resolution computedtomography.Medical Engineering&Physics,2007,29(4):480-490
    [240]亓恒涛,秦维昌,刘传亚,等.CT机质量控制检测的探讨.医学影像学杂志,2006,16(9):978-981
    [241]朱晓霞,陈永清,陈龙华,等.PET/CT图像融合对骨转移瘤放射治疗肿瘤区勾画的影响.第一军医大学学报,2004,26(4):700-702
    [242]王沫楠,孙立宁.基于CT图像的组织建模与仿真方法.哈尔滨工业大学学报,2008,40(7):1071-1075
    [243]赵立新,郑立允,韩彦华,等.复合材料中三维编织碳纤维增强体的性能特点.河北建筑科技学院学报,2004,21(1):77-80
    [244]全燕鸣,叶邦彦.复合材料的切削加工表面结构与表面粗糙度.复合材料学报,2001,18(4):128-132.
    [245]孙路华,全燕鸣,钟文旺.碳纤维复合材料高速钻削力的研究.纤维复合材料,2005,22(4):30-32,38
    [246]齐锁龙,李勋,陈志同,等.碳纤维复合材料切边加工实验研究.航空精密制造技术,2010,46(4):42-45
    [247]龚清洪,林勇,夏雪梅,等.碳纤维复合材料数控加工研究.机械设计与制造,2008,12:176-178
    [248]何维军,王渊,赵福令.基于分形维数的CFRP切削加工表面三维形貌评定方法.计量学报,2009,30(4):297-301

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700