用户名: 密码: 验证码:
碳化钨颗粒/钢基表层复合材料热疲劳行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代工业的发展,越来越多的零部件需要在复合磨损工况下服役,其中激冷激热与磨损复合工况成为冶金、机械等领域研究和应用的热点。陶瓷颗粒增强钢基表层复合材料利用了金属基体良好的塑韧性和陶瓷颗粒的高硬度,表现出较好的耐磨性,但其在激冷激热等存在热冲击作用的工况下又表现出抗热疲劳性能较低的劣势,由此可见,陶瓷颗粒增强钢基表层复合材料在激冷激热工况下的热疲劳行为成为急需研究的重要课题。论文利用自制的铸渗装置成功制备了碳化钨颗粒增强钢基表层复合材料(碳化钨/钢基表层复合材料),通过组织分析、热物理性能测试、热疲劳行为观察及热力学和力学计算等,重点研究了表层复合材料组织与热物理性能间的关联、复合材料的热疲劳裂纹萌生和扩机制等内容。
     研究了碳化钨/钢基表层复合材料的组织与热物理性能(热膨胀系数、比热、热扩散系数、热导率)之间的关联。结果表明:(1)表层复合材料复合层组织由WC、W2C、Fe2W2C、Fe3W3C、Cr7C3及马氏体组成:(2)沿复合层与基材间宏观界面至复合层表面方向,碳化钨颗粒的体积分数逐渐增大,而其热膨胀系数、比热、热扩散系数、热导率却呈降低趋势;(3)随着碳化钨颗粒尺寸的增大,表层复合材料的热膨胀系数、比热、热扩散系数、热导率呈降低趋势。(4)表层复合材料的热膨胀系数曲线在630℃以下波动较小,随着碳化钨颗粒尺寸的减小,表层复合材料的热稳定性有所提高,在温度小于630℃时表现出较高的热稳定性。
     通过实验观察并结合热力学计算,对表层复合材料进行抗氧化性和热疲劳行为研究。结果表明:(1)碳化钨/钢基表层复合材料在800℃热震6次后只有暴露于表面的碳化钨颗粒发生了氧化,氧化深度小于30μm,裂纹扩展深度较小:(2)碳化钨颗粒在高温下被氧化为脆性氧化物WO3,氧化反应式为W2C+3O2-→2WO3+CO2,氧化起始温度为570℃,同时得出,随着温度的升高,抗氧化性呈降低趋势;(3)当温度低于570℃,复合材料热的热疲劳行为主要受热应力的影响,热冲击引起的循环交变应力使得热疲劳裂纹易于在宏观界面附近的增强颗粒与基体间的微观界面处萌生和扩展;(4)当温度高于570℃,氧化开始对复合材料的热疲劳行为产生影响,随着温度的升高影响逐渐增大。
     为了深入研究表层复合材料的热疲劳裂纹萌生和扩展机制,论文对表层复合材料的宏观界面、微观界面、复合层内的热应力进行了计算,结果表明:(1)建立了温度场与应力场相耦合的表层复合材料热应力计算模型:
     (2)通过该模型,获得:①在冷却过程中,宏观界面处的最大热应力为63.4MPa,远大于复合层其它位置的最大热应力(7.3MPa):②微观界面处的最大热应力为38MPa,说明在热冲击作用下,交变循环应力最大为38MPa;③验证了表层复合材料的热疲劳裂纹易于在宏观界面附近的颗粒与基体间微观界面处萌生和扩展。
With the development of modern industry, there is more components and parts applied in many industrial fields, such as metallurgy, mechanical, electricity and so on,with high temperature wear and sharp quenching. The ceramics particle reinforced surface composite have advantages not only in ductility but also toughness, modulus, hardness and so on. This composite can meet the wear-resistance requirements. It is a great candidate for replacing traditional metal materials in some wear working condition. However, there is thermal fatigue of quench heat shock in some complex wear working condition, it means that the surface composite must have thermal fatigue resistance. The cast tungsten carbide particle reinforced steel substrate surface composite was processed by vacuum suction casting infiltration method. The connection between microstructure of surface composite and thermal physical characters, mechanism of thermal fatigue crack initiation and propagation etc. was studied by microstructure analysis, thermal fatigue behavior investigation, thermal physical characters test, thermodynamics calculation and mechanical calculation.
     The connection between microstructure and thermal physical characters(thermal expansion coefficient, thermal capacity, thermal diffusion coefficient and thermal conductivity) of the surface composite was studied. The results showed:(1)The constitutes of the surface composite are WC、W2C、Fe2W2C、Fe3W3C、Cr7C3and martensite basically.(2)From the macroscopic interface between composite and substrate to surface of composite, the volume fraction of particle is increasing gradually, meanwhile, it is inversely proportion to thermal expansion coefficient, thermal capacity, thermal diffusion coefficient and thermal conductivity.(3)The thermal expansion coefficient, thermal capacity, thermal diffusion coefficient and thermal conductivity is inversely proportion to particle size of surface composite.(4) Below630℃, the thermal deformation stability of surface composite is great, and it is inversely proportion to particle size.
     The oxidizability and thermal fatigue behavior were studied by experimental observation and thermodynamic calculation.The results showed:(1)The oxidation and crack depth of surface composite is below30μm after6thermal shock cycles.(2)The particle is oxidated to WO3, the oxidation reaction is W2C+3O2→2WO3+CO2, the initial reaction temperature is570℃, the reaction rate is proportional to temperature.(3)Below570℃, the thermal fatigue behavior is influenced by thermal stress primarily, the thermal fatigue cracks are apt to initiate and propagate on the macroscopic interface.(4)Above570℃, the thermal fatigue behavior is influenced by oxidizability, the influence is enlarged with temperature increasement.
     The stress of macroscopic interface, microscopic interfaces and composite was calculated for studying the mechanism initiation and propagation thermal fatigue crack in deep. The results showed:(1)The thermal stress calculation model of surface composite is built.
     (2)the maximum stress of macroscopic interface is63.4MPa calculated by the model, it is much higher than the other areas of composite, the maximum stress of microscopic interface is38MPa.(3) The mechanism initiation and propagation of crack on macroscopic interface, the thermal fatigue cracks are apt to initiate and propagate on the macroscopic interface is testified by the calculation results.
引文
[1]李卫.钢铁耐磨材料技术进展.铸造,2006,55(11):1105-1109
    [2]李茂林.我国金属耐磨材料的发展和应用.铸造,2002,51(9):525-529
    [3]李卫.中国铸造耐磨材料的发展—中国铸造耐磨材料产业技术路线图.铸造,2012,61(9):967-983
    [4]符寒光.高速钢轧辊研究的现状及展望.钢铁,2000,35(5):67-73
    [5]Lewandowski J.J, Shazly M, Nouri A.S. Intrinsic and Extrinsic Toughening of Metallic Glasses. Scripta Materialia,2006,54:337-341
    [6]Miracle D.B. Metal Matrix Composites:from Technology to Science. Composite Science and Technology,2005,65:2526-2540
    [7]Hofmann D.C, Suh J.Y, W iest A, et al. Designing Metallic Glass Matrix Composites with High Toughness and Tensile Ductility. Nature,2008,451: 1085-U3
    [8]王东山,薛向欣,刘然.B4C/Al复合材料的研究进展及展望.材料导报,2007,21:388-390
    [9]秦蜀懿,张国定.改善颗粒增强金属基复合材料塑性和韧性的途径与机制.中国有色金属学报,2000(10):621-629
    [10]杜军,刘耀辉,于思荣.铸造混杂增强金属.基复合材料研究进展.特种铸造及有色合金,2002(6):19-22
    [11]卿华,江和甫.纤维增强金属基复合材料的发展及其在航空发动机上的应用.燃气涡轮实验与研究.14,2001(1):33-37
    [12]D.B. Gundel, D.B. Miracle. The transverse tensile behavior of SiC-fiber/Ti-6Al-4V composites 1. Experimental results. Composites Science and Technology,1998,58:1571-1581
    [13]D.B. Gundel, D.B. Miracle. The transverse tensile behavior of SiC-fiber/Ti-6Al-4V composites 2. Stress distribution and interface failure. Composites Science and Technology,1999,59:1087-1096
    [14]Wen Huang, Xu Nie, Yuanming Xia. An experimental study on the in situ strength of SiC fibre in unidirectional SiC/Al composites.Composites:Part A, 2003,34:1161-1166
    [15]王春江,王强,赫冀成.液态金属铸造法制备金属基复合材料的研究现状.材料导报,2005,19(5):53-57
    [16]赵敏海,郭面焕,冯吉才,等.外加颗粒增强表层复合材料制备方法.焊接学报,28,2007(2):108-112
    [17]曲寿江,耿林,曹国剑,等.挤压铸造法制备可变形SiCp/Al复合材料的组织与性能.复合材料学报2003,20(3):60-73
    [18]计玉珍,鲍素高.高频熔炼制备A1203陶瓷颗粒增强耐热钢基复合材料.铸造技术,2008,29(7):888-890
    [19]范景莲,徐浩翔,黄伯云,等.金属-Al2O3陶瓷基复合材料的研究现状及应用前景.粉末冶金材料科学与工程,2002,7(3):200-206
    [20]Li Wei, Chen Zhenhua, Chen Ding. Thermal fatigue behavior of Al-Si/SiCp composite synthesized by spray deposition. Journal of Alloys and Compounds 504S(2010):S522-S526
    [21]M. Schobel, W. Altendorfer, H.P. Degische. Internal stresses and voids in SiC particle reinforced aluminum composites for heat sink applications. Composites Science and Technology,71(2011):724-733
    [22]M. Yandouzi, P. Richer, B. Jodoin. SiC particulate reinforced Al-12Si alloy composite coatings produced by the pulsedgas dynamic spray process: Microstructure and characters. Surface & Coatings Technology,2009,203: 3260-3270
    [23]L. Duffy. Magnesium alloys:the light choice for aerospace. Materials World(March 1996):127-130
    [24]谭锐,唐骥.铸造法制备SiCp/Al复合材料的研究现状.铸造,2004,54(7):642-647
    [25]王春江,王强,赫冀成.液态金属铸造法制备金属基复合材料的研究现状.材料导报,19,2005(5):53-57
    [26]Logsdon W.A, Liaw P.K. Tensile fracture toughness and fatigue crack growth ratecharacters of silicon carbide wisker and particulate reinforced aluminum metal matrix composites. Eng Fracture Mech,1986,24(5):737-751
    [27]Schroder J, Kainer K.U. Magnesium-base hybride composites prepared by liquid infiltration. Mater Sci Eng,1991, A135:33-36
    [28]王武孝,袁森.铸造法制备颗粒增强金属基复合材料的研究进展.铸造技术,2001(2):42-45
    [29]郑明毅,吴昆,赵敏,等.不连续增强镁基复合材料的制备与应用.宇航材料工艺,197(6):6-10
    [30]汤文明,郑治祥,丁厚福.铬对SiCp/F e复合系统界面化学稳定性的研究.理化检验-物理分册,2001,37(7):284-287
    [31]Liu De-jian, Li Li-qun, Li Fu-quan, et al. WCp/Fe metal matrix composites produced by laser melt injection. Surface & Coatings Technology,2008,202: 1771-1777
    [32]李秀兵,刘琛,高义民.WCp增强钢基表层复合材料的两体磨粒磨损性能.铸造,2006,55(5):482-485
    [33]Zulai Li, Yehua Jiang, Rong Zhou. Dry three-body abrasive wear behavior of WC reinforced iron matrix surface composites produced by V-EPC infiltration casting process. Wear,2007,262:649-654
    [34]K. Kambakas, P. Tsakiropoulos. Solidification of high-Cr white cast iron-WC particle reinforced composites. Materials Science and Engineering:A 2005, 413-414:538-544
    [35]李秀兵,方亮,高义民,等.碳化钨颗粒增强钢基复合材料的冲蚀磨损性能研究.摩擦学学报,2007,27(1):16-19
    [36]杨明波,代兵,李晖.金属铸渗技术的研究及进展.铸造,2003,52(9):647-651
    [37]纪朝辉,张成军.消失模铸钢件表面合金化铸渗机理研究.铸造,2000,49(3):130-133
    [38]纪朝辉,魏尊杰,张成军.用铸渗工艺对消失模铸铁件进行表面合金化的研究.材料科学与工艺,2001,9(2):195-198
    [39]蒋业华,周荣.渣浆泵用WC/铁基表面复合材料的研究.铸造,2002(3):170-172
    [40]蒋业华,周荣,张玉勤,等.颗粒体积分数对WC/铁基表面复合材料抗冲蚀磨损性能的影响.铸造,2002,51(7):428-430
    [41]R. Zhou, Y.H. Jiang, D.H. Lu. The effect of volume fraction of WC particles onerosion resistance of WC reinforced iron matrix surface composites.Wear 2003,255:134.138
    [42]蒋业华,周荣,卢德宏,等.冲击角度对WC/铁基表面复合材料冲蚀磨损性能的影响.铸造,2004,53(7):521-524
    [43]K. Van Acker, D. Vanhoyweghen, R. Persoons, J. Vangrunderbeek. Influence of tungsten carbide particle size and distribution on the wear resistance of laser clad WC/Ni coatings. Wear,2005,258:194-202
    [44]梁作俭.碳化钨颗粒增强金属基复合材料磨损性能研究[硕士学位论文].西安交通大学,2000
    [45]赵敏海,郭面焕,冯吉才,等.外加颗粒增强表层复合材料制备方法.焊接学报,2007,28(2):108-112
    [46]S.W. Huang, M. Samandi, M. Brandt. Abrasive wear performance and microstructure of laser clad WC/Ni layers. Wear,2004,256:1095-1105
    [47]王东,张军.90年代铸渗工艺新进展.铸造技术,2000(3):36-38
    [48]华磊,宋月鹏,冯承明,等.铸渗法制备表面耐磨复合材料的工艺进展.现代铸铁,2002(2):25-27
    [49]袁子洲,张劲松,陈秀娟.消失模精密铸造工艺研究.特种铸造及有色合金,2003(4):46-47
    [50]王鹏,马乃恒,李险峰,等.原位合成铝基复合材料中颗粒沉降的研究.特种铸造及有色合金,2004(2):30-32
    [51]杨淑启,袁卫华,王守仁.Si3N4/Al复合材料制备及无压浸渗技术研.热加工工艺,2006,35(4):4-7
    [52]Desai V M. Effect of carbide size on the abrasion of cobalt-base powder metallurgy alloys. Wear,1984,94:89-101
    [53]Hong S I. Effect of micro structure on wear behavior of Al-Mg-Si alloy matrix-10% Al2O3 composites. Materials Science and Engineering,1999, A265:29-41
    [54]李祖来.V—EPC制备铁基表面耐磨复合材料[博士学位论文].昆明理工大学,2004
    [55]张玉勤.表面复合材料及其冲蚀磨损性能研究[硕士学位论文].昆明理工大学,2002
    [56]陈景宝.高锰钢基复合材料组织及耐磨性研究[硕士学位论文].西安交通大学,2004
    [57]隋育栋,蒋业华,李祖来,等.一种耐磨损的磨盘.中国.实用新型,ZL201120562281.1,2012年12月21日
    [58]隋育栋,蒋业华,李祖来,等.一种耐磨损的球磨机衬板,中国,实用新型,实用新型,ZL201120561879.9,2012年12月5日
    [59]隋育栋,蒋业华,李祖来,等.一种抗磨损的球磨机衬板,实用新型(授权)ZL201120561891.X,2012年12月5日
    [60]邢建东,符寒光,高义民,等.高温抗磨材料制备技术及应用.铸造技术.2007,28(11):1407-1408
    [61]K.K. Chawla. Composite Materials Science and Engineering. New York: Springer-Verlag,1987
    [62]王俊英,杨启志,林化春.金属基复合材料的进展、问题与前景展望.青岛建筑工程学院学报,1999,20(4):90-91
    [63]M.M. Stack. D. Pena. Solid particle erosion of Ni-Cr/WC metal matrix composites at elevated temperatures, construction of erosion mechanism and process control maps.Wear,1997,203-204:489-497
    [64]冯正,刘德浚,秦展琰,等.高浓度渗碳及其性能研究.热加工工艺,1994(6):11-13
    [65]许珞萍,吴晓春,邵光杰,等.4Cr5MoSiV1,8407钢的热疲劳性能.材料工程.2001(2):3-7
    [66]唐齐德.高温承压部件的热疲劳损伤及防范措施.中国锅炉压力容器安全,2003,19(6):45-48
    [67]高庆,康国政,杨川,等.高温’下短纤维增强金属基复合材料界面的微观结构和热残余应力状态研究.复合材料学报,2002,19(4):46-50
    [68]刘祥.铸造合金的热力学及物理性能.北京:机械工业出版社,1986
    [69]龚江宏.陶瓷材料断裂力学.北京:清华大学出版社,2001
    [70]牛莉莎,胡齐阳,施惠基.纤维增强铝基复合材料热残余应力细观力学模型.航空材料学报,2001,21(1):36-42
    [71]刘祥.铸造合金的热力学及物理性能.北京:机械工业出版社,1986
    [72]斯庭智,刘宁,尤显卿,等.A1203基复合陶瓷抗热震研究.硬质合金,2003,20(4):237-241
    [73]Huang Ruqing, Li Zulai, Jiang Yehua, et al. Thermal shock cracks initiation and propagation of WCp/steel substrate surface composite at 500℃.Applied Mechanics and Materials,2012,109:253-260
    [74]郭建亭.高温金属材料.科学出版社,北京,2010
    [75]夏鹏成,于金江,孙晓峰,等.2DZ40M合金的热疲劳性能.稀有金属材料与工程,2011,40(1):152-155
    [76]于金江,孙晓峰,侯贵臣,等.M951合金的热疲劳行为.钢铁研究学报,2003,15(7):179-182
    [77]何玉怀,于慧臣,郭伟彬,等.直接时效GH4169高温合金疲劳裂纹扩展性能试验.航空动力学报.2006,21(2):349-353
    [78]李友林,袁超,郭建亭.铸造镍基高温合金K445的热疲劳行为.金属学报,2006,42(10):1056-1060
    [79]K. Hussain, D.S. Wilkinson, J.D. Embury. Effect of surface finish on high temperature fatigue of a nickel based super alloy. International Journal of Fatigue,2009(31):743-750
    [80]Volkan Kovan, Joachim Hammer, Ronny Mai, et al. Thermal-mechanical fatigue behaviour and life prediction of oxide dispersion strengthened nickel-based superalloy PM1000. Materials characterization 2008(59): 1600-1606
    [81]奚正平,王蕊宁,赵永庆,等.TiC颗粒增强钛基复合材料的热变形行为研究.稀有金属材料与工程,2009,38(8):1338-1342
    [82]杨月,谢基龙.高速客车SiCp/A356铝基制动盘材料的热疲劳裂纹形成与扩展试验研究.铁道学报,2007,29(5):43-47
    [83]贺毅强,陈振华,王娜,等.SiCp/Al-Fe—V-Si复合材料组织与性能的热稳定性.中国有色金属学报,2008,18(3):433438
    [84]宋世学,艾兴,赵军,等.A12O3/TiC纳米陶瓷刀具材料的抗热震性能及断裂机理研究.硅酸盐通报,2003,43-46
    [85]闻立时.固体材料界面研究的物理基础.北京:科学出版社,2011
    [86]杨序纲.复合材料界面.北京:化学工业出版社,2010
    [87]K.N. Braszczynska, L. Litynska, A. Zyska, W. Baliga. TEM analysis of the interfaces between the components in magnesium matrix composites reinforced with SiC particles. Materials Chemistry and Physics,2003(81):326-328
    [88]刘涛,罗瑞盈,李进松,等.炭/炭复合材料的热物理性能.炭素技术,2005,24(5):28-33
    [89]何小瓦.航天材料热物理性能测试技术的发展现状.宇航计测技术,2004,24(4):20-23
    [90]修子扬,刘波,武高辉,等.可用于空间的SiCp/Al复合材料热物理性能研究.载人航天,2012,18(3):62-64
    [91]张建云,王磊,周贤良,等.高体积分数SiCp/Al复合材料的热物理性能.兵器材料科学与工程,2006,29(3):10-13
    [92]Kwangjun Euh, Suk Bong Kang. Effect of process parameters on the fabrication of Al-SiC composite sheets by atmospheric plasma spraying method. Journal of the Korean Institute of Met als and Materials,2003,41(6):342-349
    [93]Sharma S. C. Effect of albite particles on the coefficient of thermal expansion behavior of the A16061 alloy composites. Met allurgical and Materials Transactions,2000,31A(3):773-780
    [94]S. Qu, T. Siegmund, Y. Huang, et al. Hwang. A study of particle size effect and interface fracture in aluminum alloy composite via an extended conventional theory of mechanism-based strain-gradient plasticity. Composites Science and Technology,2005(65):1244-1253
    [95]S.G. Long, Y.C. Zhou. Thermal fatigue of particle reinforced metal-matrix composite induced by laser heating and mechanical load. Composites Science and Technology,2005,65:1391-1400
    [96]Li Wei, Chen Zhenhua, Chen Ding.Thermal fatigue behavior of Al-Si/SiCp composite synthesized by spray deposition. Journal of Alloys and Compounds 504S(2010):S522-S526
    [97]M. Schobel, W. Altendorfer, H.P. Degische.Internal stresses and voids in SiC particle reinforced aluminum composites for heat sink applications. Composites Science and Technology,2011,71:724-733
    [98]相华,成来飞,魏玺,等.基于因素分析的C/SiC复合材料氧化动力学模拟.硅酸盐学报,2004,32(1):1335-1340
    [99]潘牧,南策文.碳化硅(SiC)基材料的高温氧化和腐蚀.腐蚀科学与防护技术,2000,12(2):109-113
    [100]殷小伟.3D C/SiC复合材料的环境氧化行为[博士学位论文].西安:西北工业大学,2001
    [101]Cheng Laifei, Xu Yongdong, Zhang Litong, et al. Effect of carbon interlayer on oxidation behavior of C/SiC composites with a coating from room temperature to 1500℃. Mater Sci Eng A,2001, A300(1-2):219-225
    [102]Andrew J.E, Jamess D.C, Triplicane A.P. Oxidation kinetics of a continuous carbon phase in a nonreactive matrix. J Am Ceram Soc,1995,78(4):972-980
    [103]胡侨丹,罗蓬,李建国,等.电场活化烧结MoSi2-SiC复合材料的温度场有限元模拟.金属学报,2008,44(10):1253-1259
    [104]雷宝灵,易茂中,徐惠娟.C/C复合材料飞机刹车盘的三维温度场.复合材料学报,2009,26(1):113-117
    [105]陈德玲,张建武,周平.高速轮轨列车制动盘热应力有限元研究.铁道学报,2006,28(2):3943
    [106]Gao C.H., Lin X.Z. Transient temperature field analysis of a brake in a non-axisymmetric three-dimensional model. Journal of Material Processing Technology,2002,129(1/3):513-517
    [107]Choi Ji Hoon, Lee In. Finite element analysis of transient thermoelastic behaviors in disk brakes. Wear,2004,257(1/2):47-58
    [108]徐惠娟,易茂中,熊翔,等.不同基体炭结构的炭/炭复合材料在制动过程中的温度场研究.无机材料学报,2009,24(1):133-138
    [109]雷宝灵,易茂中,徐惠娟.炭/炭复合材料制动过程中温度场的仿真.中国有色金属学报,2008,18(3):377-382
    [110]X. Lu, P. Tervola, M. Viljanen.Transient analytical solution to heat conduction in composite circular cylinder. International Journal of Heat and Mass Transfer,2006,49:341-348
    [111]Lihe Qian, Toshiro Kobayashi, Hiroyuki Toda, et al. Dynamic fracture toughness of 6061Al composites reinforced with SiC particulates. Materials Science and Engineering A,2001,318:189-196
    [112]高庆,康国政,杨川,等.高温下短纤维增强金属基复合材料界而的微观结构和热残余应力状态研究.复合材料学报,2002,19(4):46-50
    [113]P. Cornetti, V. Mantic, A. Carpinteri. Finite Fracture Mechanics at elastic interfaces. International Journal of Solids and Structures,2012,49:1022-1032
    [114]R. Rodri'guez-Castro, R. C. Wetherhold, M. H. Kelestemur. Microstructure and mechanical behavior of functionally graded AlA359/SiCp composite. Materials Science and Engineering A,2002,323:445-456
    [115]Effect of bi-and trimodal size distribution on the superficial hardness of Al/SiCp composites prepared by pressureless infiltration. Powder Technology,2007, 176:66-71
    [116]牛莉莎,胡齐阳,施惠基.纤维增强铝基复合材料热残余应力细观力学模型.航空材料学报,2001,21(1):36-42
    [117]S. G. Long, Y. C. Zhou. Thermal fatigue of particle reinforced metal-matrix composite induced by laser heating and mechanical load. Composites Science and Technology,2005,65:1391-1400
    [118]Li Wei, Chen Zhenhua, Chen Ding. Thermal fatigue behavior of Al-Si/SiCp composite synthesized by spray deposition. Journal of Alloys and Compounds 504S(2010):S522-S526
    [118]M. Schobel, W. Altendorfer,H. P. Degische. Internal stresses and voids in SiC particle reinforced aluminum composites for heat sink applications. Composites Science and Technology,71(2011):724-733
    [120]秦明礼,曲选辉,何新波,等.粉末特性对AlN陶瓷致密化的影响.粉末冶金技术,2005,23(3):176-180
    [121]马双彦,王恩泽,鲁伟员,等.金刚石/铜复合材料热导率研究.热加工工艺,2008,37(4):36-38
    [122]J.A.迪安.兰氏化学手册.北京:高等教育出版社,1991:9-1-9-140
    [123]梁英教,车荫昌.无机物热力学数据手册.沈阳:东北大学出版社,1993
    [124]钱宏智,张家泉,崔立新.钢铸态热膨胀特性研究.钢铁研究学报,2011,23(3):44-49
    [125]Yefei Li, Yimin Gao, Zijian Fan, et al. First-principles study on the stability and mechanical property of eta M3W3C(M= Fe, Co, Ni) compounds. Physica B, 2010,405:1011-1017
    [126]Suetin D.V, Shein I.R, Ivanovskii A.L. Structural, electronic and magnetic characters of η carbides (Fe3W3C, Fe6W6C, Co3W3C and Co6W6C) from first principles calculations. Phys B 2008(403):2654-2661
    [127]李维钺.中外钢铁材料力学性能速查手册.北京:机械工业出版社,2006
    [128]Yefei Li, Yimin Gao, Zijian Fan, et al. Theoretical study on the stability, elasticity, hardness and electronic structures of W-C binary compounds. Journal of Alloys and Compounds,2010(502):28-37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700