用户名: 密码: 验证码:
喷射沉积铝基连续梯度复合材料的制备、致密化及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
颗粒增强铝基梯度复合材料具有密度低、比强度及比刚度高、耐磨性能优异和材料内部热应力过渡平稳等一系列优点,非常适合于制造高速制动部件和耐磨部件,在生物材料、机械工程材料、耐磨耐蚀的表面涂层以及航空航天材料等领域有广泛的应用前景。国内外对梯度复合材料的成分设计和制备技术等方面已有大量研究,但精确控制增强颗粒浓度梯度分布以及大尺寸、高性能连续梯度复合材料的制备技术仍然没有突破性进展。
     本论文通过对自动控制陶瓷颗粒输送装置的探索,发明了连续梯度复合材料的喷射沉积装置,通过对喷射沉积工艺参数的优化,制备出了SiC颗粒沿沉积坯高度方向呈连续梯度分布的圆柱锭坯、大尺寸圆盘件和环件。通过对热模压致密化工艺研究,得到了最佳热模压工艺参数;同时考察了温度、应变速率对SiCp/Al-20Si-3Cu梯度复合材料的流变应力影响,通过多阶梯形阳模结合平模致密化技术大幅度降低了压制压力,在此基础上自行研制出了超塑性致密化技术;采用此项技术对不同尺寸的圆柱锭坯和大尺寸圆盘件进行了致密化研究,检测并分析了材料的力学性能、断裂机制和强韧化机制;探讨了超塑性致密化过程中组织演变规律,分析了超塑性致密化机理,建立了Al2O3颗粒增强铝基体条带组织形成模型和超塑性致密化的孔洞演变模型。另外,研究了SiCp/Al-20Si-3Cu连续梯度复合材料的摩擦磨损性能,并对其在制动部件中的应用进行了考察。
     论文得到的主要结论如下:
     (1)自行研制出了自动控制的陶瓷颗粒输送装置,解决了喷射沉积过程中对SiC颗粒呈梯度分布的控制问题;通过对液流直径、雾化气体压力和喷射高度等工艺参数探索,得到了喷射沉积制备连续梯度复合材料最佳工艺参数。在最佳工艺下制备了SiC颗粒质量分数沿沉积坯高度方向呈030%的连续梯度分布的圆柱锭坯和呈015%的大尺寸600mm150mm圆盘件和外径达1200mm环件。对沉积坯微观组织分析表明:基体组织细小,晶粒尺寸在5μm以下;初晶Si细小、尺寸仅1~3μm;析出相为-Al2Cu和AlCuMg,细小、弥散分布在晶界或晶内。孔隙率随SiC质量分数的增加其体积分数逐渐增加;沉积坯的显微硬度随SiC含量增加而增加。
     (2)研究了SiCp/Al-20Si-3Cu连续梯度复合材料的热模压致密化工艺,通过对热模压的温度、压制压力和保压时间等工艺参数探索,得到热模压最佳工艺参数。为了降低压制压力和扩大材料在致密化过程中横向剪切流动,自行设计了多阶梯形阳模结合平阳模热压致密化工艺,此工艺致密化结果表明:在没有改变梯度复合材料组织特点前提下,该工艺可以大幅度降低压制压力,并取得了良好的致密化效果。探讨了温度和应变速率对喷射沉积SiCp/Al-20Si-3Cu连续梯度复合材料流变应力影响,分析了该材料高温高应变速率下的超塑性,并自行研制出了超塑性致密化技术。
     (3)采用超塑性致密化技术对小尺寸锭坯进行了致密化研究,通过对压制压力、应变速率等工艺参数摸索,得到了最佳超塑性致密化技术工艺参数和较好的致密化效果,在此最佳工艺条件下对大尺寸锭坯进行致密化研究,结果表明:315吨的夜压机可实现对300×140mm圆柱锭坯的致密化,630吨的液压机可实现600×150mm厚盘件的致密化,材料的致密度均在99%以上,实现了小吨位设备对大尺寸坯料的全致密化,压制压力最大可降到同等条件下普通热模压的1/8。
     (4)对超塑性致密化后的SiCp/Al-20Si-3Cu梯度复合材料的性能研究表明:材料的整体性能在300MPa以上,较沉积坯的强度提高了23倍,随梯度层中SiC含量的增加,材料的抗拉强度和屈服强度呈先增后减变化规律、伸长率呈下降的变化趋势。SiC含量为15.2%梯度层的抗拉强度达到最大值388MPa,经热处理后的抗拉强度可达430MPa。性能大幅提高是细晶强化、SiC颗粒增强相强化、沉淀相强化和良好的致密化效果综合作用结果。
     (5)对超塑性致密化后SiCp/Al-20Si-3Cu梯度复合材料的微观组织分析结果表明:超塑性致密化没有改变SiC的梯度分布特征,梯度层内SiC分布更加均匀;保持了合金基体原有晶粒细小的组织特点,-Al基体、Si颗粒及SiC颗粒三者间界面结合达到了冶金结合;-Al2Cu和AlCuMg析出相细小、弥散分布并和位错交互作用明显;喷射沉积制备和致密化加工过程中在沉积颗粒边界上形成的Al2O3薄膜经超塑性致密化后,形成了以Al2O3薄膜碎片和MgAl2O4颗粒为增强相的宽度为50100nm的铝基体条带组织;通过界面反应,此条带状组织把沉积颗粒紧紧地连接在一起,提高了材料的强度和塑性,并建立了Al2O3增强铝基体条带组织形成模型;对超塑性致密化机理进行了分析,建立了超塑性致密化的孔洞演变模型。
     (6)研究了SiCp/Al-20Si-3Cu连续梯度复合材料的摩擦磨损行为,结果表明:摩擦系数随载荷和转速的增加而减小,随SiC含量增加,摩擦系数增加,摩擦系数在0.35~0.42之间变化,对比HT250,摩擦系数变化幅度小;磨损率随载荷或转速增加呈先增后减再增变化趋势,同等条件下其磨损率为HT250的1/10。在摩擦磨损过程中,材料的机械混合层厚度随SiC含量的增加而减小,当SiC颗粒含量由2.86%~15.21%变化时,机械混合层的厚度由25μm~5μm变化。随载荷或滑动速度增加,材料的磨损机制转变顺序为:磨粒磨损→氧化磨损→剥层磨损。
Particulate-reinforced aluminum matrix gradient composites are of low density,high strength, stiffness, excellent wear properties, smooth thermal stress transitionand a series of advantages, are very suitable for high speed brake parts andwear-resistant workpieces. They are of broad application prospects in the fields ofbiomaterials,mechanical engineering materials, corrosion resistant coating aerospacematerials and etc. Many studies have been conducted on design and preparationtechnology of gradient composites at home and abroad. However, there is still nobreakthrough in precise control of gradient distribution of particles concentration andthe preparation technology of the large size and high-performance continuous gradientcomposites.
     Process parameters of the automatic control ceramic particle conveyingequipment are explored and thus the continuous gradient composite spray device isinvented. through the optimization of spray deposition process parameters, cylindricalingots, large size discs and rings are prepared successfully. The densification processof traditional hot-pressing and the best hot molding parameters are determined. At thesame time, the effects of temperature and strain rate on flow stress of theSiCp/Al-20Si-3Cu gradient composite are investigated. The densification technologyof the multi-step type mold in combination with flatdie can significantly reduce thepressing pressure. On this basis, superplastic densification technologies is developedand is used for densification for different sizes of cylindrical ingots and large-sizediscs. Moreover the mechanical properties, fracture mechanism and the tougheningmechanism of the composite are studied on microstructure evolution duringsuperplastic densification, analysis of superplasticity densification mechanism, theestablishment of the Al2O3stripe formation model and the hole evolution model ofsuperplastic densification. In addition, the friction and wear properties of theSiCp/Al-20Si-3Cu continuous gradient composite are studied and its application in thebrake parts is also previewed.
     The main conclusions are as follows:
     (1) The ceramic particle conveying equipment of automatic control is developedindependently, which can solve the control problems of SiC particles gradientdistribution in the spray-deposition ingots. Through probing into process parametersof the flow diameter, atomization air pressure and the jetting height and so on, the best process parameters are obtained in the preparation of the continuous gradientcomposites by spray-deposition technology. Cylindrical ingots of different sizes areprepared, in which the SiC particles exhibit a continuous gradient distribution alongthe height direction of deposition from0to30%. Furthermore, the600mm disc oflarge size and the ring with the outer diameter of1200mm ring were prepared, inwhich the SiC particles exhibit a continuous gradient distribution from0to15%.Microstructure analysis of the deposited preforms shows that the alloy matrix ischaracteristic of a refined microstructure, and grain size below5μm, liquidus Si sizeof only1~3μm, the precipitatious of-Al2Cu and AlCuMg. The two precipitatiousare distributed at grain boundaries or within grains. The volume fraction of the poresincreases with the gradually increasing SiC concentration, and the micro-hardness ofthe deposited preform increases with SiC concentration increasing.
     (2) The heat molding densification process of SiCp/Al-20Si-3Cu continuousgradient composite is studied. Throught exploring the process parameters ofhot-pressing temperature, pressing pressure holding time and etc., the optimumprocess parameters were obtained finally. In order to lower the pressing pressure andexpand the shear flows in horizontal direction during the densification process, thedensification technology of the multi-step type male mold combining flatdie isdesigned. The densification effect reveals that the process can significantly reduce forthe pressing pressure without changing the characteristics of graded compositeorganization, and evelate the densification effectiveness. On the other hand, theeffects of temperature and strain rate on the flow stress of the spray-depositedSiCp/Al-20Si-3Cu continuous gradient composite are studied, to analyse of thematerial superplasticity at high temperature and high strain rates, and develope to thesuperplasticity densification technology.
     (3) Superplasticity densification is adopted for studying the densificationbehavior of small ingots. The best process parameters of superplastic densification areobtained. Moreover the densification effect is very good. Under the best processparameters, the densification behavior of the large-size ingots are studied, and revealsthat the315T and630T hydraulic press machine can realize the densification of theФ300140mm cylindrical ingots and the Ф600150mm cylindrical ingotsrespectively, the density is above99%. It is possible to densify the large size ingotscompletely with the small-tonnage equipment under the same conditions. Themaximum pressure is reduced to1/8of the ordinary hot-pressing.
     (4) The properties of SiCp/Al-20Si-3Cu gradient composites after superplasticdensification are examined and the results show that the overall tensil strength is above300MPa, and is23times higher than the deposited perform. With the SiCcontent increasing, the tensile strength and yield strength of the composite increasefirstly and then decrease, while the elongation exhibits a degressive trends. Tensilestrength of the gradient layer with15.2%SiC content is up to388MPa, and it is up to430MPa after heat treatment. Property inprovement is a combination of fine-grainstrengthening, SiC particles reinforcing, precipitation hardening and gooddensification effect.
     (5) Microstructure analysis of the gradient composites after superplasticdensification show that superplasticity densification don′t change the gradientdistribution of SiC, and SiC particles are more evenly distributed, the original graincharacteristics are refined and interfacial bonding between Al substrates, Si and SiCparticles reach metallurgical combination, the precipitates of AlCuMg and-Al2Cuare small, diffuse distribution and dislocation interaction between the precipitates andAl substrates are obvious. The Al2O3films on the boundary of the sedimentaryparticles, derived from the oxide in the process of preparation and densification, aftersuperplastic densification, are formed in the stripe of50-100nm wide. By the interfacereaction, the stripes tightly connect the sedimentary particles together, and thestrength and plasticity are increased. On the basis of microstructure analysis, theformation model of the Al2O3stripe organization is established. Through the analysisof superplasticity densification mechanism, the hole evolution model ofsuperplasticity densification is established.
     (6) Friction and wear behavior of the SiCp/Al-20Si-3Cu continuous gradientcomposite are studied. The results reveal that the friction coefficient decreases withthe load and speed increasing, the friction coefficient increases with SiC contentincreasing, the friction coefficient changes between0.35~0.42, in contrast withHT250, the variation of friction coefficient is smaller. Wear rate increase with load orspeed increasing firstly, then decreases and increase lastly. Under the sameexperiment conditions, the wear rate of SiCp/Al-20Si-3Cu continuous gradientcomposite is only1/10of HT250. In the process of friction and wear, the thickness ofthe mechanical mixing layer decreases with SiC content increasing. When the contentof SiC particles changes from2.86%to15.21%, the thickness of mechanical mixedlayer decreases from25μm to5μm. With the load or the sliding speed increasing, thewear mechanisms changes from abrasive wear, oxidation wear to delamination wear.
引文
[1]单勇,谭艳.复合材料在轨道交通领域的应用,电力机车与城轨车辆,2011,34(2):9-11
    [2]苏云洪,刘秀娟,杨永志.复合材料在航空航天中的应用,工程与试验,2008,24(4):35-37
    [3] Kieback B, Neubrand A, Riedel H. Processing techniques for functionally gradedmaterials. Materials Science and Engineering A,2003,362(1-2):81-106
    [4]许富民,齐民,李守新等. SiC颗粒增强铝基梯度复合材料的制备与性能,金属学报,2002,38(9):998-1001
    [5]新野正之,平井敏雄,渡边龙三.倾斜机能材料,日本复合材料学会志,1987,13:257-264
    [6] Singer A R E. Recent Developments in the Spray Forming of Metals.International Journal of Powder Metallurgy and Powder Technology,1985,21(7):219-222
    [7]袁武华.喷射沉积轻量化材料的研制—高性能7075/SiCP复合材料8009合金板材的制备及应用研究:[博士后学位论文].长沙:湖南大学材料科学与工程学院,2005
    [8]康智涛.大尺寸多层喷射沉积6066Al/SiCp/Cr复合材料管坯的制备:[博士学位论文].长沙:中南大学材料科学与工程学院,2001
    [9]张福全.大尺寸7075/SiCP复合材料的喷射共沉积制备技术及后续加工问题研究:[博士学位论文].长沙:湖南大学材料科学与工程学院,2005
    [10] Gupta M, Mohamed F A, Lavernia E J. The Effect of Ceramic Reinforcementsduring Spray Atomization and Codeposition of Metal Matrix Composites.Metallurgical Transactions A,1992,23(3):831-850
    [11] Baskin D, Wolfenstine J, Lavernia E J. Elevated Temperature MechanicalBehavior of CoSi and Particulate Reinforced CoSi Produced by SprayAtomization and Co-deposition. Journal of Materials Research,1994,9(2):362-371
    [12] Gupta M, Juarez-Islas J, Frazier W E, et al. Microstructure, Excess SolidSolubility and Elevated-Temperature Mechanical Behavior of Spray-Atomizedand Co-Diposited Al-Ti-SiCP. Metallurgical Transactions B,1992,23(6):719-736
    [13] Perez R J, Zhang J, Gungor M N, et al. Damping Behavior of6061Al/Cr MetalMatrix Composites. Metallurgical Transactions A,1993,24(3):701-712
    [14]新野正之,平井敏雄,渡边龙三.倾斜机能材料.日本复合材料学会志,1987,13:257-264
    [15]张雷,周科朝,李志友,等.功能梯度材料的制备技术.粉末冶金材料科学与工程,2003,8(1):48-56
    [16] K. Fujita, H. Furukawa, M. Yamanaka,etal. Solar excited laser using FGMconcept for space energy network. Materials Science Forum,2003,423-425:807-812
    [17] Obata Y, Takeuchi K, Kawazoe M and Kanayama K. Design of functionallygraded wood-based board for floor heating system with higher energy effici ency.Materials Science Forum,2003,424(4):819-824
    [18]韩杰才,徐丽,王保林,等.梯度功能材料的研究进展及展望.固体火箭技术,2004,27(3):207-215
    [19]郑慧雯,茹克也木·沙吾提,等.功能梯度材料的研究进展.西南师范大学学报,2002,27(5):788-794
    [20] Reddy J N. Analysis of functionally graded plates. Int J Numer Meth Engng,2000,47:663-684
    [21] A. Mortensen and S. Suresh. Functionally Graded Metals and Metal-CeramicComposites Part I. Processing. International Materials Reviews,1995,40(6):239-265
    [22] Nai S M L, Gupta M. Synthesis and characterization of free standing, bulkAl/SiCp functionally gradient materials: effects of different stirrer geometries.Materials Research Bulletin,2003,38(11):1573-1589
    [23] Velhinho A, Sequeira P D, Martins R. X-ray tomographic imaging of Al/SiCpfunctionally graded composites fabricated by centrifugal casting. NuclearInstruments and Methods in Physics Research Section B: Beam Interactions withMaterials and Atoms,2003,200:295-302
    [24] Rodríguez-Castro R, Wetherhold R C, Kelestemur M H. Microstructure andmechanical behavior of functionally graded Al A359/SiCp composite. MaterialsScience and Engineering A,2002,323(1-2):445-456
    [25]费劲,张卫文,陈维平等.半连续铸造制备2024/3003梯度材料的研究.特种铸造及有色合金,2003,24(1):24-26
    [26] Gomes J R, Rocha L A, Crnkovic S J, et al. Friction and Wear Properties ofFunctionally Graded Aluminum Matrix Composites. Materials Science Forum,2003,423(25):91-96
    [27] Watanabe Y, Oike S. Formation mechanism of graded composition in Al-Al2Cufunctionally graded materials fabricated by a centrifugal in situ method. ActaMaterialia,2005,53(6):1631-1641
    [28] Qin X H, Han W X, Fan C G, et al. Research on distribution of SiC particles inaluminum-alloy matrix functionally graded composite tube manufactured bycentrifugal casting. Journal of Materials Science Letters,2002,21(8):665-667
    [29] Mizuno M, Abe K I, Inoue T. Processing of metal matrix composite bycentrifugal casting technique and evaluation of the elastic properties. Zairyo,1997,46(8):946-951
    [30] Sequeira P D, Watanabe Y, Fukui Y. Backward extrusion of Al-Al3Tifunctionally graded material: Volume fraction gradient and anisotropicorientation of Al3Ti platelets. Scripta Materialia,2005,53(6):687-692
    [31] Yamagiwa K, Watanabe Y, Fukui Y, et al. Novel recycling system of aluminumand iron wastes-in-situ Al-Al3Fe functionally graded material manufactured by acentrifugal method: New systems and processes in recycling and highperformance waste treatments. Materials transactions-JIM,2003,44(12):2461-2467
    [32]郭成,易树清,胡晓东,等. SiC颗粒增强铝合金基梯度复合材料的制备及其组织和性能.中国有色金属学报,1998,8(A01):123-127
    [33]许富民,齐民,李守新,等. SiC颗粒增强铝基梯度复合材料的制备与性能.金属学报,2002,38(9):998-1001
    [34]袁秦鲁. SiCp/Al复合材料及其梯度复合材料的制备与性能研究:[硕士学位论文].西安:西安理工大学材料科学与工程学院,2004
    [35] Lin C Y, McShane H B, Rawlings R D. Structure and properties of functionallygradient aluminium alloy2124/SiC composites. Materials Science andTechnology,1994,10(7):659-664
    [36] Brinkman H J, Duszczyk J, Katgerman L. In-situ formation of TiB2in a P/Maluminum matrix. Scripta Materialia,1997,37(3):293-297
    [37] Kyung M C, IK M P. Thermal Properties and Fracture Behavior ofCompositionally Graded Al-SiCpComposites. Materials Science Forum,2004,45(2):621-624
    [38]崔岩,张少卿. SiC颗粒粒度对熔铝氧化渗透合成SiCP/Al2O3-Al复合材料微观断裂机制的影响.材料工程,2000,45(6):3-6
    [39]刘小梅,刘静.短纤维增强铝硅合金梯度复合材料耐磨性能的研究.江西理工大学学报,2007,28(3):14-17
    [40]陈东风,曹志强,杨淼.高频磁场下制备表面增强自生梯度复合材料.铸造,2006,55(8):821-824
    [41] Takahashi K, Taniguchi S. Fabrication of aluminum-matrix composites locallyreinforced with SiC particles by using electromagnetic force. Keikinzoku,2005,55(10):483-488
    [42] Gupta M, Lai M O, Srivatsan T S. Synthesis and Characterization of aFree-Standing, One-Dimensional,Al-Cu/SiC-Based Functionally Graded Ma-terial. Journal of Materials Synthesis and Processing,2002,10(2):75-81
    [43] Scanlan M, Browne D J, Bates A. New casting route to novel functionallygradient light alloys. Materials Science and Engineering: A,2005,413(4):66-71
    [44] Guntner A, Sahm P R. Graded Metal Matrix Composites Produced by aMulti-Pouring Method with Controlled Mold Filling. Materials Science Forum,1999,308-311:187-192
    [45] Yang C C. Method for making graded composite bodies and bodies producedthereby.United States Patent.5549151,1996-08-27.
    [46] Dunand D C. Transformation super-plasticity in metals,alloys and composite.InChandra T,SakaiT.Proceedings of THERMEC97Warrendale:The Minerals,Metals and Material Society,1997,74(2):1831-1838.
    [47] Patankar S N, Lim C T, Tan M J. Superplastic forming of duplex stainlesssteel.Metall and Mater Trans,2000,31A:2394-2396.
    [48] Person C E. The properties of lead-Tin and Bismuth-Tin. J Inst Metals,1934,54(1):111-124
    [49]季霍诺夫.金属和合金的超塑性效应.刘春林译.北京:科学出版社,1983,156-159
    [50] Underfood E E. Review of superplasticity. J Metals,1962,14(3):414-419
    [51] Backofen W A, Turner I R, Avery D H. superplasticity in an Al-Zn Alloy. TransASM,1964,57(6):980-990
    [52]王桂松,张杰,耿林等.金属基复合材料的高速超塑性.宇航材料工艺,2001(2):13-18
    [53] Schuh C, Dunand D C. Transformation superplasiticity of super a-titaniumaluminide. Acta Mater,1998,46(6):5663—5675
    [54]张凯锋,王长丽,于彦东.1420AI-Li合金的超塑特性及微成形.金属成形工艺,2003,21(1):11-14
    [55]崔忠圻.粉末冶金法生产SiCp/MR64复合材料及超塑性研究.材料工程,1993,(1):8-11
    [56]韩秉强.金属基复合材料及其超塑性技术的发展.金属成型工艺,1994,12(4):184-189
    [57]崔忠圻,王中.高应变速率超塑性研究进展,航天工艺,1993,12(3):1-8.
    [58] Higashi K. superplastic behavior in a Mechanically Alloyed AluminumComposite reinforced with SiC particulates. Scripta Metall et Mat,1992,26(2):185-190
    [59] Nieh T G, Henshall C A, Wadsworth J. Superplasticity at High Strain Rates in aSiC Wisker Rainforced Al Alloy. Scripta Metall1984,18(12):1405-1408
    [60] Cadek J, Suster V. Comment on―Steady State Creep behavior of Silicon CabideReiforced Aluminum Composites‖. Scripta Metall et Mat,1994,30(2):277-282
    [61] Mrshra R S, Mukherjee A K. On Superplasticity in Silicon Cabide ReiforcedAluminum Composites‖. Scripta Metall et Mat,1991,25(2):271-275
    [62] Kim H Y, Hong S H. High Temperature Deformation Behavior of20vol.%SiCw/2024Al metal Matrix Composite. Scripta Metall et Mat,1994,30(3):297-302
    [63]李泽林,唐才荣.铝基复合材料超塑性变形机理研究进展.现代科技新进展.西北工业大学出版社,1994,12(4):478-481
    [64] Nie T G, Wadsworth J, Lmal T. A Rheological View of High-Strain-RateSuperplasticity in Alloys and Metal-Matrix Composite. Scripta Metall et Mat,1992,26(5):703-708
    [65] Kim H Y, Hong S H. High Temperature Deformation Behavior of20vol.%SiCw/2024Al Metal Matrix Composite. Scripta Metall et Mat,1994,30(3):297-302
    [66]马福康.等静压技术.第l版.北京:冶金工业出版社,1991,25-27
    [67] H A Kuhn, B L Ferguson, O D Simith. Pseudo·HIP using conventional presses,Metal Powder Report,1983,38(6):31-32
    [68] B L Ferguson. Emerging alternatives to hot isostatic pressing. Int. J. PowderMetallurgy&Powder Technology,1985,21(3):201-218
    [69]柏振海,黎文献,王日初.喷射沉积SiCP/Al复合材料及6066铝合金热挤压工艺的研究.铝加工,2003,150(3):27-30
    [70]熊柏青,朱宝宏,张永安,等.喷射成形Al-Fe-V-Si系耐热铝合金的制备工艺和性能.中国有色金属学报,2002,12(2):250-254
    [71] Park J J. Constitutive relations to predict plastic deformations of porous metalsin compaction. International Journal of Mechanical Sciences,1995,37(7):709-719
    [72]詹美艳.喷射沉积材料压缩和轧制变形规律研究:[博士学位论文].长沙:湖南大学材料科学与工程学院,2005
    [73]宋旼,肖代红.锻造对Al-Fe-V-Si合金力学性能与显微组织的影响.稀有金属材料与工程,2007,36(A03):208-210
    [74]肖于德,谭敦强,黎文献,等.快速凝固AlFeX耐热铝合金喷射沉积坯锻造成型工艺试验研究.材料科学与工艺,2006,14(5):519-523
    [75]孙有平,严红革,陈振华,等.楔压加工对SiCP/7090铝基复合材料的影响.特种铸造及有色合金,2008,28(1):1-3
    [76]肖于德,吴永玉,黎文献,等.旋压加工对喷射沉积Al-8.5Fe-1.3V-1.7Si合金挤压管组织和性能的影响.中南大学学报,2005,36(3):358-363
    [77]温诗铸.摩擦学原理.第一版.北京:清华大学出版社,1990,372-387
    [78] Ernest R, Friction and Wear of Materials. Wiley, New York,1995
    [79] Archard J F. Contact and Rubbing of Flat Surface. Journal of Applied Physics,1953,24:981-988
    [80] Suh N P. The delamination theory of wear. Wear,1973,25:111-124
    [81] Jahanmir S, Suh N P. Mechanics of subsurface void nucleation in delaminationwear. Wear,1977,44:17-38
    [82] Saka N, Pamies-Teixeira J J, Suh N P. Wear of two-phase metals. Wear,1977,44:77-86
    [83] Jiang J, Stott F H, Stack M M. A matgematical model for sliding wear of metalsat elevated temperatures. Wear,1995,181-183:20-31
    [84] Heilmann P, Don J, Sun T C, Rigney D A, Glaeser W A. Sliding wear andtransfer. Wear,1983,91:171-190
    [85]阎久林,赵宇光,佟金,等. ZG25Mn2ZG75Mnl3基梯度耐磨表面及其耐磨性.中国机械工程,2000,11(8):949-951
    [86]宁莉萍,王齐华,杨丽君,等.锡青铜梯度自润滑复合材料的摩擦学性能.摩擦学学报,2004,1(24):74-78
    [87] Nussbam A I. New application for aluminum-based metal matrix composites.Light Metal Age,1997,2:54-58
    [88] Vieira A C, Sequeira P D, Gomes J R, etal. Dry sliding wear of Al alloy/SiCpfunctionally graded composites: Influence of processing conditions. Wear,2009,267:585-592
    [89]赵涛,陈秋龙,蔡勋,等.铝硅合金表面激光Cr/WC梯度层组织及抗微动磨损性能研究.金属热处理,2001,3:30-32
    [90]于思荣,任露泉,佟金,等.SiCp/Al-Si合金梯度材料的磨损特性.摩擦学学报,2001,21(2):151-153
    [91]杨涤心,刘亚民.离心铸造Al-Si-Ti合金梯度功能材料的摩擦学特性.摩擦学学报,1997,17(3):214-219
    [92]罗虹,张宝生,朱景川,等.离心铸造SiCp/A356功能梯度材料的组织结构与耐磨性.材料科学与工艺,1997,5(2):76-79
    [93]柏振海.6066Al/SiCP复合材料弹性模量内耗及加工制备的研究:[博士学位论文].长沙:中南大学材料科学与工程学院,2006
    [94]秦蜀懿,张国定.高强度高韧性铝合金基复合材料的制备和断裂机制,金属学报,2000,36(3):326-328
    [95]李明伟.铸造法制备Al-Si/SiCp复合材料缺陷分析.轻金属.2011,10(6):632-635
    [96] Velhinho A, Sequeira P D, Martins R, et al. X-ray tomographic imaging ofAl/SiCp functionally graded composites fabricated by centrifugal casting.Nuclear Instruments and Methods in Physics Research Section B: BeamInteractions with Materials and Atoms,2003,10(2):295-302
    [97] Kyung M C, II D C, IK M P. Thermal Properties and Fracture Behavior ofCompositionally Graded Al-SiCpComposites. Materials Science Forum,2004,449-452:621-624
    [98]贺毅强,陈振华,王娜,等.SiCP/Al-Fe-V-Si复合材料组织与性能的热稳定性,中国有色金属学报,2005,5(4):66-69
    [99]陈振华,黄培云,蒋向阳,等.多层喷射沉积规律.中国有色金属学报,1995,5(4):70-72
    [100]王保林,韩杰才,杜善义.金属基底/功能梯度涂层结构的动态热应力分析及结构优化.航空学报,2000,21(3):286-288.
    [101] A. Kawasaki, H. Watanabe. Microstructure designing and fabrication ofdisk-shaped FGM by powder met allergy. Journal of Japan Society Powder Metallergy,1990,37(2):76-81
    [102] Lioyd D J. Particle reinforced aluminum and magnesium matrix composites.
    [103] International Materials Reviews,1994,39(1):1-23
    [104]赵松,史景利,魏兴海,等.沉积温度对碳芯SiC纤维微观结构的影响.宇航材料工艺.2011,41(4)
    [105]陈华辉,邓海金,李明,等,著.现代复合材料.北京:中国物资出版社,1998,50-58
    [106]崔岩,张磊,赵会友. Ti合金与SiCp/Al复合材料在无压浸渗同步复合过程中的相容性.航空材料学报.2009,29(6):1005-1010
    [107] P. Bassani, E. Capello, D. Colombo, B. Previtali, etal. Composites Part A2007,38(2):1089–1098.
    [108] F Wang, B Yang, X J. Duan, etal. J Mater Process.Technol.2003,137(9):191–194.
    [109]魏圣明,王日初,毕豫.喷射沉积SiCp/6066Al复合材料的组织性能增强颗粒捕获机制.轻金属,2005,24(10):63-63
    [110] Mathur P, Apelian D, Lawley A. Fundamental of spray deposition via Ospreyprocessing. Powder Metallurgy,1991,34(2):109-111
    [111]贺毅强.喷射沉积SiCP/Al-Fe-V-Si复合材料热加工工艺组织及性能的研究,[博士学位论文],长沙,湖南大学,2008.
    [112]詹美燕,陈振华.喷射沉积多孔材料的轧制变形理论,材料研究学报,2004,18(6):661-667
    [113] Lindroos V K, Tolvitie M J. Recent advances in metal matri composites.J.Mater. Process. Tech.,53:273-284
    [114]腾杰.高速列车用铝基复合材料制动盘及其闸片的制备摩擦磨损性能及机理研究:[博士学位论文].长沙:湖南大学,2005
    [115]吉喆,席锦会,王延庆.热加工后SiC颗粒的分布对喷射沉积7075/SiCp复合材料性能的影响,粉末冶金技术,2009,27(4):268-272
    [116] Majagi S J. Microstructure Design by Solidification Processing, TMS,Warrendale, Pennsylvania,1992:12(4):139-141
    [117] Rajan T P D, Pillai R M, Pai B C. Reinforcement coatings and interfaces inaluminium metal matrix composites. Journal of materials Science,1998,33(14):3491-3503
    [118] Lee J-C, Byun J-Y, Oh C-S, et al. Effect of various processing methods on theinterfacial reactions in SiCp/2024Al composites. Acta Materialia,1997,45(12):5303-5315
    [119]周健儿,张小珍. SiC陶瓷表面高温耐碱腐蚀Ca0.6Mg0.4Zr4(PO4)6涂层的制备.稀有金属材料与工程,2009,38(2):126-131
    [120] Thanh L N, Suéry M. Influence of oxide coating on chemical stability of SiCparticles in liquid aluminium. Scripta Metallurgica et Materialia,1991,25(12):2781-2786
    [121]王文龙,吴军华,张国定等.铝基复合材料的摩擦磨损性能.金属学报,1998,34(11):1178-1182
    [122] Shaw M L, Tsang P H S,Rhee S K.Study of the friction and wear behavior ofaluminum composites sliding against polymer composites. Wear of Materials,International Conference On Wear of Materials,1991,67-175
    [123]韩亚利,刘劲松,张福全. SiC颗粒增强铝基复合材料薄板轧制工艺研究.锻压技术,2008,33(5):68-71
    [124] R. Arpón, J.M. Molina, R.A. Saravanan, J. Narciso, Thermal expansionbehavior of aluminum/SiC composites with bimodal particle distributions. ActaMaterialia,2003,51(11):3145-3156
    [125]冯湘.准高速列车制动盘材料性能的研究:[硕士学位论文],西安,西南交通大学,2007
    [126] Clyne T W, Withers P J. An introduction to metal matrix composites.Cambridge:Cambridge University Press,1993,10-20
    [127] Wirth D X. Improving the Performance of Disc Brakes on High—speed RailVehicles with a Novel type of Brake Pad, ISOBAR. RTR,1998(1):24-29.
    [128] M D Sumption, R M Scanlan, E W Collings. AC loss properties of some Bi:2212/Ag Rutherford cables and a comparison with those of cables wound withNbTi and Nb3Sn. Cryogenics,1998,38(12):1225-1232
    [129] R. Rodr g uez-Castro, R.C. Wetherhold, M.H. Kelestemur. Microstructure andmechanical behavior of functionally graded Al A359/SiCp composite.Materials Science and Engineering A,2002,323(1-2):445-456
    [130] Damani R J, Rube a D, Danze R. Fracture toughness, strength and thermalshock behaviour of bulk plasma sprayed alumina-effects of heat treatment,Journal of the European Ceramic Society,2000,20(10):1439-1452
    [131] Bindumadhavan P N, Chia T K, Chandrasekaran M. Effect of particle-porosityclusters on tribological behavior of cast aluminum alloy A356-SiCp metalmatrix composites. Materials Science and Engineering: A,2001,315(2):217-226
    [132] Li Y, Ramesh K T, Chin E S C. Viscoplastic deformations and compressivedamage in an A359/SiCpmetal–matrix composite. Acta Materialia,2000,48(7):1563-1573
    [133]陈水先,张辉,王战锋.压制方式对喷射沉积5A06铝合金变形与致密化的影响,材料热处理技术,2009,38(14):28-30
    [134]刘鹏飞.大尺寸喷射沉积Al-20%Si/SiCP环件楔压致密化工艺的研究:[硕士学位论文].长沙:湖南大学,2006.
    [135] Da Silva M G, Ramesh K T. The rate-dependent deformation and localization offully dense and porous Ti-6Al-4V. Materials Science and Engineering,1997,A232:11-22
    [136]周雪峰,刘昌明,朱新才等.碳化硅颗粒增强铝基复合材料的制备及半固态挤压成形技术的研究,重庆科技学院学报,2008,8(2):42-45
    [137]王锋杨滨崔华,等.喷射沉积Al-20Si-5Fe-3Cu-1Mg合金的微观组织与力学性能,北京科技大学学报,2000,22(4):325-328
    [138]腾杰.高速列车崩铝基复合材料制动盘及其闸片的制备摩擦磨损性能及机理研究:[博士学位论文].长沙:湖南大学,2005.
    [139]杨寿智.喷射沉积7075/SiCP复合材料压缩变形规律和锻造工艺研究:[硕士学位论文].长沙:湖南大学材料科学与工程学院,2005
    [140]陈振华.多层喷射沉积技术及应用,湖南大学出版社,2003,263-302
    [141]詹美燕,匡勇,周明,等.多孔金属及合金成形过程中的致密化与变形理论研究,稀有金属与硬质合金,2002,30(4):40-47
    [142]杨寿智,杨忠旺,颜亮,等.喷射沉积7075/SiCP复合材料的压缩变形和断裂规律研究.热加工工艺,2007,36(10):30-34
    [143]吴诗惇.金属超塑性变形理论,国际工业出版社,1997,11-32
    [144] Charit I, Mishra R S. Low temperature superplasticity in a friction-stir-processed ultrafine grained Al–Zn–Mg–Sc alloy. Acta Materialia,2005,53(15):4211-4223
    [145]王桂松,张杰,耿林等.金属基复合材料的高速超塑性.宇航材料工艺,2001(2):14-17
    [146]许晓静,张荻,施忠良等.挤压铸造铝基复合材料的高应变速率超塑性.中国有色金属学报,1999,9(2):231-234.
    [147] Romero J C, Arsenault R J. Anomalous penetration of Al into SiC[J]. ActaMetallurgicaet Materialia,1995,43(2):849-857
    [148]李明伟,韩建民.基体中Si含量对AI-Si/SiCp复合材料界面结合响,2008,37(9):38-41
    [149]隋贤栋,罗承萍,欧阳柳章等. SiCp/Al-Si复合材料中SiC/Si的晶体学位向关系,材料研究学报,2000,14(1):168-171
    [150] Cao L, Geng L, Yao C K, et al. Interface in silicon carbide whisker reinforcedaluminum composites[J]. Scripta Metallurgica,1989,23(2):227-230
    [151] Ren S B, He X B, Qu X H, et al. Effect of Mg and Si in the aluminum on thethermo-mechanical properties of pressureless infiltrated SiCp/Al composites.Composites Science and Technology.2007,67(2):2103–2113
    [152] Schultz B F, Ferguson J B, Rohatgi P K. Microstructure and hardness of Al2O3nanoparticle reinforced Al–Mg composites fabricated by reactive wetting andstir mixing. Materials Science and Engineering A,2011,530:87–97
    [153]李斗星,周朝霞.通过基体合金化制备界面相容的A120ap/A1颗粒增强铝基复合材料,金属学报,2002,38(6):602-608
    [154] Bassani P, Capello E, Colombo D, et al. Composites Part A38(2007)1089-1098
    [155]程羽,郭生武,陈金德等.热挤压对颗粒增强金属基复合材料组织和性能的影响,兵嚣材料科学与工程,2000,23(2):32-35
    [156] Wang F, Yang B, Duan X J. Mater. Process. Technol.137(2003)191-194
    [157]洪永先等.铝合金及加工手册,冶金工业出版社,1996:333-335
    [158] Rodríguez-Castro R, Wetherhold R C, Kelestemur M H. Microstructure andmechanical behavior of functionally graded Al A359/SiCp composite.Materials Science and Engineering A,2002,323(1-2):445-456
    [159]龚艳丽.喷射沉积多孔材料陶粒轧制工艺的研究:[硕士学位论文].长沙:湖南大学,2007
    [160]陈飞凤.喷射沉积坯料外框限制轧制工艺及变形规律研究:[硕士学位论文].长沙:湖南大学,2007
    [161] Friend C M.Carbon-oxygen bond strength as a control of reaction kinetics:Phenol on Mo(110)Mater Sci Technol.1989,3(1):163-175.
    [162]何梅琼. SiC颗粒强化铝基复合材料及其断裂韧性.铝加工,1998,21(2):55-58
    [163]宋旼,李侠,陈康华.颗粒增强铝基复合材料断裂韧性与拉伸延性的解析模型.材料科学与工程学报,2007,25(5):690-694
    [164]覃继宁,张荻,张国定,等.颗粒增强金属基复合材料的断裂韧性有限元分析.复合材料的现状与发展,2000,754-758.
    [165] Rodríguez-Castro R, Wetherhold R C, Kelestemur M H. Microstructure andmechanical behavior of functionally graded Al A359/SiCp composite. Ma-terials Science and Engineering A,2002,323(1-2):445-456.
    [166] Xu Q, Hayes R W, Hunt W H, et al. Mechanical properties and fracturebehavior of layered6061/SiCp composites produced by spray atomization andco-deposition. Acta Materialia,1998,47(1):43-53
    [167]贺春林,才庆魁. SiCp/Al基复合材料的结构力学与腐蚀性能,东北大学出版社,2008:69-72
    [168]罗兵辉,谢偌卿.铁含量对Al-Fe-V-Si合金微观组织及内耗性能的影响.中国有色金属学报,2001,11(1):51-54.
    [169]贺毅强,陈振华,王娜,等. SiCp/Al-Fe-V-Si复合材料组织与性能的热稳定性.中国有色金属学报,2008,18(3):433-437
    [170]康福伟,司红丽,曹福洋等.喷射沉积高硅铝合金的显微组织研究,哈尔滨理工大学学报,2009,14(3):107-109
    [171]王锋杨滨崔华等.喷射沉积Al-20Si-5Fe-3Cu-1Mg合金的微观组织与力学性能,北京科技大学学报,2000,22(4):325-328
    [172]时海芳,袁晓光,刁晓刚等.喷射沉积AI-17Si-5Fe-2Mn-2Ni-3.5Cu-1Mg-1V合金的组织及性能,中国有色金属学报,2006,17(5):710-712
    [173]康福伟,司红丽,曹福洋等.喷射沉积高硅铝合金的显微组织研究,哈尔滨理工大学学报,2009,14(3):107-109
    [174] Suresh S, Christman T, Sugimura Y. Accelerated aging in cast Al alloy-SiCparticulate composites. Scripta Metallurgica,1989,23(9):1599-1602
    [175]洪永先等.铝合金及加工手册,冶金工业出版社,1996:334-336
    [176]王锋,杨滨,崔华,等.喷射沉积Al-20Si-5Fe-3Cu-1Mg合金的微观组织与力学性能,北京科技大学学报,2000,22(4):325-327
    [177]杨涤心,刘亚民.离心铸造Al-Si-Ti合金梯度功能材料的摩擦学特性.摩擦学学报,1997,17(3):214-219
    [178] Holt J, Koizumi M, Hirai T, Munir Z. Functionally Gradient Materials, CeramicTrans., American Ceramic Soc., Westerville, OH,1992:236-239
    [179] Velhinho A, Botas J D, Ariza E, Gomes J R, Rocha L A. Tribocorrosion studiesin centrifugally cast Al-Matrix SiCp-reinforced functionally graded composites,Mater. Sci. Forum,2004,87(1):455-456
    [180] Lee S W, Jang Y H. Effect of functionally graded material on frictionallyexcited thermoplastic instability,Wear2009,26(6):139-146
    [181]谢壮德,沈平,董寅生.快速凝固铝硅合金材料及其在汽车中的应用.材料科学与工程,1999,17(4):101-104
    [182] Zhang S L, Zhao Y T, Chen G, Cheng X N, Huo X Y. Fabrication and drysliding wear behavior of in situ Al-K2ZrF6-KBF4composites reinforced byAl3Zr and ZrB2particles. Journal of Alloys and Compounds,2008,450(2):185-192
    [183] LEE C S, KIM Y H, HAN K S, LIN T. Wear behavior of aluminum matrixcomposite materials. Journal of Materials Science,1992,27:793-800.
    [184]张建新,高爱华. Si含量对6063铝合金组织性能的影响.材料热处理学报,2008,29(5):73-75
    [185] Pramila B N, Biswas S K. Characterization of dry sliding wear of Al-Si alloys.Wear,1987,120:61-74
    [186]张建新,高爱华. Si含量对6063铝合金组织性能的影响.材料热处理学报,2008,29(5):73-75.
    [187]戈晓岚,许晓静,蔡兰,等. SiCp含量和尺寸对Al基复合材料摩擦学特性的影响.中国有色金属学报,2005,15(3):459-461
    [188] Pramila B N, Biswas S K. Characterization of dry sliding wear of Al-Si alloys.Wear,1987,120:61-74
    [189]吕一中,王宝顺,崔岩,等. SiCp/Al复合材料-GCrl5钢干摩擦磨损行为研究.航空材料学报,2008,28(3):87-91.
    [190] Reddy S A, Pramila B N, Murthy K S S, Biswas S K. Wear and seizure ofbinary Al-Si alloys. Wear,1994,171:115-127
    [191]罗虹,张宝生,朱景川.离心铸造SiCp/A356功能梯度材料的组织结构与耐磨性.材料科学与工艺,1997,5(2):76-79
    [192] B. Venkataraman G. Sundararajan. The sliding wear behavior of Al-SiCpartic-ulate composites-Ⅱ.The characterization of subsurface deformation andcorrelation with wear behavior. Acta. Metall.1996,44(2):461-473
    [193] Lee C S, Kim Y H, Han K S, etal. Wear behavior of aluminum matrixcomposite materials. Journal of Materials Science,1992,27:793-800
    [194] A. R. Rosenfield, A shear instability model of sliding wear. Wear,1987,11(6):319-328
    [195] A. C. Vieira, P. D. Sequeira, J. R. Gomes, etal. Dry sliding wear of Alalloy/SiCp functionally graded composites: Influence of processing conditions.Wear2009,26(7):585–592
    [196] A. Daoud, M. T. Abou EI-khair. Wear and friction behavior of sand cast brakerotor made of A359-20vol%SiC particle composites sliding against auto-mobile friction material. Tribol. Int,2010,43(5):544–553
    [197] F. Wang, Y. J. Ma, Z. Y. Zhang, X. H. Cui, etal. A comparison of the slidingwear behavior of a hypereutectic Al–Si alloy prepared by spray-deposition andconventional casting methods. Wear2004,25(6):342–345
    [198] Barber J R, Beamond T W. Implications of thermo elastic instability in diskbrakes. ASME Journal of tribology,1985,107:206-210
    [199] HARTSOCK D L, FASH J W. Effect of pad/caliper stiffness,pad thickness andpad length on thermo elastic instability in disk brakes. ASME Journal o ftribology,2000,122:511-518
    [200] Szu Y Y, Hitoshi I, Keiichiro T, Young T C, etal. Temperature dependence ofsliding wear behavior in SiC whisker or SiC particulate reinforced6061aluminum alloy composite.Wear,1997,213:21-28
    [201] Martinez M A, Martin A, Lorca J. Wear of Al-Si alloy and Al-Si/SiCcomposites at ambient and elevated temperatures. Scripta Metall Mater,1993,28:207-212
    [202] Deuis R L, Subramanian C, Yellup J M. Dry sliding wear of aluminiumcomposites-A reciew.Composites Science and Technology,1997,57:415-435
    [203]滕杰,傅定发,袁武华.喷射沉积雾化机理的研究进展,湖南冶金,2003,31(4):1-6
    [204]陈跃,沈百令,张永振等人.铸铁刹车盘/毂材料摩擦磨损特性研究,西安交通大学学报,2000,34(5):80-83

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700