用户名: 密码: 验证码:
塔里木河上游荒漠河岸林植物群落动态与优势种群生态特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱区水分制约着物种的形成、进化、演替和分布。以塔里木河上游荒漠河岸林植物群落为研究对象,通过样地调查与定位监测及室内分析,综合应用数量生态学、生态位理论、生物统计学与地统计学从植被生态学角度分析并探讨上游荒漠河岸林的植物区系、群落结构与空间格局、种间联结性及物种多样性、种群生态位、群落排序、群落动态的生态过程与演化机制、群落结构稳定的维持机制与优势种群保护措施。主要研究结果如下:
     1、塔里木河上游荒漠河岸林植物群落结构与物种组成简单,分层明显;区系地理成分以温带成分为主,物种多样性低、以矮小型高位芽植物占优势,以胡杨、灰胡杨与柽柳为群落建群种,物种组成与分布差异是是植物长期适应干旱荒漠环境的演化结果。分布格局以河流为中心向外依次形成郁闭度与年龄结构明显不同的林分与群落类型。物种分布极不均匀和高度的空间异质性,群落不稳定、植被发生分化和演替的趋势。
     2、上游荒漠河岸林群落结构与数量特征沿地下水位梯度递减,优势种衰弱,生活型功能群组成与植物水分生态功能群改变。植被盖度受损是在草本植物受损开始。退化过程中优势种的优势地位没有变化,植被稀疏化、留存物种的早生化是塔里木河上游植物群落退化的明显特征。植被密度、盖度与优势种群冠幅可作为地下水位变化的直观指标。
     3、上游荒漠河岸林群落主要物种间生态位重叠较大,负关联显著,种间竞争排斥导致群落组织结构水平低并限制群落物种共存。优势种对荒漠干旱环境具有较宽的生态幅与资源竞争利用能力,这是其成为群落优势种和分布较广的原因。群落相异性与生境异质性增大,群落多样性受损于草本层多样性。群落多样性受损的地下水位为4.0m,临界地下水位为5.5m。水分成为物种生存竞争的关键资源和驱动群落逆行演替、种群衰退的主要动力。
     4、研究荒漠河岸林乔木种间竞争的最佳邻体干扰范围为6m和荒漠河岸林空间分布的格局规模大小为5m×5m及优势种群在胸径达到20cm之前进行适当的人工疏伐竞争是导致群落结构、空间格局动态及分异格局形成的原因之一。
     5、上游荒漠河岸林土壤水分主要来源于河水入渗与浅层地下水的上升,其变异主要受结构性因素影响,空间上呈条带状格局,从北→南呈逐渐递减的分异规律。土壤有机质、全量与速效养分(N、P、K)较低,土壤变粗沙化,结构质地变劣,土壤生态功能减弱。土壤盐分表聚明显,地下水化学类型为Ca2+-Mg2+-Cl-型水为主。土壤水分与有机质明显影响植被盖度、物种多样性。土壤水分对植物群落的影响首先是减少了荒漠植物种的丰富度,进而威胁到种群规模,最终导致植被盖度下降。
     6、乔—灌—草群落阶段是群落演化的初始阶段,群落与环境退化过程表现为草本退化期、灌木退化期、乔木退化期。地下水位是所有环境因子中对植物群落分布起决定性作用的因子,其次为土壤水分与有机质。
     7、塔里木河上游中、下段胡杨种群结构为增长型,灰胡杨种群结构为衰退型,随河流走向种群逐渐消失。种群自疏指数接近-3/2,均为前期薄弱、后期衰退的濒危物种,灰胡杨种群衰退速度大于胡杨,未来种群将加速衰退。种群空间格局随发育进程从幼树→大树总体上是从集群→随机分布,显示出扩散的趋势,其是物种竞争和立地条件相互作用的结果。未来保持适当的人工辅助恢复措施和加强保护现有植株及其生境是保持优势种群自然更新和进行种群恢复的关键。
     8、提出半致死地下水位(GDW5。)作为群落退化的指标。上游荒漠河岸林维持较高物种多样性和植被正常生长的合理生态水位<4m,植被明显受损和群落退化的临界地下位为5.5m。保持合理的生态水位则是维持荒漠河岸林生态系统稳定的有效途径。
Water is an important factor limiting the speciation, evolution, succession and distribution in arid areas.The plant community of desert riparian forest in the upper reaches of Tarim River as the research object,3sections,4sample strips and permanent large-scale plots were be established with field investigation, long-term monitoring, and soil chemical analysis. The flora, community structure and spatial pattern, interspecific association, biodiversity, ecological niche, gradient alalysis, ecological process and successive mechanism of desert riparian forest were studied and maintenance mechanism of community structure stability and protection measures of dominant population were discussed. The research was based on the theory and methods in floristic geography, quantitative ecology, mathematics statistics, geostatistics and ecological niche theory.The main obtained results are as follows:
     1The plant community structure and species composition were simple and stratification was obvious. The flora had an overwhelming number of temperate elements and life form was dominated by dwarf, small phaeneraphyte. P.euphratica, P.pruinosa and Tamarix ramosissima were constructive species, the species composition and distribution difference were the evolution result of plants adapting to the dry desert environment for a long time. Community distribution formed different forest stand and community types along the river center to the outside with different canopy density and age structures. Species distribution randomness and high spatial heterogeneity showed community was not stable and vegetation happened succession.
     2Community quantitative feature decreased obviously along the gradients of groundwater levels and dominant populations declined, life form functional group composition and plant water ecological function changed. The decrease of vegetation coverage was due to decline of herbaceous coverage. Dominant species retained its dominant position in the process of degradation. Degradation order was herb→shrub→woody and surviving species with strongly drough-enduring ability and spatseness was obvious feature. Vegetation density, coverage and crown width of dominant species could be as indicator of groundwater change.
     3The main species had higher niche overlaps and significant negative association, interspecific competition and repulsion leaded to the low level of organization structure and limited the species coexistence. Dominant species had wide ecological amplitude and competition ability for resources utilization to low water and nutrient soil, this was the cause for wide distribution. Community dissimilarity and habitat heterogeneity expanded, the decrease of species diversity was due to decline of herbaceous diversity. Degradation of species diversity happened at the4.0m and threshold at5.5m of groundwater depths. Groundwater level decrease was the main force to drive community succession, population decline and restrict population regeneration.
     4Optimal competition range of objective tree was six meters in woody and pattern scale was5mx5m in desert plant community, and artificial thinning should be applied DBH<20cm of dominant population. Interspecific competition was the one of force to drive dynamic of spatial pattern and formation of differentiation pattern of dominant population.
     5The soil water mainly came from runoff infiltration and the rise of shallow groundwater, and its variation was mainly affected by structural factors. Spatial distribution of soil water content was banded structure and decreased gradually from north to south direct. Soil organic matter and total amount of nutrient were low and soil texture turned worse and soil coarsen and ecological function of soil decreased. Soil salt accumulated on surface soil and hydrochemistry type of groundwater were dominated by Ca2+-Mg2+-Cl-.The soil water content and organic matter affect obviously vegetation coverage, species diversity. Soil water content decreased the species abundance of desert plant, further decreased population size, eventually led to decrease of vegetation coverage.
     6The structure of woody, shrub and herb was the initial stage of community succession. The desert community degraded with the order:herb stage, shrub stage and woody stage.The groundwater level was the key factor of all environmental factor to affect the distribution pattern of plant community, secondy was soil water content and organic matter.
     7Structure of P.euphratica population were expanding type in middle and low sections and P.pruinosa were declining types in the upper reaches of Tarim River, it tended to decline and die out gradually along the river. The value of self-thinning of populations were close to-3/2and they were endangered plant. P.pruinosa had higher degradation rate than P.euphratica, and analysis of time sequence prediction indicated dominant population declined fastly in the future. The distribution patterns of dominant population changed from clumped to random pattern during development stage, appearing diffusion trend. This result was the interaction between competition and habitat. Protection of existing living trees and their habitats are important to the sustainable development of dominant population in the upper reaches of the Tarim River.
     8The half lethal underground water level (GDW50) was as a community degradation index.The rational ecological groundwater level for vegeation normal growth and maintenance high biodiversity was<4m and the threshold of groundwater depth for communit degradation was about5.5m.This could be used as a basin theory for vegetation restoration and ecological water transportation. In brief, keeping the rational ecological groundwater level was the effective path to sustain desert ecosystem stability.
引文
[1]Ahmed M, Ashfaq M, Amjad M, et al.Vegetation structure and dynamics of Pinus gerardiana forests in Balouchistan, Pakistan. Journal of Vegetation Science,1991,2:119-124
    [2]Akqa A.Waldinventur[M]. Goettingen:Guvillier Press,1997.
    [3]Alard D, Poudevigne I. Diversity patterns in grassland along a landscape gradient in northwestern France. Journal of Vegetation Science,2000,11:287-294
    [4]Antonovics, J.and D.A.Levin. The ecological and genetic consequences of density-dependent regulation in plants. Annual Review of Ecology and Systematics,1980,11,411-452
    [5]Armas C, Pugnaire F I. Plant interactions govern population dynamics in semi-arid plant community. Journal of Ecology,2005,93:978-989
    [6]Armesto J J, Casassa I, Dollenz O. Age structure and dynamics of Patagonian beech forests in Torres del Paine National Park, Chile.Vegetatio,1992,98(1):13-22
    [7]Aronson J, Floret C, LeFloch E, et al. Restoration and Rehabilitation of Degraded Ecosystems in Arid and Semi-Arid Lands.I. A View from the South. Restoration Ecology,1993,8-17
    [8]Bonet A. Secondary succession of semi~arid Mediterranean old~fields in outh-eastern Spain:insights for conservation and restoration of degraded lands. Journal of Arid Environments,2004,56:213-233
    [9]Brookerl R W, Kikvidze Z. Importance:an overlooked concept in plant interaction research. Journal of Ecology,2008, 96(4):703-708
    [10]Callaway R M, Brooker R W, Choler P, et al. Positive interactions among alpine plants increase with stress. Nature,2002, 417:844-818
    [11]Callaway R M, Walker L.Competition and facilitation:A synthetic approach to interaction in plant communities. Ecology,1997,78:1958-1965
    [12]Cao D C, Li J W, Huang Z Y, et al. Reproductive characteristics of a Populus euphratica population and prospects for its restoration in China. PloS ONE,2012,7(7):1-7
    [13]Carpenter S R, Chaney J E.Scale of spatial pattern:four methods compared.Vegetatio,1983,53(3):153-160
    [14]Cassie R M. Frequency distribution modle in ecology plant and other organism. Anim. Ecology,1962,31: 65-95
    [15]Chesson P.General theory of competitive coexistence in spatially-varying environments. Theoretical population biology,2000,58:211-237
    [16]Condit R, Ashton P S, Baker P, et al. Spatial patterns in the distribution of tropical tree species. Science,2000, 288:1414-1418
    [17]Condit R, Ashton P.The importance of demographic niches to tree diversity. Science,2006,313:98-101
    [18]Connell J H, Slatyer R O.Mechanisms of Succession in Natural Communities and Their Role in Community Stability and Organization.The American Naturalist,1977,111(982):1119-1144
    [19]Cooper A.The origin and stability of tropical edaphic savanna on groundwater Podzols in Guyana vegetation.Tropical Ecology,1981,22(1):99-115
    [20]Deevey E S Jr. Life tables for natural populations of animals. The Quarterly Review of Biology,1947, 22(4):283-314
    [21]Denslow J S.Patterns of plant species diversity during succession under different disturbance regimes. Oecologia,1980,46(1):18-21
    [22]Dice L.R.Measure of the amount of ecological association between species.Ecology,1945,26:297-302
    [23]Elton C S. The ecology of invasions by animals and plants. London:Methuen,1958
    [24]Engelbrecht B M, Comita LS, Condit R, et al. Drought sensitivity shapes species distribution patterns in tropical forests. Nature,2007,447:80-82
    [25]Ernest S K M, Brown J H. Homeostasis and compensation:the role of species and resources in ecosystem stability. Ecology,2001,82(8):2118-2132
    [26]Franklin J, Wiser S K, Drake D R, et al. Environment, disturbance history and rain forest composition across the islands of Tonga, Western Polynesia. Journal of Vegetation Science,2006,17:233-244
    [27]Frost I, Rydin H. Spatial pattern and size distribution of the animal-dispersed quercus rubur in two spruce-dominated forests. Ecoscience,2000,7(1):38-44
    [28]Fuchs M A, Krannitz P G, Harestad A S. Factors affecting emergence and first-year survival of seedlings of Garry oaks (Quercus garryana) in British Columbia, Canada. Forest Ecology and Management,2000, 137(1-3):209-219
    [29]Gea-Izquierdo G, Canellas I.Analysis of Holm oak intraspecific competition using gamma regression.Forest Science,2009,55(4):310-322
    [30]Getzin S, Wiegand T, Wiegand K, et al.Heterogeneity influences spatial patterns and demographics in forest stands. Journal of Ecology,2008,96(4):807-820
    [31]Goodman D. The theory of diversity-stability relationships in ecology. Quarterly Review of Biology,1975,50: 237-266
    [32]Graff P, Aguiar M R, Chaneton E. Shifts in positive and negative plant interactions along a grazing intensity gradient.Ecology,2007,88:188-199
    [33]Gray L, He F L. Spatial point~pattern analysis for detecting density-dependent competition in a boreal chronosequence of Alberta. Forest Ecology and Management,2009,259,98-106
    [34]Greig-Smith.Quantitative plant ecology.3rd ed.London:Blackwell Scientific Publisher,1983
    [35]Gries D, Zeng F, Foetzki A, et al. Growth and water relations of Tamarix ramosissima and Populus euphratica on Taklamakan desert dunes in relation to depth to a permanent water table. Plant Cell&Environment,2003, 26:725-736
    [36]Gurevitch J, Wilson P, Stone J, et al. Competition among old field perennials at different levels of soil fertility and available space.Journal of Ecology,1990,78(3):727-744
    [37]Hao, X.M., Li W.H., Huang, X. Assessment of the groundwater threshold of desert riparian forest vegetation along the middle and lower reaches of the Tarim River, China. Hydrological Processes,2010,24,178-186
    [38]He F L, Legendre P, La Frankie JV. Distribution patterns of tree species in a Malaysian tropical rain forest. Journal of Vegetation Science,1997,8,105-114
    [39]Hegyi F.A simulation model for managing jack-pine stands//Fries J. Growth models for tree and stand simulation. Stockholm, Sweden:Royal College of Forestry,1974:74-90
    [40]Hill M O. The intensity of spatial pattern in plant communities. The Journal of Ecology,1973,61,225-235
    [41]Horton J L, Kolb T E, Hart S C. Response of riparian trees to interannual variation in ground water depth in a semi~arid river basin. Plant Cell &Environment,2001,24(3):293-304
    [42]Hubbell S P. Tree dispersion abundance and diversity in a tropical dry forest. Science 1979,203,1299-1309
    [43]Hubbell S P, Foster R B.Commonness and rarity in a neotropical forest:implications for tropical tree conservation. In:Conservation Biology:the Science of Scarcity and Diversity (ed.Soul6 ME),1986,205-231. Sinauer Associates, Sunderland.
    [44]Hurlbert S H. The measurement of niche overlap and some relatives. Ecology,1978,59(1):67-77
    [45]Huston MA, DeAngelis DL. Competition and coexistence:The effects of resource transport and supply rates. American Naturalist,1994,144:954-977
    [46]Kikvidze Z, Ohsawa M. Measuring the number of co-dominants in ecological communities. Ecological Research,2002,17:519-525
    [47]Kland R H. On the variation explained by ordination and constrained ordination axes. Journal of Vegetation Science, 1999,10:131-136
    [48]Lammerts E J. Groundwater variables and vegetation in dune slacks. Ecological Engineering,2001,17(1): 33-47
    [49]Lan G Y, Getzin S, Wiegand T, et al.Spatial Distribution and Interspecific Associations of Tree Species in a Tropical Seasonal Rain Forest of China. PLOS ONE,2012,7(9):1-9
    [50]Legender P, Mi X C, Ren H B, et al.Partitioning beta diversity in a subtropicalbroad~leaved forest of China. Ecology,2009,90(3):663-674
    [51]Levine J M, HilleRisLambers J. The importance of niches for the maintenance of species diversity.Nature,2009, 164:254-258
    [52]Li B, Zhang J T. Ecological interaction of vegetation community in Loess Plateau. Journal of Agro~Environment Science,2003,22 (4):471-473
    [53]Li T, Yin L K Yan C. Quantitative Classification and Ordination Analysis on Vegetation in the middle Reaches of Tarim River. Arid Land Geography,2003,26(2):173-179
    [54]Liu Y B, Chen Y N, Deng M J. Saving the"Green Corridor":Recharging Groundwater to Restore Riparian Forest Along the Lower Tarim River, China.Ecological Restoration,2007,25(2):112-117
    [55]Lloyd M. Mean crowing. Journal of Animal Ecology,1967,36,1-30
    [56]Loreau, M. Are communities saturated? On the relationship between a, β and γ diversity. Ecology Letters, 2000,3:73-76
    [57]MacArthur R H. Fluctuations of animal populations and a measure of community stability. Ecology,1955,36: 533-536
    [58]Magurran A.E. Ecological diversity and its measurement. Sydney:Princeton University Press,1988,1-79
    [59]Martinez I, Wiegand T, Taboada F G. Spatial associations among tree species in a temperate forest community in north-western Spain. Forest Ecology and Management,2010,260:456-65
    [60]Morisita M. Composition of the Idindex. Researches in Population Ecology,1971,13,1-27
    [61]Mougi A, Kondoh M.Diversity of Interaction Types and Ecological Community Stability. Science,2012, 337(20):349-351
    [62]Murrell D J, Purves D W, Law R. Uniting pattern and process in plant ecology.Trends in EcologyδEvolution,2001, 16(10):529-530
    [63]Parrish JAD, Bazzaz FA.Competitive interactions in plant communities of different successional ages. Ecology, 1982,63:314-320
    [64]Peterson C J, Squiers E R.Competition and Succession in an Aspen-White-Pine Forest. Journal of Ecology,1995,83(3), 449-457
    [65]Phillips D L, MacMahon J A. Competition and spacing patterns in desert shrubs. Journal of Ecology, 1981.69:97-115
    [66]Ripley B D. Modelling spatial patterns. Journal of the Royal Statistical Society, Series B,1977,39,172-212
    [67]Robbins B D, Bell S S. Dynamics of a subtidal seagrass landscape:Seasonal and annual change in relation to water depth. Ecology,2000,81(5):1193-1205
    [68]Rosner B. Fundamentals of Biostatistics.5th ed.Sun S G, Translated. Beijing:Science Press, 2004:412-437
    [69]Rousset O, Lepart J. Positive and negative interactions at different life stages of a colonizing species (Quercus humilis). Journal of Ecology,2000,88:401-412
    [70]Roxburgh S H, Chesson P. A new method for detecting species associations with spatially autocorrelated data. Ecology, 1998,79:2180-2192
    [71]Rozas V.Regeneration patterns, dendroecology, and forest-use history in an old-growth beech-oak lowland forest in Northern Spain. Forest Ecology and Management,2003,182:175-194
    [72]Silvertown J. Plant coexistence and the niche. Trends in Ecology&Evolution,2004,19(11):605-611
    [73]Silvertown J W. Plants in lifestone pavements:tests of species interaction and niche separation. Journal of Ecology,1983,71:819-828
    [74]Taylor L R.Aggregation, Variance and the Mean. Nature,1961,189:732-735
    [75]Thevs N.Tugay vegetation at the middle reaches of the Tarim river-vegetation types and their ecology. Arches Naturalist Conservation Landscape Research,2005,44,64-84
    [76]Thevs N, Zerbe S, Peper J, Succow M.Vegetation and vegetation dynamics in the Tarim River floodplain of continental-arid Xinjiang, NW China.Phytocoenologia,2008a,38(1):65-84
    [77]Thevs, N, Zerbe S, Schnittle M, Abdusalih N. Structure, reproduction and flood-induced dynamics of riparian Tugai forests at the Tarim River in Xinjiang, NW China. Forestry,2008b,81(1):45-57
    [78]Tilman B J, Wedin D, Knops J. Productivity and sustainablity influenced by biodiversity in grasslands ecosystems. Nature,1996,379:718-720
    [79]Tilman D, Reich P B, Knops J M H. Biodiversity and ecosystem stability in a decade long grassland experiment. Nature,2006,441,629-632
    [80]Tilman D. Causes consequences and ethics of biodiversity. Nature,2000,405:208-211
    [81]Tilman D.1994. Competition and biodiversity in spatially structured habitats.Ecology,75,2-16
    [82]Van Breugel M, Martinez R M, Bongers F. Community dynamics during early secondary succession in Mexican tropical rain forests. Journal of Tropical Ecology,2006,22:663-674
    [83]Van P R, O'Keefe T C, Latterell J J, et al. Riparian Forest Stand Development along the Queets River in Olympic National Park, Washington. Ecological Monographs,2006,76(2):277-298
    [84]Walker L R, Roger D M.Lessons from primary succession for restoration of severely damaged habitats. Applied Vegetation Science,2008,12:55-67
    [85]Weiner J.A neighborhood model of annual plant interference.Ecology,1982,63:1237-1241
    [86]Westermann J, Zerbe S, Eckstein D. Age structure and growth of degraded Populus euphratica Floodplain Forests in North-west China and Perspectives for their recovery. Journal of Integrative Plant Biology,2008, 50(5):536-546
    [87]Whitfeld T J S Kress W J, Erickson D L,et al.Change in community phylogenetic structure during tropical forest succession:evidence from New Guinea. Ecography,2012,35:1-10
    [88]Wiegand T, Gunatilleke C V S, Gunatilleke I A U N. Species associations in a heterogeneous Sri Lankan Dipterocarp forest. American Naturalist,2007,170:77-95
    [89]Wiegand T, Moloney TA. Rings, circles, and null-models for point pattern analysis in ecology. Oikos,2004, 104:209-229
    [90]Willis K J, Bhagwat S A.Biodiversity and Climate Change.Science,2009,326(6):806-807
    [91]Wilson M V, A Schmida. Measuring beta diversity with presence-absence data. Ecology,1984.72:1055-1064
    [92]Woodward F I, Cramer W. Plant functional types and climatic changes:Introduction-Journal of Vegetation Science,1996,7:306-308
    [93]Yue M, Ren Y, Dang G D. Species diversity of higher plant communities in Foping National Reserve. Biodiversity Science,1999,7:263-269
    [94]Zencich S J, Froend R H, Turner J V et al. Influence of groundwater depth on the seasonal sources of water accessed by Banksia tree species on a shallow, sandy coastal aquifer. Oecologia,2002,131:8-19
    [95]Zhang Y T, Li J M, Chang S L, et al. Spatial distribution pattern of Picea schrenkiana population in the Middle Tianshan Mountains and the relationship with topographic attributes. Journal of Arid Land,2012,4(4):457-468
    [96]Zhang Y M, Chen Y N, Pan B R. Distribution and floristics of desert plant communities in the lower reaches of Tarim River, southern Xinjiang, People's Republic of China. Journal of Arid Environments,2005,63,772-784
    [97]Zhu Y, Mi X C, Ren H B, Ma K P.Density dependence is prevalent in a heterogeneous subtropical forest. Oikos, 2010,119:109-119
    [98]Zobel M. Plant species coexistence:the role of historical, evolutionary and ecological factors. Oikos,1992, 65:314-320
    [99]安红燕,徐海量,叶茂,等.塔里木河下游胡杨径向生长与地下水的关系.生态学报,2011,31(8):2053-2059
    [100]白永飞,张丽霞,张焱,等.内蒙古锡林河流域草原群落植物功能群组成沿水热梯度变化的样带研究.植物生态学报,2002,26(3):308-316
    [101]陈晓德.植物种群与群落结构动态量化分析方法研究.生态学报,1998,18(2):214-217
    [102]陈亚宁,李卫红,陈亚鹏,等.新疆塔里木河下游断流河道输水与生态恢复.生态学报,2007,27(2):538-545
    [103]陈亚宁,王强,李卫红,等.植被生理生态学数据表征的合理地下水位研究—以塔里木河下游生态恢复过程为例.科学通报,2006,51(增1):7-13
    [104]陈亚宁,张宏锋,李卫红,等.新疆塔里木河下游物种多样性变化与地下水位的关系.地球科学进展,2005,20(2):158-165
    [105]陈永金,陈亚宁,李卫红,等.塔里木河下游输水条件下浅层地下水化学特征变化与合理生态水位探讨.自然科学进展,2006,16(9):1130-1137
    [106]陈永金,刘加珍,陈亚宁,等.输水前后塔里木河下游物种多样性与水因子的关系.生态学报,2013,33(7):2212-2224
    [107]陈远征,马祥庆,冯丽贞,等.濒危植物沉水樟的种群生命表和谱分析.生态学报,2006,26(12):4267-4272
    [108]程伟,吴宁,罗鹏.岷江上游林线附近岷江冷杉种群的生存分析.植物生态学报,2005,29(3):349-353
    [109]单秀枝,魏由庆,严慧峻,等.土壤有机质含量在土壤水动力上的影响.土壤学报,1998,35(1):1-9
    [110]邓潮洲,张希明,李利,等.塔里木河下游胡杨群落特征及种群结构分析.中国沙漠,2010,30(3):589-595
    [111]邓潮洲,张希明,吴俊侠,等.输水堤坝对塔里木河中游胡杨群落及种群的影响.生态学报,2010,30(5):1356-1366
    [112]杜自强,王建,李建龙等.黑河中上游典型地区草地植被退化遥感动态监测.农业工程学报,2010,26(4):180-185
    [113]段仁燕,王孝安.太白红杉种内和种间竞争研究.植物生态学报,2005,29(2):242-250
    [114]樊自立,马英杰,季方.塔里木河流域生态环境演变及整治途径.干旱区资源与环境,2001,15(1):13-17
    [115]冯虎元,安黎哲,李鹏等.黑河流域中下游种子植物区系的初步研究.干早区资源与环境,1999,13(3):69-76
    [116]冯起.荒漠绿洲植被生长与生态地下水位的研究.中国沙漠,1998,18(增刊1):107-109
    [117]高润宏,董智,张昊,等.额济纳绿洲胡杨林更新及群落生物多样性动态.生态学报,2005,25(5):1019-1025
    [118]巩合德,杨国平,鲁志云,等.哀牢山常绿阔叶林树种多样性及空间分布格局.生物多样性,2011,19(2):143-150
    [119]郭跃东,郭晋平,张芸香等.文峪河上游河岸林群落环境梯度格局和演替过程.生态学报,2010,30(15):4046-4055
    [120]郭志华,卓正大,陈洁,等.庐山常绿阔叶、落叶阔叶混交林乔木种群种间联结性研究.植物生态学报,1997.21(5):424-432
    [121]古丽加米拉木·买买提,玉米提·哈力克,塔依尔江·艾山,等.胡杨树冠疏失度对塔里木河下游应急生态输水的响应.新疆农业科学,2010,47(2):241-245
    [122]郝兴明,李卫红,陈亚宁.新疆塔里木河下游荒漠河岸(林)植被合理生态水位.植物生态学报,2008,32(4):838-847
    [123]何志斌,赵文智.黑河流域荒漠绿洲过渡带两种优势植物种群空间格局特征.应用生态学报,2004,15(6):947-952
    [124]何志斌,赵文智.黑河下游荒漠河岸林典型样带植被空间异质性.冰川冻土,2003,25(5):591-596
    [125]贺金生,陈伟烈,李凌浩.中国中亚热带东部常绿阔叶林主要类型的群落多样性特征.植物生态学报,1998,22(4):303-311
    [126]贺金生,陈伟烈.陆地植物群落物种多样性的梯度变化特征.生态学报,1997,17(1):91-99
    [127]黄晶晶,井家林,曹德昌,等.不同林龄胡杨克隆繁殖根系分布特征及其构型.生态学报,2013,33(14):4331-4342
    [128]黄培祐.干旱区免灌植被及其恢复.北京:科学出版社,2002:47-60
    [129]黄培祐.荒漠河岸胡杨林的生活周期对生境水条件的动态适应的研究.新疆环境保护,1991,13(2):6-10
    [130]黄新峰,亢新刚,杨华,等.5个林木竞争指数模型的比较.西北农林科技大学学报(自然科学版),2012,40(7):127-134
    [131]黄忠良,孔国辉,何道泉.鼎湖山植物群落多样性的研究.生态学报,2000,20(2):193-198
    [132]惠刚盈,李丽,赵中华,等.林木空间分布格局分析方法.生态学报,2007,27(11):4717-4728
    [133]季方,马英杰.塔里木河冲积平原胡杨林的土壤水分状况研究.植物生态学报,2001,25(1):17-21
    [134]简敏菲,刘琪朱笃等.九连山常绿阔叶林乔木优势种群的种间关联性分析.植物生态学报2009,33(4):672-680
    [135]康冰,刘世荣,温远光,等.广西大青山南亚热带次生林演替过程的种群动态.植物生态学报,2006,30(6):931-940
    [136]赖江山,张谧,谢宗强.三峡库区常绿阔叶林优势种群的结构和格局动态.生态学报,2006,26(4):1073-1079
    [137]兰国玉,雷瑞德.植物种群空间分布格局研究方法概述.西北林学院学报,2003,18(2):17-21
    [138]蓝斌,洪伟,陈辉,等.闽北阔叶林主要种群分布格局取样技术的研究.福建林学院学报,1995,15(4):370-374
    [139]李吉玫,徐海量,张青青等.塔里木河下游荒漠河岸林不同退化区胡杨种群结构和空间分布格局研究.中国沙漠,2009,29(5):897-904
    [140]李军,张秋良,高润宏.额济纳绿洲胡杨种群结构与分布格局研究.干旱区资源与环境,2008,22(2):187-190
    [141]李明辉,何风华,刘云,等.林分空间格局的研究方法.生态科学,2003,22(1):77-81
    [142]李帅锋,刘万德,苏建荣等.季风常绿阔叶林不同恢复阶段乔木优势种群生态位和种间联结.生态学杂志,2011,30(3):508-515
    [143]李霞,董新光,候平.塔里木河下游断流区胡杨密度调查与分析.新疆农业大学学报,2003,26(4):41-44
    [144]李先琨,苏宗明,向悟生等.濒危植物元宝山冷杉种群结构与分布格局.生态学报,2002,22(12):2246-2253
    [145]李锡文.中国种子植物区系统计分析.云南植物研究,1996,18(4):363-384
    [146]李新荣,谭会娟,何明珠,等.阿拉善高原灌木种的丰富度和多度格局对环境因子变化的响应:极端干旱荒漠地区灌木多样性保育的前提.中国科学D辑地球科学,2009,39(4):504-515
    [147]刘海丰,李亮,桑卫国.东灵山暖温带落叶阔叶次生林动态监测样地:物种组成与群落结构.生物多样性,2011,19(2):232-242
    [148]刘宏霞,陈亚宁,李卫红,等.塔里木河中游天然植物群落结构与数量特征分析.干旱区地理,2008,31(1):109-115
    [149]刘加珍,陈亚宁,张元明.塔里木河中游植物种群在四种环境梯度上的生态位特征.应用生态学报,2004,15(4):549-555
    [150]刘加珍,陈亚宁.新疆塔里木河下游植物群落逆向演替分析.干旱区地理,2002,25(3):231-236
    [151]刘加珍,陈亚宁,李卫红,等.荒漠河岸植被的受损过程与受损机理分析.地理学报,2006,61(9):946-956
    [152]刘普幸.疏勒河中下游绿洲胡杨种群结构与动态研究.自然资源学报,2011,26(3):429-439
    [153]刘琪憬,胡理乐,李轩然.小流域治理20年后的千烟洲植物多样性.植物生态学报,2005,29(5):766-774
    [154]刘苑秋,郭圣茂,王红胜,等.化石灰岩红壤区四种人工林旱季土壤水分的空间变异.土壤学报,2010,47(2):229-231
    [155]卢磊,赵振勇,乔木等.塔里木河中游河岸带植物区系及物种多样性初探.水土保持通报,2011,31(1):16-21
    [156]陆阳.南亚热带森林种群分布格局取样技术研究.植物生态学和地植物学学报,1986,10(4):272-281
    [157]罗明永.天然柳杉群落主要种群生态位特征.福建林学院学报,2011,31(3):249-253
    [158]马克平,黄建辉,于顺利,等.北京东灵山地区植物群落多样性的研究Ⅱ.丰富度均匀度和物种多样性指数.生态学报,1995,15(3):268-277
    [159]马克平,刘灿然,刘玉明.生物群落多样性的测度方法Ⅱ.B多样性的测度方法.物多样性,1995,3(1):38-43
    [160]潘晓玲,张远东,初雨,等.塔里木河流域荒漠河岸林群落的多元分析与环境解释.西北植物学报,2001,21(2):247-251
    [161]戚登臣,陈文业,刘振恒等.黄河首曲—玛曲县高寒草甸沙化演替进程中群落结构及种群生态位特征.西北植物学报,2011,31(12):2522-2531
    [162]任海,彭少麟.恢复生态学导论.北京:科学出版社,2001:102-120.
    [163]尚文艳,吴钢,付晓,等.陆地植物群落物种多样性维持机制,应用生态学报,2005,16(3):573-578
    [164]宋永昌.植被生态学.上海:华东师范大学出版社,2001:116-117.
    [165]孙学刚,肖雯,贾恢先.疏勒河中游刚毛柽柳盐漠的群落结构、种群空间格局及种间联结性的研究.草业学报,1998,7(2):10-17
    [166]谭新平,李春梅,曹晓莉,等.塔里木河干流近50a地表水资源利用问题评估.干旱区研究,2004,21(3):193-198
    [167]汪殿蓓,王彩云,暨淑仪,等.野生仙湖苏铁群落特征研究.北京林业大学学报,2004,26(6):12-18
    [168]王伯荪,彭少麟.南亚热带常绿阔叶林种间联结测定技术研究Ⅰ:种间联结测定的探讨修正.植物生态学与地植物学丛刊,1985,9(4):274-285
    [169]王春玲,郭泉水,谭德远,等.准格尔盆地东南缘不同生境条件下梭梭群落结构特征研究.应用生态学报,2005,16(7):1224-1229
    [170]王刚,赵松岭,张鹏云.关于生态位定义的探讨及生态位重叠计测公式改进的研究.生态学报,1984,4(2):119-127
    [171]王金山,哈力克·玉米提,Cyffka B,等.塔里木河下游胡杨林胸径结构及林木分布特征.植物学通报,2008,25(6):728-733
    [172]王乃江,张文辉,陆元昌.陕西子午岭森林植物群落种间联结性.生态学报,2010,30(14):67-78
    [173]王让会,王晓伟,游先祥,等.荒漠河岸林生态系统的结构分析.干旱区研究,2002,19(2):7-11
    [174]王让会,游先祥,吴世新,等.绿洲生态系统的群落特征—以荒漠河岸林生态系统为例.干旱区资源与环境,2001,15(4):22-24
    [175]王文进,张明,刘福德,等.海南岛吊罗山热带山地雨林两个演替阶段的种间联结性.生物多样性2007.15(3):257-263
    [176]王孝安.安西荒漠植被的多元分析.植物学报,1997,39(5):461-466
    [177]王彦阁,杨晓晖,慈龙骏.西鄂尔多斯高原干旱荒漠灌木群落空间分布格局及其竞争关系分析.植物资源与环境学报,2010,19(2):8-14
    [178]王峥峰,安树青,朱学雷.热带森林乔木种群分布格局及其研究方法的比较.应用生态学报,1998,9(6):575-580
    [179]吴承祯,洪伟,谢金寿,等.珍稀濒危植物长苞铁杉种群生命表分析.应用生态学报,2000,11(3):333-336
    [180]吴俊侠,张希明,李利,等.塔里木河干流中游胡杨种群特征与动态分析.干旱区研究,2010,27(2):242-248
    [181]吴征镒.中国种子植物属的分布区类型.云南植物研究,1991,Ⅳ(增刊):1-139
    [182]伍业钢,薛进轩.阔叶红松林红松种群动态的谱分析.生态学杂志,1988,7(1):19-23
    [183]夏阳.塔克拉玛干沙漠优势植物化学成分特征.中国沙漠,1994,14(2):30-36
    [184]肖宜安,何平,李晓红,等.濒危植物长柄双花木自然种群数量动态.植物生态学报,2004,28(2):252-257
    [185]徐海量,陈亚宁,杨戈.塔木河下游生态输水对植被和地下水位的影响.环境科学,2003,24(4):18-22
    [186]徐海量,宋郁东,王强,等塔里木河中下游地区不同地下水位对植被的影响.植物生态学.报,2004,28(3):400-405.
    [187]闫琰,张春雨,赵秀海.长白山不同演替阶段针阔混交林群落物种多度分布格局.植物生态学报,2012,36(9):923-934
    [188]杨凤翔,王顺庆,徐海根,等.生存分析理论及其在研究生命表中的应用.生态学报,1991,11(2):153-158
    [189]杨玉海,陈亚宁,李卫红.新疆塔里木河下游土壤特性及其对物种多样性的影响.生态学报,2008,28(2):602-611
    [190]尹林克,李涛.塔里木河中下游地区荒漠河岸林群落种间关系分析.植物生态学报,2005,29(2)226-234
    [191]于春堂,杨晓晖,尹伟伦,等.鄂尔多斯高原北缘唐古特白刺灌丛沙包的空间分布格局分析.北京林业大学学报,2008,30(5):39-45
    [192]于大炮,周莉,董百丽,等.长白山北坡岳桦种群结构及动态分析.生态学杂志,2004,23(5):30-34
    [193]于军,王海珍,陈加利,等.塔里木河流域荒漠河岸林胡杨群落的空间格局研究.中国沙漠,2011,31(4):913-918
    [194]于倩,谢宗强,熊高明,等.神农架巴山冷杉林群落特征及其优势种群结构.生态学报2008,28(5):1931-1941.
    [195]张春雨,赵秀海,王新怡,等.长白山自然保护区红松阔叶林空间格局研究.北京林业大学学报,2006,28(增2):45-51
    [196]张峰,上官铁梁.山西翅果油树群落种间关系的数量分析.植物生态学报,2000,24(3):351-355
    [197]张光明,唐建维.西双版纳野芭蕉先锋群落优势种群的生态位动态.植物资源与环境学报,2000,9(1):22-26
    [198]张桂萍,张峰,茹文明.山西绵山植被木本植物优势种群种间关联.生态学杂志,2006,25(3):295-298
    [199]张宏锋,陈亚宁,陈亚鹏.塔里木河下游植物群落的物种数量变化与生态系统动态研究.生态学杂志,2004,23(4):21-24
    [200]张建岗,王建文,马辉明,等.塔里木河流域2006年“四源一干”河川径流及输水运行分析.冰川冻土,2008,30(4):569-577
    [201]张健,郝占庆,宋波,等.长白山阔叶红松林中红松与紫椴的空间分布格局及其关联性.应用生态学报2007,18(8):1681-1687
    [202]张金屯.群落二维格局分析的两种方法.西北植物学报,2004,24(8):1448-1451
    [203]张金屯.数量生态学.北京:科学出版社,2004
    [204]张丽,董增川,黄晓玲.干旱区典型植物生长与地下水位关系的模型研究.中国沙漠,2004,24(1):110-113
    [205]长跃西.邻体干扰模型的改进及其在营林中的应用.植物生态学与地植物学学报,1993,17(4):352-357
    [206]张甘霖和龚子同.土壤调查实验室分析方法.北京:科学出版社,2012
    [207]张林静,岳明,赵桂仿,等.新疆阜康地区植物群落物种多样性及其测度指标的比较.西北植物学报,2002,22(2):350-358
    [208]中国科学院南京土壤研究所.土壤理化性质分析.上海:上海科学技术出版社,1978.
    [209]赵峰侠,尹林克.荒漠内陆河岸胡杨和多枝柽柳幼苗种群空间分布格局及种间关联性.生态学杂志,2007,26(7):972-977
    [210]赵振勇,王让会,张慧芝,等.塔里木河下游荒漠生态系统退化机制分析.中国沙漠,2006,26(2):220-225
    [211]中国科学院南京土壤研究所.土壤理化分析.上海:上海科学技术出版社,1978
    [212]周灿芳,余世孝,郑业鲁,等.种群分布格局测定的样方尺度效应.广西植物,2003,23(1):19-22
    [213]周红章,于晓东,罗天宏,等.物种多样性变化格局与时空尺度.生物多样性,2000,8(3):325-326
    [214]周志强,魏晓雪,刘彤.新疆奇台荒漠植物群落的数量分类及土壤环境解释.生物多样性,2007,15(3):264-270
    [215]朱军涛,于静洁,王平,等.额济纳荒漠绿洲植物群落的数量分类及其与地下水环境的关系分析.植物生态学报,2011,35(5):480-489

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700