用户名: 密码: 验证码:
大气CO_2浓度升高对“玉米—害虫—天敌”系统的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“作物-害虫-天敌”系统对大气CO2浓度升高的适应性规律及机制是全球变暖对农业生产影响的重要研究内容。玉米是我国主要粮食作物之一,亚洲玉米螟及玉米蚜均为玉米生产上重要害虫。研究大气CO2浓度升高等因素介导的玉米、害虫和天敌的生长、发育和繁殖的适应性变化特征及其互作机制,理论上可为阐明未来气候变化情景下“玉米-害虫-天敌”系统的演变规律提供重要的科学依据,实践上对于明确未来气候变化情景下玉米害虫发生危害趋势及天敌控制作用及合理利用具有指导意义。本文通过田间及室内模拟未来大气CO2浓度升高环境下玉米、亚洲玉米螟和玉米蚜及玉米螟卵寄生蜂的生长、发育、繁殖及相互作用。取得以下主要结果。
     建立了适于我国东北气候条件下玉米种植的24座开顶式气室(Open-top chanber, OTC)。 OTC内CO2浓度稳定控制在试验所需范围内(上下波动不超过50μL/L),OTC内温度、相对湿度均显著高于室外环境。不同CO2浓度处理的OTC内温度、相对湿度间显著不差异。因此,本实验所建OTC群具有一定的增温、增湿效果,能够满足“玉米-害虫-天敌”系统对大气CO2浓度升高响应的试验需求。
     在3个大气CO2浓度处理,即当前大气(对照),550μL/L和750μL/L CO2浓度的OTC内种植玉米,并接种亚洲玉米螟初孵幼虫。结果显示,与对照相比,高CO2浓度处理玉米株高及产量增加,玉米组织内TNC:N升高,第二代幼虫单株存活率降低。高CO2浓度显著降低越冬幼虫体重及过冷却点,但对其存活率影响不显著。高CO2浓度使越冬后的亚洲玉米螟单雌产卵量降低。大气CO2浓度升高使玉米组织营养质量下降,导致亚洲玉米螟的生存适合度降低。
     在以下5个处理中饲养亚洲玉米螟:(1)C1(对照CO2浓度处理的CDC环境)+M1(对照CO2浓度处理的OTC内生长的玉米组织),(2) C2(550μL/LCO2浓度处理的CDC环境)+M2(550μL/L CO2浓度处理的OTC内生长的玉米组织),(3) C3(750μL/L CO2浓度处理的CDC环境)+M3(750μL/L CO2浓度处理的OTC内生长的玉米组织),(4) C1+M2(5) C1+M3。结果显示,与C1+M1处理相比,其他处理中幼虫历期均延长、取食量及排粪量增加,并且其他处理间无显著差异。因此,无论是否去掉CO2浓度对幼虫直接影响(幼虫在高CO2浓度处理的CDC环境),幼虫历期均延长,取食量及排粪量增加。与C1+M1处理相比,其他处理中幼虫体重与MRGR均降低。第二代亚洲玉米螟仅在C1+Ml C2+M2和C3+M3处理中饲养。测定指标在处理间变化趋势不变,在同处理的两世代间也无显著差异。但CO2浓度升高降低了第二代亚洲玉米螟存活率。因此,大气CO2浓度升高主要通过改变寄主营养质量而间接影响亚洲玉米螟的生长发育。
     在不同CO2浓度(Ambient,550μL/L口750μL/L)处理的CDC中测定了赤眼蜂单雌寄生与OTC模拟田间放蜂防治试验。结果显示,在CDC内,与对照相比,高CO2浓度下两种赤眼蜂对亚洲玉米螟卵的单雌寄生发生率、寄生卵粒数、羽化蜂数、羽化率和雌蜂率没有变化,但高CO2浓度显著缩短两种赤眼蜂的子代体长。在OTC内,进行人工接卵后释放松毛虫赤眼蜂,从而模拟田间放蜂试验的结果表明:与对照相比,高CO2浓度下幼虫对玉米为害程度及其存活率没有影响,即释放松毛虫赤眼蜂对亚洲玉米螟的防效不变。高CO2浓度使子代蜂体缩小,因此,大气CO2浓度升高可能降低赤眼蜂对亚洲玉米螟卵的适合度。
     在CDC内的以下4个处理中用大麦连续饲养两代玉米蚜,(1)对照温度(L/D=22/18℃)与对照CO2浓度(350-400μL/L);(2)对照温度与高CO2浓度(750μL/L);(3)高温(26/22℃)与对照CO2浓度;(4)高温与高CO2浓度。多因子方差分析结果显示,温度升高缩短了玉米蚜各龄历期,而高CO2浓度与连续世代分别缩短了玉米蚜4龄及若虫历期。因此,温度为影响玉米蚜发育历期的关键因子。同时,高温、高CO2浓度及连续世代均著提高了玉米蚜繁殖力。并且高温、高CO2浓度使有翅蚜比率提高,因此,蚜虫的扩散能力可能增强。在高温与高CO2浓度的处理中,蚜虫内禀增长力最高,并且连续世代使此趋势加剧。因此,高温和高CO2浓度共同作用下,可能加重玉米蚜对其寄主的为害程度。
The adaptation and mechanism of "crop-pest-enemy" to elevated CO2are the main research for the effects of global warming on agricultural production. Maize is one of the main food crops in our country. Asian corn borer, Ostrina furnacalis, and the corn leaf aphid, Rhopalosiphum maidis, are key pests in maize production. The study for effects of elevated CO2on growth and development of maize, pest, enemy and their interaction could provide important scientific evidence for evolution rule of "maize-pest enemy" system under climate change in theory, understand occurrence trend of maize pests, enemy control and rational utilization under climate change in practice. This research simulates the growth and development of maize, pest, egg parasitoid wasps and their interaction under elevated CO2. The results are as following:
     Improved24open-top chambers (OTCs) were setted up for our trial, that adapt to the maize planting and local northeast climate in China. The CO2concentration within the OTCs was stably controled and closed to the required CO2level (fluctuating range less than50μL/L). The temperature and relative humidity in the chambers were higher than outside. The temperature and relative humidity had no difference among different chambers with each CO2level. Therefore, the chambers could keep the air warmer and wetter. The improved OTCs could meet the requirements of trials of effects of elevated CO2on "maize-pest enemy" system.
     Newly hatched larvae of O. furnacalis were inoculated in maize plants, and maize plants were planted in the OTCs with different CO2levels (ambient CO2,550μL/L and750μL/L). Elevated CO2increased the plant height and yield of maize plants, decreased the TNC: N in maize tissue, decreased the number of survival larvae per plant for second generation. Elevated CO2decreased the wintering larval body weight and supercooling point. Therefore, the cold hardiness of wintering larvae is enhanced under elevated CO2. While the survival rate of wintering larvae had not been influenced by elevated CO2. The number of egg per female was decreased by elevated CO2. Elevated CO2change the nutritional qulity of maize, which decrease the survival fitness of O. furnacalis.
     The following5treatments were designed to raise O. furnacalis:1) C1(ambient CO2in CDC)+M1(maize planted in OTC with ambient CO2),2) C2(550μL/L CO2in CDC)+M2(maize planted in OTC with550μL/L CO2),3) C3(750μL/L CO2in CDC)+M3(maize planted in OTC with750μL/L CO2),4) C1+M2,5) C1+M3. Compared with C1+M1, the larval duration was longer and its food consumption and frass were increased in other treatments, and there was no significant difference among other treatments. Therefore, with or without the direct effect of elevated CO2to O. furnacalis, the above results had not been changed. Compared with C1+M1, larval body weight and MRGR were decreased in other treatments. Second generation of O. furnacalis was rared in Cl+M1, C2+M2and C3+M3treatments, the change for above measured indexes among three treatment was similar with above, and there was no difference between two generations in the same treatment. Elevated CO2decreased the larval survival rate in the second generation. Threrefore, elevated CO2could indirectly influence the growth and development of O. furnacalis by nutritional qulity of maize.
     Parasitism capacity of per female trichogramma(Trichogramma dendrolimi and T. ostriniae) and T. dendrolimi population were conducted respectively in CDC and OTC with different CO2concentrations (ambient,550μL/L and750μL/L). Parasitism occurrence rate, number of parasitized eggs, number of emergence offspring per trichogramma, emergence rate and female ratio were not influenced by elevated CO2in CDC. But elevated CO2decreased the body length of offspring for two trichogramma species. To simulate the field release trial for T. dendrolimi in the OTC, egg card was inoculated in maize plant, at the same time the T. dendrolimi population was released. The damage of O. furnacalis to maize and its survival rate were not influenced by elevated CO2, which indicate that elevated CO2do not influence the effect of T. dendrolimi on the control of O. furnacalis. And the more small body of two trichogramma species under elevated CO2may reduce its fitness to eggs of O. furnacalis.
     The corn leaf aphid, Rhopalosiphum maidis reared on barley for two generations were examined under four treatments:1) control temperature (22/18℃=L/D) and ambient CO2(350-400μL/L),2) control temperature and elevated CO2(750μL/L),3) elevated temperature (26/22℃=L/D) and ambient CO2,4) elevated temperature and elevated CO2. Multiple variance analysis was used in this experiment. The developmental duration for each age stage was significantly reduced by elevated temperature. The elevated CO2only reduced the development time of4th instar nymph, and the succsesive generation reduced the duration of nymph. Thus, the temperature was the dominant factor to development duration of R. maidis. The fecundity of R. maidis was significantly increased under the elevated temperature, CO2and later generation. Elevated temperature and CO2increased the number of winged aphids, which may enhance the aphid migration. R. maidis had the highest rm under the elevated temperature and CO2treatment, and the effect was increased in the following generation. These results indicated that the combined effects of both elevated temperature and CO2on aphid biology may exacerbate aphid damage on barley under the climate with elevated temperature and CO2level.
引文
[1]陈法军.大气CO2浓度升高对“作物-害虫-天敌”系统的影响.博士论文.中国科学院动物所.北京.2004.
    [2]陈法军.戈峰.苏建伟.用于研究大气二氧化碳浓度升高对农田有害生物影响的田间试验装置—改良的开定式气室.生态学杂志,2005a,24(5):585-590.
    [3]陈法军,吴刚,戈峰.大气CO2浓度升高对棉蚜生长发育和繁殖的影响及其作用方式.生态学报,2005b,25(10):2601-2607.
    [4]陈法军,戈峰.一套用于研究CO2浓度增加对植物-昆虫相互作用影响的设备—CDCC-1型密闭式动态CO2气室.昆虫知识,2004a,41(3):279-281.
    [5]陈法军,吴刚,戈峰.在高CO2浓度下生长的春小麦对棉铃虫生长发育和繁殖的影响.昆虫学报,2004b,47(6):774-779.
    [6]陈法军.大气CO2浓度升高对“农作物—害虫—天敌”系统的影响.中国科学院动物所.博士论文.2004.
    [7]陈科伟,刘惠珍,何余容.玉米螟赤眼蜂雌蜂繁殖力与年龄的关系.昆虫学报,2005,48:712-717.
    [8]陈梦熊.关注因气候变暖引发的环境问题.大自然,2009,4:1.
    [9]崔昊,石祖梁,蔡剑,姜东,曹卫星,戴延波.大气CO2浓度和氮肥水平对小麦籽粒和产量的影响.应用生态学报,2011,22(2):979-984.
    [10]党玉婷.中国经济增长对CO2排放量的影响研究—基于1970-2005年时间序列数据的分析.生产力研究,2013,10:5-8.
    [11]丁一汇,高素华.痕量气体对我国农业和生态系统影响研究.北京:中国科学技术出版社.1995,3-17.
    [12]方精云,庄亚辉.全球生态学—气候变化与生态响应.北京高等教育出版社和施普林格出版社.2000.
    [13]方精云,陈安平.中国森林植被碳库的动态变化及意义.植物学报,2001,43:967-973.
    [14]冯相昭,邹骥.中国CO2排放趋势的经济分析.中国人口·资源与环境,2008,18:43-47.
    [15]符淙斌,严中伟.全球气候变化和中国未来生态环境变化趋势.中国气象出版社,1996,314-321.
    [16]戈峰,陈法军,吴刚,等.昆虫对大气CO2浓度升高的响应.北京:科学出版社.2010a.
    [17]戈峰,陈法军,吴刚,等.我国主要类型昆虫对CO2升高响应的研究进展.昆虫知识,2010b,47(2):229-235.
    [18]戈峰,陈法军.大气CO2浓度增加对昆虫的影响.生态学报,2006,26(3):935-944.
    [19]郭庆春,孙珂,张轩.全球变暖主要驱动因子温室气体变化研究.价值工程,2012,31(14):11-12.
    [20]郝兴宇,邸少华,王晨光,等.大气CO2浓度升高对夏大豆光合生理及产量的影响.全国农学 博士后学术论文集.福州.2012,7:12-14.
    [21]郝兴宇,林而达,杨锦忠,等.自由大气CO2浓度升高对夏大豆生长于产量的影响.生态学报,2009,9:4595-4603.
    [22]胡健,王余龙,杨连新,周娟,朱建国.开放式二氧化碳浓度提高对武香粳14叶片硝酸还原酶活力的影响.应用生态学报,2006,17(11):2179-2184.
    [23]解海翠,彩万志,王振营,等.大气CO2浓度升高对植物、植食性昆虫及其天敌的影响研究进展.应用生态学报,2013,24(12):3595-3602.
    [24]Kimball B A,朱建国,程磊,等.开放系统中农作物对空气CO2浓度增加的响应.应用生态学报,2002,13(10):1323-1338.
    [25]李建成.中红侧沟茧蜂生物学特性及其新疆棉田释放对棉铃虫的控制效果研究.中国农业大学.博士论文.北京.2005.
    [26]李丽莉,王振营,何康来,等.转Bt基因抗虫玉米对玉米蚜种群增长的影响.应用生态学报,2007,18:1077-1080.
    [27]李元喜,戴华国,姜金林,等.亚洲玉米螟卵对三种赤眼蜂适合性比较的研究.南京农业大学学报,2002,25(1):35-38.
    [28]林伟宏,张福锁,白克智.大气CO2浓度升高对根系生态系统的影响.科学通报,1999,4:1690-1696.
    [29]刘刚,韩勇,朱建国.麦稻轮作FACE系统平台Ⅰ系统结构与控制.应用生态学报,2002,13:1253-1258.
    [30]刘树生,施祖华.赤眼蜂研究和应用进展.中国生物防治,1996,12:78-84.
    [31]刘向东,翟保平,张孝羲.蚜虫迁飞的研究进展.应用昆虫学报,2004,41:301-307.
    [32]鲁新.亚洲玉米螟大发生的因素及预测预报.吉林农业科学.1997,1:44-48.
    [33]陆庆光.世界赤眼蜂研究现状.世界农业,1992,9:24-26.
    [34]马洪亮,朱建国,谢祖彬,等.开放式空气CO2浓度升高对冬小麦生长和N吸收的影响.作物学报,2005,31:1634-1639.
    [35]孟玲,李保平.大气二氧化碳浓度升高对植物-昆虫相互关系的影响.生态学杂志,2005,24(2):200-205.
    [36]孙加伟,赵天宏,付宇,等.CO2浓度升高对玉米叶片光合生理特性的影响.玉米科学,2009,]7(2):8]-85
    [37]唐绍忠,蔡焕杰,梁银丽.水分土壤以及作物品种在干旱半干旱地区的调节.中国农业科学出版社.北京.1998,115-155.
    [38]唐绍忠,张富仓,梁银丽.土壤、水分以及大气CO2浓度升高对小麦、玉米以及棉花土壤水分蒸腾、生长发育和光合速率的影响.作物学报,1999,25:55-63.
    [39]王春乙,高素华,刘江歌.OTC-1型开顶式气室的结构和功能.环境科学研究进展,1994,2(3):19-31.
    [40]王春乙,高素华,潘亚茹,等.OTC-1型开顶式气室的结构和数据采集系统.气象,1993a,19:15-18.
    [41]王春乙,高素华,潘亚茹,等.OTC-1型开顶式气室物理性能的测试与评价.气象,1993b,19:23-26.
    [42]王亮,朱建国,朱春梧,曹际玲,王明娜,曾青,谢祖彬,刘刚.高浓度CO2条件下水稻叶片氮含量下降与氮代谢关键酶活性的关系.中国水稻科学,2008,22(5):499-506.
    [43]王学霞.大气CO2浓度升高对“棉花-B型烟粉虱-丽蚜茧蜂”系统的影响.福建师范大学.硕士学位论文,2009.
    [44]王永宏,苏丽,仵均祥.温度对玉米蚜种群增长的影响.应用昆虫学报,2002,39:277-280.
    [45]王云霞,杨连新,Manderscheid R,等.C4作物FACE (free-air CO2 enrichment)研究进展.昆虫学报,2011,31(5):1450-1459.
    [46]王振营,鲁新,何康来,等.我国研究亚洲玉米螟历史、现状与展望.沈阳农业大学学报,2000,31(5):402-412.
    [47]王振营,何康来,邢珍娟,等.不同类型玉米组织对亚洲玉米螟幼虫存活和生长发育的影响.中国农学通报,2004,20:27-224.
    [48]吴刚,陈法军,戈峰.CO2浓度升高对棉铃虫生长发育和繁殖的直接影响.生态学报,2006,26(6):1732-1738.
    [49]吴刚.大气CO2浓度升高对“作物-害虫”系统的影响.中国科学院动物所.博士论文.2006.
    [50]向亮.主要国家和地区对CO2排放量状况及其对气候变化的影响.南京信息工程大学.硕士学位论文.南京.2009.
    [51]徐丽荣,何康来,王振营.2012.不同寄主上桃蛀螟越冬幼虫体内生化物质变化与抗寒性研究.应用昆虫学报,49(1):197-204.
    [52]杨长成,王传士,郑雅楠,等.赤眼蜂防治玉米螟的持续效果分析.玉米科学,2011,19:139-142.
    [53]张富仓,唐绍忠,马清林.大气CO2浓度升高对棉花生长和生理特征的影响.应用基础与工程科学学报,1999,7:267-273.
    [54]张光美,刘树生,杨坚伟,等.影响松毛虫赤眼蜂寄生亚洲玉米螟的因子观察.植物保护学报,1995,22:205-2]0.
    [55]张洪刚,鲁新,何康来,等.亚洲玉米螟抗寒及低温生存对策.植物保护学报,2010,37(5):398-402.
    [56]张均,杨惠敏,林久生,等.大气二氧化碳浓度变化对禾谷缢管蚜种群动态的影响.昆虫学报,2002,45(4):477-481.
    [57]赵光影,刘景双,王洋,等.CO2浓度升高对三江平原湿地活性有机碳及土壤微生物的影响应用生态学报,201],22(6):1653-1658.
    [58]赵洪霞,肖留斌,谭永安,等.不同光周期对绿盲蝽实验种群生命表参数的影响.棉花科学2011.23:140-146.
    [59]郑霞林,全为礼,程文杰,等.寄主植物对甜菜夜蛾三龄幼虫抗寒力的影响.应用昆虫学报,2012,49:1461-1467.
    [60]周大荣,何康来主编.玉米螟综合防治技术.北京.金盾出版社.1995.
    [61]藏良震,张彩虹,张兰.我国省域CO2排放量的动态演进分析.经济与管理,2013,27:63-68.
    [62]Abrell L, Guerenstein P G, Mechaber W L, Stange G, Christensen A T, Nakanishi K, Hildebrand J G. Effect of elevated atmospheric CO2 on oviposition behavior in Manduca sexta moths. Global Change Biology,2005,11:1272-1282.
    [63]Agrell J, Anderson P, Oleszek W, Stochmal A, Agrell C. Combined effects of elevated CO2 and herbivore damage on alfalfa and cotton. Journal of Chemical Ecology,2004,30(11):2309-2324.
    [64]Ainsworth E A, Long S P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist,2005,165:351-371.
    [65]Ainsworth E A, Davey P A, Bernacchi C J, Dermody O C, Heaton E A, Moore D J, Morgan P B, Naidu S L, Ra H S Y, Zhu X G, Curtis P S, and Long S P. A meta-analysis of elevated [CO2] eVectson soybean (Glycine max) physiology, growth and yield. Global Change Biology,2002,8: 695-709.
    [66]Ainsworth E A, Leakey A D B, Ort D R, Long S P. FACE-ing the facts:inconsistenciesand interdependence among field, chamber and modeling studies of elevated [CO2] impacts on crop yield and food supply. New Phytologist,2008,179:5-9.
    [67]Akey D H, Kimball B A. Growth and development of the beet armyworm on cotton grown in an enriched carbon dioxide atmosphere. Southwest Entomology,1989,14:255-260.
    [68]Allen L H Jr.1996. The CO2 fertilization effect:higher carbohydrate production and retention as biomass and seed yield. In FAO Coporate Document Repository. Global climate change and agricultural production. Direct and indirect effects of changing hydrological, pedological and plant physiological processes. http://www.fao.org/docrep/W5183E/W5183E00.htm.
    [69]Amiri-Jami A R, Sadeghi H, Shoor M. The performance of Brevicoryne brassicae on ornamental cabbages grown in CO2-enriched atmospheres. Journal of Asia-Pacific Entomology,2012,15: 249-253.
    [70]Amthor J S, Mitchell R J, Runion G B, Rogers H H, Prior S A, Wood C W. Energy content, construction cost and phytomass accumulation of Glycine max (L.) Merr. and Sorghum bicolor (L.) Moench grown in elevated CO2 in the field. New Phytologist,1994,128(3):443-450.
    [71]Auad A M, Fonseca M G, Resende T T, Maddalena italo S C P. Effect of climate change on longevity and reproduction of Sipha flava (Hemiptera:Aphididae). Florida Entomologist,2012, 95(2):433-444.
    [72]Awmack C, Harringon R, Leather S. Host plant effects on the performance of the aphid Aulacorthum solani (Kalt.) (Homoptera:Aphididae) at ambient and elevated CO2. Global Change Biology,1997,3:545-549.
    [73]Awmack C S, Harrington R, Leather S R, Lawton J H. The impacts of elevated CO2 on aphid-plant interactions. Aspects of Applied Biology,1996,45:317-322.
    [74]Awmack, C S, Harrington R, Lindroth R L. Aphid individual performance may not predict population responses to elevated CO2 or O3. Global Change Biology,2004,10:1414-1423.
    [75]Baczek-Kwinta R, Koscielniak J. Anti-oxidative effect of elevated CO2 concentration in the air on maize hybrids subjected to severe chill. Photosynthetica,2003,41:161-165.
    [76]Bai B. Host effect on quality attributes of Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) and host discrimination by Copidosoma truncatellum Dalman (Hymenoptera: Encyrtidae). MSc thesis, University of California at Riverside, Riverside, California, USA.1986, 20-52.
    [77]Bale, J S, Masters G J, Hodkinson I D, Awmack C, Bezemer T M, Brown V K, Butterfield J, Buse A, Coulson J C, Farrar J, Good J E G, Harrington R, Hartley S, Jones T H, Lindroth R L, Press M C, Symrnioudis L Watt, A D, Whittaker J B. Herbivory in global climate change research:direct effects of rising temperature on insect herbivores. Global Change Biology,2002,8:1-16.
    [78]Barbehenn R V, Chen Z, Karowe D N, Spickard A. C3 grasses have higher nutritional quality than C4 grasses under ambient and elevated atmospheric CO2. Global Change Biology,2004a,10: 1565-1575.
    [79]Barbehenn R V, Karowe, Angela Spickard. Effects of elevated atmospheric CO2 on the nutritional ecology of C3 and C4 grass-feeding caterpillars. Oecologia,2004b,140:86-95.
    [80]Baxter R, Ashenden T W, Sparks T H, Farar J F. Effects of elevated carbon dioxide on three montane grass species:I. Growth and dry matter partitioning. Journal of Experimental Botany, 1994,45(3):305-315.
    [81]Benzener T M, Knight K J, Newington J E, Jones T H. How general are aphid responses to elevated atmospheric CO2. Annals of the Entomological Society of America,1999,92(5):724-730.
    [82]Bernardi D, Garcia M S, Botton M, Nava D E. Biology and fertility life table of the green aphid Chaetosiphon fragaefolli on strawberry cultivars. Journal of Insect Science 12:28 available online: insectscience.org/12.28.2012.
    [83]Bezemer T M, Jones T H. Plant-insect herbivore interactions in elevated atmospheric CO2 quantitative analyses and guild effects. Oikos,1998,82:212-222.
    [84]Bezemer T M, Knight K J, Newington J E, Jones T H. How general are aphid responses to elevated atmospheric CO2? Annals of the Entomological Society of America,1999,92:724-730.
    [85]Bezemer T M, Jones T H, Knight K J. Long-term effects of elevated CO2 and temperature on populations of the peach potato aphid Myzus persicae and its parasitoid. Aphidius matricariae. Oecologia.1998,116,128-135.
    [86]Bidart-Bouzat M, Imeth-Nathaniel A. Global change effects on plant chemical defenses against insect herbivores. Journal of Integrative Plant Biology,2008,50:1339-1354.
    [87]Bidart-Bouzat M G, Mithen R, Berenbaum M R. Elevated CO2 influences herbivory-induced defense responses. Oecologia,2005,145:415-424.
    [88]Birch L C. The intrinsic rate of natural increase of an insect population. Journal ofAnimnal Ecology', 1948.17:15-26.
    [89]Bootsma A, Gameda S, McKenney D W. Potential impacts of climate change on corn, soybeans and barley yields in Atlantic Canada. Canadian Journal of Plant Science,2005,85:345-357.
    [90]Brooks G L. Whittaker J B. Responses of multiple generations of Gastrophysa virdula, feeding on Rumex obtusifolius, to elevated. Global Change Biology,1998,4:63-75.
    [91]Buitenhuis R, Boivin G, Vet L E M, Brodeur J. Preference and performance of the hyperparasitoid Syrphophagus aphidivorus (Hymenoptera:Encyrtidae):fitness consequences of selecting hosts in live aphids or aphid mummies. Ecological Entomology,2004,29:648-656.
    [92]Bunce J A. Growth, survival, competition, and canopy carbon dioxide and water vapor exchange of first year alfalfa at anelevated CO2 concentration. Photosynthetica,1993,29:557-565.
    [93]Bunce J A. Long-term growth of alfalfa and orchard grassplots at elevated carbon dioxide. Journal of Biogeography,1995,22:341-348.
    [94]Butler G D, Kimball B A, Mauney J R. Populations of Bemisia tabaci (Homoptem:Aleyrodidae) on cotton grown in open-top field chambers enriched with CO2. Environmental Entomology,1986,15: 61-63.
    [95]Caemmerer SVon, Furbank R T. The C4 pathway:an efficient CO2 pump. Photosynthesis Research, 2003,77(2/3):191-207.
    [96]Caulfield F, and Bunce J A. Elevated atmospheric carbon dioxide concentration affects interactions between Spodoptera exigua (Lepidoptera:Noctuidae) larvae and two host plant species outdoors. Environmental Entomology,1994,23(4):999-1005.
    [97JCDIAC Carbon dioxide information analysis center, http://cdiac.esd.ornl.gov/.
    [98]Chen F, Wu G, Ge F, Parajulee M N, Shrestha R B. Effects of elevated CO2 and transgenic Bt cotton on plant chemistry, performance, and feeding of an insect herbivore, the cotton bollworm. Entomologia Experimentalis et Applicata,2005a,115:341-350.
    [99]Chen F J, Ge F, Parajulee M N. Impact of elevated CO2 on tri-trophic interaction of Gossypium hirsutum, Aphis gossypii, and Leis axyridis. Environmental Entomology,2005b,34(1):37-46.
    [100]Chen F J, Wu G, Parajulee M N, Ge F. Long-term impacts of elevated carbon dioxide and transgenic Bt cotton on performance and feeding of three generations of cotton bollworm. Entomologia Experimentalis et Applicata,2007,124:27-35.
    [101]Cornelissen T. Climate change and its effects on terrestrial insects and herbivory patterns. Neotropical Entomology,2011,40,155-163.
    [102]Coviefla C E, Morgan D J W, Trumble J T. Interactions of elevated CO2 and nitrogen fertilization: effects on the production of Bacillus thuringiensis toxins in transgenic plants. Environmental Entomology,2000,29:781-787.
    [l03]Coviella C E, Trumble J T. Effects of elevated atmospheric carbon dioxide on insect-plant interactions. Conservation Biolology,1999,13:700-712.
    [104]Coviella C E, Stipanovic R D, Trumble J T. Plant allocation to defensive compounds:interactions between elevated CO2 and nitrogen in transgenic cotton plants. Journal of Experimental Botany, 2002,53:323-331.
    [105]Cure J D, Aycock B. Crop responses to carbon dioxide doubling:a literature survey. Agricultural and Forest Meteorology,1986,38:127-145.
    [106]Cure J D. Carbon dioxide doubling responses:a crop survey//Strain B R, Cure J D, eds. Direct Effects of Increasing Carbon Dioxide on Vegetation, DOE/ER0238. Washington DC, USA:United States Department of Energy,1985,99-116.
    [107]Ellsworth D S, Oren R, Huang C, Phillips N, Hendrey G R. Leaf and canopy responses to elevated CO2 in a pine forest under free-air CO2 enrichment. Oecologia,1995,104:139-146.
    [108]Dermody O, O'Neil B F, Zangerl A R, Berenhaum M R, DeLucia E H. Effects of elevated CO2 and O3 on leaf damage and insect abundance in a soybean agroecosystem. Arthropod-Plant Interactions,2008,2:125-135.
    [109]Drake B G, Gonzalez-Meler M A, Long S P. More efficient plants:a consequence of rising atmospheric CO2? Annual Review of Plant Physiology and Plant Molecular Biology,1997,48: 609-639.
    [110]E1-Ibrashy M T, Samirael-Ziady, Riad A A. Laboratory studies on the biology of the corn leaf aphid, Rhopalosiphum maidis (Homoptera:Aphididae). Entomologia Experimentalis et Applicata, 1972,15:166-174.
    [111]Fajer E D, Bowers M D, Bazzaz F A. The effects of enriched CO2 atmospheres on the buckeye butterfly, Junonia coenia. Ecology,1991,72,751-754.
    [112]Fajer E P, Bowers M D, Bazzaz F A. The effects of enriched carbon dioxide atmospheres on plant-insect herbivore interactions. Science,1989,243,1198-1200.
    [113]Fang C, Moncrieff J B. A open-top chamber for measuring soil respiration and the influence of pressure difference on CO2 efflux measurement. Functional Ecology,1998,12:319-325.
    [114]Fields P G, Francis F L, Lucien L, Gerard F, Lionel P, Guy B. The effect of cold acclimation and deacclimation on cold tolerance, trehalose and free amino acid levels in Sitophilus granaries and Cryptoleste ferrugineus (Coleoptera). Journal of insect physiology,1998,44(10):955-965.
    [115]Finlay K J, Luck J E. Response of the bird cherry-oat aphid (Rhopalosiphum padi) to climate change in relation to its pest status, vectoring potential and function in a crop-vector-virus pathosystem. Agriculture Ecosystems& Environment,2011,144:405-421.
    [116]Flynn D F B, Sudderth E A, Bazzaz F A. Effects of aphid herbivory on biomass and leaf-level physiology of Solanum dulcamara under elevated temperature and CO2 Environmental and Experimental Botany,2006,56:10-18.
    [117]Fuwa F. The Handbook of the Global Environment. Tokyo:Asakura Publishing Co. Ltd,1994
    [118]Gao F, Zhu S R, Sun Y C, Du L, Parajulee M, Kang L, Ge F. Interactive effects of elevated CO2 and cotton cultivar on tri-trophic interaction of Gossypium hirsutum, Aphis gossyppii, and Propylaea japonica. Environmental Entomology,2008,37(1):29-37.
    [119]Godfree R, Robertson Bruce, Bolger T, Carnegie M, Young A. An improved hexagon open-top chamber system for stable diurnal and nocturnal warming and atmospheric carbon dioxide enrichment. Global Change Biology,2011,17,439-451.
    [120]Goverde M, Erhardt A. Effects of elevated CO2 on development and larval food-plant preference in the butterfly Coenonympha pamphilus (Lepidoptera, Satyridae). Global Change Biology,2003, 9:74-83.
    [121]Guerenstein P G, Hildebrand J G. Roles and effects of environmental carbon dioxide in insect life. Annual Review of Entomology,2008,53,161-178.
    [122]Gunderson C A, Norby R J, Wullschleger S D. Foliar gas exchange of two deciduous hardwoods during 3 years of growth in elevated CO2:no less of photosynthetic enhancement. Plant, Cell& Environment,1993,16:979-807.
    [123]Hagele B F, Martine R R. Dietary mixing in three generalist herbivores:nutrient complementation or toxin dilution? Oecologia,1999,119:521-533.
    [124]Hamilton J G, Dermody O, Aldea M, Zangerl A R, Rogers A, Berenbaum M R, Delucia E H. Anthropogenic changes in tropospheric composition increase susceptibility of soybean to insect herbivory. Environmental Entomology,2005,34:479-485.
    [125]He K L, Wang Z Y, Bai S X, Zheng L, Wang Y B, Cui H Y. Efficacy of transgenic Bt cotton for resistance to the Asian corn borer (Lepidoptera; Crabidae). Crop Protection,2000,25:167-173.
    [126]He J S, Bazzaz F A, Schmid B. Interactive effects of diversity, nutrients and elevated CO2 on experimental plant communities. Oikos,2000,97:337-348.
    [127]Heagle A S, Body D E, Heck W W. A top-open chamber to asses the impact of air pollution on plant. Journal of Environmental Quality,1973,2 (3):365-368.
    [128]Heagle A S, Philbeck R B, Rogers H H, Letchworth M B. Dispensing and monitoring ozone in open-top chambers for plant-effects studies. Phytopathology,1979,69,15-20.
    [129]Hendrey G R, Lewin K F, Nagy J. Free air carbon dioxide enrichment:development, progress, results. Vegetatio,1993.104/105:17-31.
    [130]Hileman D R, Huluka G, Kenjige P K. Sinha N, Bhattacharya N C, Biswas P K, Lewin K F, Nagy J and Hendrey G R. Canopy photosynthesis and transpiration of field-grown cotton exposed to free-air CO2 enrichment (FACE) and differential irrigation. Agriculture Forest Meteorology,1994, 70:189-207.
    [131]Himanen S J, Nissinen A, Dong W X, Nerg A M. Stewart C N, Poppy G M, Holopaonen J K. Interactions of elevated carbon dioxide and temperature with aphid feeding on transgenic oilseed rape:Are Bacillus thuringiensis (Bt) plants more susceptible to nontarget herbivores in future climate? Global Change Biology,2008,14:1437-1454.
    [132]Hogsett W E, Tingey D T, Holman S R. A programmable espouser control system for determination the effects of air pollution exposure regimes on plant growth. Atmospheric Environment,1985,19(7):1135-1145.
    [133]Holopainen J R. Aphid responses to elevated ozone and CO2. Entomologia Experimentalis et Applicata,2002,104:137-142.
    [134]Hoover J K, Newman J A. Tritrophic interactions in the context of climate change:a model of grasses, cereal aphids and their parasitoids. Global Change Biology,2004,10:1197-1208.
    [135]Houghton J T, Ding Y, Griggs D J, Noquer M, van der Linden P J, Xiaosu D. Climate Change 2001: the Scientific Basis. Cambridge University Press, Cambridge, UK.2001.
    [136]Hughes L, Bazzaz F A. Effect of elevated CO2 on interaction between the western flower thrips, Frankliniella occidentalis (Thysanoptera:Thripdidae) and the common milkweed, Asclepias syriaca. Oecologia,1997,109:286-290.
    [137]Hughes, L, and Bazzaz F A. Effects of elevated CO2 on five plant—aphid interactions. Entomologia Experimentalis et Applicata,2001,99:87-96.
    [138]Hunter M D. Effects of elevated atmospheric carbon dioxideon insect-plant interactions. Agricultural and Forest Entomology,2001,3,153-159.
    [139]Hussain M Z, Vanloocke A, Siebers M H, Ruiz-Vera U, Markelz R J C, Leakey A D B, Ort D R, Bernacchi C J. Future carbon dioxide concentration decreases canopy evapotranspiration and soil water depletion by field-grown maize. Global Change Biology,2013,19:1572-1584.
    [140]Idso S, Kimbail B A. Effects of atmospheric CO2 enrichmenton photosynthesis, respiration, and growth of sour orange trees. Plant Physiology,1992,99:341-343.
    [141]IPCC (Intergovernmental Panel on Climate Change) 2007. Climate change 2007:The physical science basis summary for policymakers. Contribution of Working Group Ⅰ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In:Fuwa F. (ed). The Handbook of the Global Environment. Tokyo:Asakura Publishing Co. Ltd.,2007,1-23.
    [142]IPCC 2006. IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston HS, Buendia L, Miwa K, Ngara T and Tanabe K(eds). Published:IGES, Japan.2006.
    [143]Jablonski L M, Wang X Z, Curtis P. Rapid report:plant reproduction under elevated CO2 conditions:a meta-analysis of reports on 79 crop and wild species. New Phytologist,2002,156: 9-26.
    [144]John C V, Hughes L. Interaction effects of elevated CO2 and temperature on the leaf-miner Dialectica scalariella Zeller (Lepidoptera:Gracillariidae) in Paterson's curse, Echium plantagineum (Boraginaceae). Global Change Biology,2002,8(2):142-152.
    [145]Johnson R H, Lincoln D E. Sagebrush and grasshopper responses to atmospheric carbon dioxide concentration. Oecologia,1990,84:103-110.
    [146]Johnson R H, Lincoln D E. Sagebrush carbon allocation patterns and grasshopper nutrition, the influence of CO2 enrichment and soilmineral limitation. Oecologia,1991,87:127-134.
    [147]Johnston S L, Lee J R R E. Regulation of supercooling and nucleation in a freeze intolerant beetle (Tenebrio molior). Cryobiology,1990,27,562-568.
    [148]Karowe D N, Seimens D H, Mitchell-Olds T. Species-specific response of glucosinolate content to elevated atmospheric CO2. Journal of Chemical Ecology,1997,23(11):2569-2582.
    [149]Karowe, D N. Are legume-feeding herbivores buffered against direct effects of elevated carbon dioxide on host plants? A test with the sulfur butterfly, Colias philodice. Global Change Biology, 2007,13:2045-2051.
    [150]Kim S H, Gitz D C, Sicher R C, Baker J T, Timlin D J, and Reddy V R. Temperature dependence of groth, development, and photosynthesis in maize under elevated CO2. Environmental and Experimental Botany,2007,61:224-236.
    [151]Kimball B A, Pinter Jr. P J, Wall G. W, Garcia R L, LaMorte R L, Jak P M C, Ftumau K F A, Vugts H F.1997. Comparisons of responses of vegetation to elevated carbon dioxide in free-air and open-top chamber facilities. Advances in Carbon Dioxide Effects Research. L. H.Allen, M. B. Kirkham, D. M. Olszyk and C. E. Whitman (ed.) published by ACSESS. Madison
    [152]Kimball B A, Mauney J R. Response of cotton to varying CO2, irrigation and nitrogen:yield and growth. Agronomy Journal,1993,85:706-712.
    [153]Kimball LaMorte R L, Seay R S, Pinter P J, Rokey R R, Hunsaker D J, Dugas W A, Heuer M L, Mauney J R, Hendrey G R, Lewin K F, Nagy J. Effects of free-air CO2 enrichment on energy balance and evapotranspiration of cotton. Agriculture Forest Meteorology,1994,70:259-278.
    [154]Kuo M H, Chiu M C, Perng J J. Temperature effects on life history traits of the corn leaf aphid, Rhopalosiphum maidis (Homoptera:Aphididae) on corn in Taiwan. Applied Entomology and Zoology.2006,41:171-177.
    [155]Kurz W A, Apps M J. Webb T M, McNamee P J. The carbon budget of the Canadian forest sector: phase I. Simulation,1993,61(3):139-144.
    [156]Lawler I R, Foley W J, Woodrow I E, Cork S J. The effects of elevated CO2 atmospheres on the nutritional quality of Eucalyptus foliage and its interaction with soil nutrient and light availability. Oecologia,1997,109:59-68.
    [157]Lawlor D W, Mitchell R A C. The effects of increasing CO2 on crop photosynthesis and Productivity, a review of field studies. Plant, Cell and Environment,1991,14:807-818.
    [158]Lawson T, Craigon J. Black C R. Colls J J, Tulloch A M, Landon G. Effects of elevated carbon dioxide and ozone on the growth and yield of potatoes (Solanum tuberosum) grown in open-top chambers. Environmental Pollution,2001,111:479-491.
    [159]Leadley P W, Drake B G. Open top chambers for exposing plant canopies to elevated CO2 concentration and for measuring net gas exchange. Vegetatio,1993,104/105:3-15.
    [160]Leadley P W, Niklaus P A, Stocker R, Korner C. A field study of the effects of elevated CO2on plant biomass and community structure in a calcareous grass land. Oecologia,1999,118,38-49.
    [161]Leakey A D B, Bermacchi C J, Dohleman F G, Ort D R, Long S P. Will photosynthesis of maize (Zea mays) in the US Corn Belt increase in future [CO2] rich atmosphere? An analysis of diurnal courses of CO2 uptake under free-air concentration enrichment (FACE). Global Change Biology, 2004,10(6):951-962.
    [162]Leakey A D B, Uribelarrea M, Ainsworth E A, Naidu S L, Rogers A, Ort D R, Long S T. Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought. Plant Physiology,2006,140:779-790.
    [163]Leakey A D B. Rising atmospheric carbon dioxide concentration and the future of C4 crops for food and fuel. Proceedings of the Royal Society B,2009,276:2333-2343.
    [164]Lee K P, Behmer S T, Simpson S J, Raubenheimer D. Ageometric analysis of nutrient regulation in the generalist caterpillar Spodoptera littoralis (Boisduval). Journal of Insect Physiology,2002,48: 655-665.
    [165]Li C R, Liang Y H, Hew C S. Response of rubisco and sucrose metabolizing enzymes to different CO2 in a C3 tropical epiphytic orchid Oncidium goldiana. Plant Science,2002,163:313-320.
    [166]Li Z Y, Liu T J, Xiao N W, Li J S, Chen F J. Effects of elevated CO2 on the interspecific competition between two sympatric species of Aphis gossypii and Bemisia tabaci fed on transgenic Bt cotton. Insect Science,2011,18:426-434.
    [167]Lill, J T, Marquis R J. The effects of leaf quality on herbivore performance and attack from natural enemies. Oecologia,2001,126,418-428.
    [168]Lincoln D E, Sionit, N, Strain B R. Growth and feeding response of Pseudoplusla includes (Lepioptera:Noctuidae) to host plant growth in controlled carbon dioxide atmosphere. Environmental Entomology,1984,13(6):1527-1530.
    [169]Lincoln D E, Couvet D, Sionit N. Response of an insect herbivore to host plants grown in enriched carbon dioxide atomospheres. Oecologia,1986,69:556-560.
    [170]Lincoln D E, Fajer E C, Johnson R H. Plant-insect herbivore interactions in elevated CO2 environments. Trends in Ecology and Evolution,1993,8(2):64-68.
    [171]Lincoln D E. The influence of plant carbon dioxide and nutrient supply on susceptibility to insect herbivores. Vegetatio,1993,104:273-280.
    [172]Lindroth R L, Arteel G E, and Kinney K. K. Response of three saturniid species to paper birch grown under enriched CO2 atmospheres. Functional Ecology,1995,9:306-311.
    [173]Lindroth R L, Kinney K K, Platz C L. Response of deciduous trees to elevated atmospheric CO2: productivity, phytochemistry, and insect performance. Ecology,1993,74:763-777.
    [174]Lin J S, Wang G X. Double CO2 could improve the drought tolerance better in sensitive cultivars than in tolerance cultivars in spring wheat. Plant Science,2002,163:627-637.
    [175]Liu Z D, Gong P Y, Heckel D G, Wei W, Sun J H, Li D M. Effects of larval host plants on over-wintering physiological dynamics and survival of the cotton bollworm, Helicoverpa armigera (Hubner) (Lepidoptera:Noctuidae). Journal of Insect Physiology,2009,55(1):1-9.
    [176]Liu Z D, Gong P Y, Wu K J, Wei W, Sun J H, and Li D M. Effects of larval hot plants on overwintering preparedness and survival of the cotton bollworm, Helicoverpa armigera (Hiibner) (Lepidoptera:-Noctuidae). Journal of Insect Physiology,2007,53(10):1016-1026.
    [177]Maia A, Luiz A J B, Campanhola C. Statistical inference on associated fertility life table parameters using Jackknife technique:computational aspects. Journal of Economic Entomology, 2000,93:511-518.
    [178]Mandl R H, Weinstein L H, McCune D C Keveny M. A cylindrical open-top chamber for the exposure of plant to air pollutants in the field. Journal of Environmental Quality,1973,2(3): 371-376.
    [179]Marks S, Strain B R. Effects of drought and CO2 enrichment on competition between two old-field perennials. New Phytologist,1989,111.181-186.
    [180]Maroco J P, Edwards G E, Ku M S B. Photosynthetic acclimation of maize to growth under elevated levels of carbon dioxide. Planta,1999,210(1):115-125.
    [181]Mattson W J Jr. Herbivory in relation to plant nitrogen content. Annual Review of Ecology and Systematics,1980,11:119-161.
    [182]Mcleed A R, Long S P. Free air carbon dioxide enrichment (FACE) in global change research:a review. Advances in Ecology Research,1999,28,1-56.
    [183]Mina U, Bhatia A, Kumar U. Response of maize and its pest Chilo partellus to ozone and carbon dioxide exposure. Maydica,2012,57:183-187.
    [184]Mo G, Nie D, Kirkham M B, He H, Ballou L K, Caldwell F W, Kanemasu E T. Root and shoot weight in a tallgrass prairie under elevated carbon dioxide. Environmental and Experimental Botany 1992,32:193-201.
    [185]Montjoy C S. The effects of elevated carbon dioxide on the growth, reproduction and food consumption by Melanoplus differentialis and M. sanguinipes feeding on Andropogon gerardii. M. Sc. Thesis. University of South Caroline, Columbia,1992.
    [186]Mortensen L, Engvild K C. Effects of ozone on 14C translocation velocity and growth of spring wheat (Triticum aestivum L.). Environmental Pollution,1995.87:135-140.
    [187]Murray D R. Plant response to carbon dioxide. American Journal of Botany.1995,82:690-697.
    [188]Newman J A, Gibson D J, Parsons A J, Thornley J H M. How predictable are aphid population responses to elevated CO2. Journal of Animal Ecology,2003,72:556-566.
    [189]Newman J A. Climate change and cereal aphids:the relative effects of increasing CO2 and temperature on aphid population dynamics. Global Change Biology,2003,10:5-15.
    [190]Nie G Y, Long S P, Gareia R L. Effect of free-air CO2 enrichment on the development of the photosynthetic apparatus in wheat, as indicated by changes in leaf proteins, Plant, Cell and Environment,1995,18:855-864.
    [191]Norby R J, Edwards N T, Riggs J S, Abner C H. Wullschleger S D, Gunderson C A. Temperature-controlled open-top chambers for global change research. Global Change Biology, 1997,3:259-267.
    [192]Norby R J, Wullschleger S D, Gunderson C A, Johnson D W, Ceulemans R. Tree responses to rinsing CO2 in field experiments:implications for the future forest. Plant, Cell and Environment, 1999,22:683-714.
    [193]Nordhaus W D. Economic aspects of global warming in a post-copenhagen environment. Proceedings of the National Academy of Sciences of the USA,2010,107,11721-11726.
    [194]Norris T S, Bailey B J, Lees M, Young P. Design of a controlled-ventilation open-top chamber for climate change research. Journal ofAgricutral Engineeing Research,1996,64,279-288.
    [195]O'Neill B F, Zangerl A, Dermody O, Bilgin D D, Casteel C L, Zavala J A, Delucia E H, Berenbaum M R. Impact of elevated levels of atmospheric CO2 and herbivory on flavonoids of soybean (Glycine max Linnaeus). Journal of Chemical Ecology,2010,36:35-45.
    [196]O'Neill B F, Zangerl A R, Delucia E H, Berenhaum M R. Olfactory preferences of Popillia japonica, Vanessa cardui, and Aphis glycines for Glycine max grown under elevated CO2 Environmental Entomology,2010,39(4):1291-1301.
    [197]Okada M, Lieffering M, Nakamura H, Yoshimoto M, Kim H Y, Kokayashi K. Free-air CO? enrichment (FACE) using pure CO2 injection:system description. New Phytologist,2001,150: 251-260.
    [198]Olszyk D M, Takemoto B K, Kats G, Dawson P J, Morrison C L, Wolf Preston J. Thompson C R. Effects of open-top chambers on'Valencia' orange trees. Journal of Envrionment Quality,1992,21 128-134.
    [199]Osbrink W L A, Trumble J T, Wagner R E. Host suitability of Phaseolus lunata for Trichoplusia ni (Lepidoptera:Noctuidae) in controlled carbon dioxide atmospheres. Environmental Entomology, 1987,16(3):639-644.
    [200]Ottman M J, Kimball B A, Pinter P J, Wall G W, Vanderlip R L, Leavitt S W, LaMorte R L, Matthias A D, Brooks T J. Elevated CO2 increases sorghum biomass under drought conditions. New Phytologist,2001,150:261-273.
    [201]Owensby C E, Ham J M, Knapp A, Rice C W, Coyne P I, Auen L M. In:G W, Koch. H A Mooney, eds. Carbon dioxide and terrestrial ecosystems San Diego, CA, USA:Academic Press,1996, 147-162.
    [202]Owensby C E, Ham J M, Knapp A K, Allen L M. Biomass production and species composition change in a tall grass prairie ecosystem after long-term exposure to elevated atmospheric CO2 Global Change Biology,1999,5:497-506.
    [203]Palomaki V, Hassinen A, Lemettinen M, Oksannen T, Helmisaari Helja-Sisko, Holopainnen J, Kellomaki S, Holopainene T. Open-top chamber fumigation system for exposure of field grown Pinus sylvestris to elevated carbon dioxide ans ozone concentration. Silva Fennica,1998,32: 205-214.
    [204]Patterson D T. Responses of soybean (Glycine max) and three C4 grass weeds to CO2 enrichment during drought. Weed Science,1986,34:203-210.
    [205]Peters G P, Marland G, Quere C L, Boden T, Canadell J G, Raupach M R. Rapid growth in CO2 emissions after the 2008-009 global financial crisis. Nature Climate Change,2012,2:2-4.
    [206]Pleijel H, Mortensen L, Fuhrer J, Ojanpera K, Danielsson H. Grain protein accumulation in relation to grain yield of spring wheat (Triticum aestivum L.) grown in open-top chambers with different concentrations of ozone, carbon dioxide and water availability. Agriculture, Ecosystems and Environment,1999,72:265-270.
    [207]Poorter H, Roument C, Campbell B D. Interspecific variation in the growth response of plants to elevated CO2 A search for functional types. In:Korner C, Bazzaz F A, eds. Carbon dioxide, populations, and communities. San Diego, CA, USA:Academic Press,1996,375-411.
    [208]Rai R, Agrawal M, Agrawal S B. Assessment of yield losses in tropical wheat using open top chambers. Atmospheric Environment,2007,41:9543-9554.
    [209]Rao M S, Manimanjari D, Vanaja M, Rama Rao C A, Srinivas K, Rao V U M, Venkateswarlu B. Impact of elevated CO2 on tobacco caterpillar, Spodoptera litura on peanut, Arachis hypogea. Journal of Insect Science.2012,12:103.
    [210]Raubenheimer D. Simpson S J. Analysis of covariance:an alternative to nutritional indices. Entomologia Experimentalis et Applicata,1992,62:221-231.
    [211]Reddy G V P, Tossavainen P, Anne-Marja N, Holopainen J K. Elevated atmospheric CO2 affects the chemical quality of Brassica plants and the growth rate of the specialist, Plutella xylostella, but not the generalist, Spodoptera littoralis. Journal of Agricultural and Food Chemistry,2004,52 (13):4185-4191.
    [212]Robinson E A, Ryan G D, Newman J A. A meta-analytical review of the effects of elevated CO2 on plant-arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytologist,2012,194,321-336.
    [213]Rochehort S, Berthiaume R, Hebert C, Charest M, Bauce E. Effect of temperature and host tree on cold hardiness hemlock looper eggs along a latitudinal gradient. Journal of Insect Physiology,2011, 57(6):751-759.
    [214]Rogers A, Allen D J, Davey P A, Morgan P B, Ainsworth E A, Cornic G, Dermody O, Dohleman F G, Heaton E A, Mahoney F G, Zhu X G, Delucia E H, Ort D R, Long S P. Leaf photosynthesis and carbohydrate dynamics of soybeans grown throughout their life-cycle under free-air carbon dioxide enrichment. Plant, Cell & Environment,2004,27:449-458.
    [215]Rogers H H, Runion G B, Krupa S V. Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere. Environment Pollution,1994,83:155-189.
    [216]Rossi A M, Stiling P, Moon D C, Cattell M V, Drake B G. Induced defensive response of myrtleoak to foliar insect herbivory in ambient and elevated CO2. Journal of Chemical Ecology,2004,30(6): 1143-1152.
    [217]Roth S K, and Lindroth R L. Elevated atmospheric CO2:effects on phytochemistry, insect performance and insect-parasitoid interactions. Global Change Biology,1995.1:173-182.
    [218]Rudorff B F, Mulchi C L, Lee E H, Rowland R, Pausch R. Effects of enhanced O3 and CO2 enrichment on plant characteristics in wheat and corn. Environmental Pollution,1996,94(1): 53-60.
    [219]Salt D T, Brooks G L, Whittaker J B. Elevated carbon dioxide affects leaf-miner performance and plant growth in docks(Rumex spp.). Global Change Biology,1995,1:153-156.
    [220]Samarakoon A B, Gifford R M. Soil water content under plants at high CO2 concentration and interactions with the direct CO2 effects:a species comparison. Journal of Biogeography,1995,22: 193-202.
    [221]Sanders G E, Clark A G, Colls J J. The influence of open-top chambers on the growth and development of field bean. New Phytologist,1991,117:437-447.
    [222]Saxe H, Ellsworth D S, Heath J. Tansley Review No.98. Tree and forest functioning in an enriched CO2 atmosphere. New Phytologist,1998,139:395-436.
    [223]Schadler M, Roeder M, Brandl R, Matthies D. Interacting effects of elevated CO2, nutrient availability and plant species on a generalist invertebrate herbivore. Global Change Biology,2007, 13:1005-1015.
    [224]Schenck S, Lehrer A T. Factors affecting the transmission and spread of sugarcane yellow leaf virus. Plant Disease,2000,84:1085-1088.
    [225]Schroeder J B, Gray M E, Ratcliffe S T, Estes R E, Long S P. Effects of elevated CO2 and O3 on a variant of the western corn rootworm (Coleoptera:Chrysomelidae). Environmental Entomology, 2006,35(3):637-644.
    [226]Scriber J M, Slansky F. The nutritional ecology of immature insects. Annual Review of Entomology,1981,26:183-211.
    [227]Sionit N, Strain B R, Flint E P. Interaction of temperature and elevated on photosynthesis and seed yield. Canadia Journal Plant Science,1987,67:629-636.
    [228]Slansky F. Stabilization of the rate of nitrogen accumulation by larvae of the cabbage butterfly on wild and cultivated food plants. Ecological Monographs,1997,47:209-228.
    [229]S0mme L.1982. Supercooling and winter survival in terrestrial arthropods. Comparative Biochemistry Physiology A-molecula,1982,73:519-543.
    [230]Stacey D A, Fellowes M D E. Influence of elevated CO2 on interspecific interactions at higher trophic levels. Global Change Biology,2002,8:668-678.
    [231]Stiling P, Cattell M, Moon D C., Rossi A, Hungate B A, Hymus G, Drake B. Elevated atmospheric CO2 lowers herbivore abundance, but increases leaf abscission rates. Global Change Biology,2002, 8:658-667.
    [232]Stiling P, Cornelissen T. How does elevated carbon dioxide (CO2) affect plant-herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance. Global Change Biology,2007,13:1823-1842.
    [233]Stling P, Rossi A M, Hungate B, Dijkstra P, Hinkle R, Komtt III W M, Drake B. Decreased leaf-miner abundance in elevated CO2:reduced leaf quality and increased parasitoid attack. Ecological Applications,1999,9(1):240-244.
    [234]Sun Y C, Feng L, Gao F, Ge F. Effects of elevated CO2 and plant genotype on interactions among cotton, aphids, and parasitoids. Insect science,2011,18:451-461.
    [235]Sun Y C, Yin J, Chen F J, Wu G, Ge F. How does atmospheric CO2 affects crop pests and their natural enemies? Case histories from China. Insect Science,2011,18:393-400.
    [236]Sun Y C, Chen F J, Ge F. Elevated CO2 changes interspecific competition among three species of wheat aphids:Sitobion avenae, Rhopalosiphum padi, and Schizaphis graminum. Environmental Entomology,2009,38:26-34.
    [237]Sun Y C, Su J W, Ge F. Elevated CO2 reduces the response of Sitobion avenae (Homoptera: Aphididae) to alarm pheromone. Agriculture, Ecosystems & Environment,2010,135:140-147.
    [238]Thom C, Guerenstein P G, Mechaber W L, Hildebrand J G. Floral CO2 reveals flower profitability to moths. Journal of Chemical Ecology,2004,30,1285-1288.
    [239]Thomson L J, Macfadyen S, Hoffmann A A. Predicting the effects of climate change on natural enemies of agricultural pests. Biological Control,2010,52,296-306.
    [240]Tissue D T, Wright S J. Effects of seasonal water availability on phenology and the annual shoot carbohydrate cycle of tropical forest shrubs. Functional Ecology,1995,9:518-527.
    [241]Tuchman N, Wetzel R, Rier S, Wahtera K, Teeri J. Elevated atmospheric CO2 lowers leaf litter nutritional quality for stream ecosystem food webs. Global Change Biology,2002,8:163-170.
    [242]Twine T E, Brant J J, Richter K T, Bernacchi C J, McConnaughay K D, Morris S J, Leakey A D B. Impacts of elevated CO2 concentration on the productivity and surface energy budget of the soybean and maize agroecosystem in the Midwest USA. Global Change Biology,2013,19(9): 2838-2852.
    [243]Veteli T O, Kuokkanen K, Julkunen-Tiitto R, Roininen H, Tahvanainen J. Effects of elevated CO2 and temperature on plant growth and herbivore defensive of chemistry. Global Change Biology, 2002,8:1240-1252.
    [244]Vuorinen T, Nerg A M, Ibrahim M A, Reddy G V P, Holopainen J K. Emission of Plutellaxylostella-induced compounds from cabbages grown at elevated CO2 and orientation behavior of the natural enemies. Plant Physiology,2004,135(4):1984-1992.
    [245]Waldbauer G P. The consumption and utilization of food by insect. Advances in Insect Physiology 1968,5,229-288.
    [246]Wand S J E, Midgley G F, Jones M H, Curtis P S. Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration:a meta-analytic test of current theories and perceptions. Global Change Biology,1999,5(6):723-741.
    [247]Wang J J, Zhao Z M. Accumulation and utilization of triacylglycerol and polysaccharides in Liposcelis bostrychophila (Psocoptera, Liposcelididae) selected for resistance to carbon dioxide. Journal of Applied Entomology,2003,127,107-111.
    [248]Watanabe M, Tanaka K. Overwintering status and cold hardiness of Hypera punctata (Coleopteran: Curculionidae). Cryobiology,1997,35:270-276.
    [249]Watling J R, Press M C, Quick W P. Elevated CO2 induces biochemical and ultrastructural changes in leaves of the C4 cereal sorghum. Plant Physiology,2000,123(3):1143-1152.
    [250]Watson R T, Zinyowera M C, Moss R H.1996. Climate Change 1995:Impacts, A daptations and Mitigation of Climate Change:Scientific-Technical Analysis. Cambridge University Press, Cambridge, UK.
    [251]Watt A D,Whittaker J B, Docherty M, Brooks G, Lindsay E, Salt D T.1995. The impact of elevated atmospheric CO2 on insect herbivores. Insects in a Changing Enviroment-17th Symposium of the Royal Entomological Society (ed. by R Harrington & NE Stork), pp.198-217. Academic Press, London, UK.
    [252]Webber A N, Nie G Y, Long S P. Acclimation of photosynthetic protein to rising atmospheric CO2. Photosynthesis Research,1994,39:413-425.
    [253]White T C A. The abundance of invertebrate herbivores in relation to the availability of nitrogen in stressed food plants. Oecologia,1984,63:90-105.
    [254]Whittaker J B. Impacts and responses at population level of herbivorous insects to elevated CO2. Eurpean Journal of Entomology,1999,96:149-156.
    [255]Wigley T M L, Raper S C B. Implications for climate and sea level of raise IPCC emission scenarios. Nature,1992,357:293-300.
    [256]Williams R S, Lincoln D E, Norby R J. Leaf age effects of elevated CO2-grown white oak leaves on spring-feeding lepidopterans. Global Change Biology,1998,4:235-246.
    [257]Williams R S, Lincoln D E, Norby R J. Development of gypsy moth larvae feeding on red maple saplings at elevated CO2 temperature. Oecologia,2003,137:114-122.
    [258]Wilsey B J. Plant responses to elevated atmospheric CO2 among terrestrial biomes. Oikos,1996, 76:201-205.
    [259]Worland M P. The relationship between water content and cold tolerance in the arctic collembolan Onychiurus arcticus (CoIIemola:Onychiuridae). European Journal of Entomology,1996,93(3): 341-348.
    [260]Wu G, Chen F J, Ge F. Response of multiple generations of cotton bollworm Helicoverpa armigera Hubner, feeding on spring wheat, to elelvated Co2 Journal of Applied Entomology,2006, 130(1):2-9.
    [261]Wu G, Chen F J, Sun Y C, Ge F. Response of successive three generations of cotton bollworm, Helicoverpa armigera (Hubner), fed on cotton bolls under elevated CO2. Journal of Environmental Sciences,2007,19:1318-1325.
    [262]Yin J, Sun Y C, Wu G, Ge F. Effects of elevated CO2 associated with maize on multiple generations of the cotton bollworm, Helicoverpa armigera. Entomologia Experimentalis et Applicata,2010,136:12-20.
    [263]Yin J, Sun Y C, Wu G, Parajulee M N, Ge F. No effects of elevated CO2 on the population relationship between cotton bollworm, Helicoverpa armigera (Hubner) (Lepidoptera:Noctuidae), and its parasitoid, Microplitis mediator Haliday (Hymenoptera:Braconidae). Agriculture, Ecosystem& Environment,2009,132:267-275.
    [264]Zavala J A, Casteel C L, DeLucia E H, Berenhaum M R. Anthropogenic increase in carbon dioxide compromises plant defense against invasive insects. Proceedings of the National Academy of Sciences of the United States of America,2008,105(3):5129-5133.
    [265]Zavala J A, Casteel C L, Nabity P D, Berenhaum M R DeLucia E H. Role of cysteine proteinase inhibitors in preference of Japanese beetles (Popillia japonica) for soybean(Glycine max) leaves of different ages and grown under elevated CO2. Oecologia,2009,161:35-41.
    [266]Zavala J A, Nabity P D, DeLucia E H.2013. An emerging understanding of mechanisms governing insect herbivory under elevated CO2. Annual Review Entomology,58:79-97.
    [267]Zhang J, Xing G M, Liao J X, Hou Z D, Wang G X, Wang Y F. Effects of different atmospheric CO2 concentrations and soil moistures on the populations of bird cherry-oat aphid(Rhopalosiphum padi) feeding on spring wheat. European Journal Entomology,2003,100:521-530.
    [268]Ziska L H, Bunce J A. Influence of increasing carbon dioxide concentration on the photosynthetic and growth stimulation of selected C4 crops and weeds. Photosynthesis Research,1997,54(3): 199-208.
    [269]Ziska L H, Sicher R C, Bunce J A. The impact of elevated carbon dioxide on the growth and gas exchange of three C4 species differing in CO2 leak rates. Physiologia Plantarum,1999,105(1): 74-80.
    [270]Zvereva E L, Kozlov M V. Consequences of simultaneous elevation of carbon dioxide and temperature for plant-herbivore interactions:a meta analysis. Global Change Biology,2006, 12:27-41.
    [271]Zvereva E L. Effects of host plant quality on overwintering success of the leaf beetle Chrysomela lapponica (Coleoptera:Chrysomelidae). European Journal of Entomology,2002,99(2):189-195.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700