用户名: 密码: 验证码:
基于蚁群算法和变角相似关系的泵站优化运行研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泵站的调水能够有效地解决水资源时空分布不均的问题,但调水过程会消耗大量的能量,从而导致泵站运行的成本很高。因此,研究泵站系统的运行优化,获得较佳的运行方案,以降低泵站的运行成本,具有重大意义。要对泵站系统的运行进行优化是一个复杂的问题,涉及的因素众多,尤其是多机组、多泵站并联运行时,问题计算的规模较大,运行方案的决策困难,这就对问题模型的可靠性以及计算方法的高效性、稳定性提出了要求。
     泵站运行时常用的工况调节方式是变角调节和变速调节。有研究表明,考虑到变频装置的使用寿命和价格,利用变速调节来实现泵站的优化运行时得到的运行方案经济性并不明显,因而本文仅研究通过变角调节来辅助泵站的优化运行,对水泵变角调节时的机理及可能存在的相似关系进行了探讨。计算泵站优化运行问题时,传统的确定性算法虽然可以找到问题的最优解,但是求解效率比较低;近似性算法在泵站优化运行问题中已有的研究仅限于能够应用,着重于优化运行方案与原设计运行方案之间的比较,对算法中关键信息如何针对问题本身的特性进行改进,避免算法因陷入局部最优而遗漏全局最优,以及进一步提高算法求解效率等方面的研究较少。因此,本研究将致力于探索蚁群算法和水泵的变角相似关系在泵站优化运行问题中的应用,以期能以较好的策略求解问题,获得优化后的运行方案来辅助泵站的日常运行管理,具体研究的内容和成果如下。
     (1)对水泵变角调节时可能存在的相似关系进行了研究。通过分析变角调节前后水泵进出口速度三角形的变化关系,结合水泵内部水流运动的特性,推导出流量、扬程随叶片安放角变化的相似关系式,提出以试验性能为依据,水泵变角相似关系式计算结果与试验数据间的误差平方和最小为目标函数,通过数值逼近求解相似关系式中流量指数和扬程指数的方法。据此构造水泵的变角相似关系计算模块并列举应用算例验证其性能,该模块可依据设计角度(0。)的精确测试结果较准确地计算常规变角范围内任意角度下的水泵性能,照此可对模型试验结果中人为操作的调角误差导致的性能误差进行修正,使得调角性能更接近真实结果。
     (2)蚁群算法是Marco Dorigo等学者在真实蚂蚁觅食行为启发下提出的一种元启发式优化算法,在一些组合优化调度问题中已有应用。泵站优化运行同属组合优化调度问题,论文根据此类问题的共性,结合蚁群算法的特点合理设定目标函数和约束条件,建立泵站单机组日优化运行的蚁群算法数学模型。结合模型的成分有效地设定问题求解的结点模式图,由人工蚁搜索寻找问题的可行解集,通过分析模型的特性改进蚁群算法中启发式信息和信息素更新的方式,利用状态转移规则和信息素更新逐步逼近最优解,并构造泵站单机组日优化运行的蚁群求解模块。实例计算表明,单机组优化运行蚁群求解模块的求解效率高,计算结果与同等离散情况下的动态规划法和商业软件进化求解算法的计算结果相同。
     (3)泵站多机组优化运行问题的数学模型比较复杂,需要寻求更高效的求解途径。论文建立了包含机组开停机约束的泵站多机组日优化运行问题的数学模型,并提出了求解模型的蚁群递阶优化算法。将总的抽水量离散后分配至单台机组,视单机组为子系统,先利用单机组优化运行计算模块对子系统进行优化求解,再根据系统总的目标,考虑各子系统之间的关联,协调修改子系统的输入和输出,最终实现全局优化。同时选取运行电费、叶片调节次数、泵机组运行时间、运行效率和消耗的功率作为评价指标,建立泵站优化运行方案的投影寻踪选优决策模型,得到多个运行方案的优劣顺序,进行决策,以便更全面地分析泵站优化运行问题,得到与实际运行的情况贴切、实施方便的泵站运行方案。据此构造泵站多机组日优化运行蚁群递阶求解的计算模块,列举应用算例来检验模块的性能,结果显示,变量同等离散的情况下,利用泵站多机组优化运行蚁群递阶模块计算的结果运行成本低,且对应的运行方案中叶片调节次数少,机组运行时间短,兼顾常规运行时的多个影响因素,与日常运行的情况贴切。
     (4)论文建立了泵站群日优化运行问题的数学模型,提出了求解模型的蚁群递阶优化算法。将总的抽水量离散后分配至单座泵站,视单座泵站为子系统,先利用泵站多机组日优化运行计算模块对子系统进行求解,再根据系统总的目标,考虑各子系统之间的关联,协调修改子系统的输入和输出,实现全局优化。
     将泵站群日优化运行问题的求解过程与水泵变角性能的相似计算模块结合起来,构造泵站群日优化运行的计算模块。该模块可应用于泵站日常运行范围内不同叶片角度的性能换算,并且可根据泵站的实际调节能力来设定不同的叶片角度调节步长进行优化运行的计算,使求解得到的运行方案更加贴切于泵站实际的日常运行操作。通过应用算例检验泵站群日优化运行模块的计算性能,其优化效果明显,说明论文提出的泵站群日优化运行计算模块能够较好地应用于此类复杂的组合优化问题。
Water delivery using Pumping stations can effectively solve the problem of uneven spatial and temporal distribution of water resources, but the process of water diversion will consume a lot of energy, results in the high operating cost of pumping stations, for reducing the operating cost, it is significant to get better operating schemes from study the optimal operation of pumping stations. To optimize the operation of pumping stations is a complex issue, involving many factors, and inter-relations are very complicated, especially in multi-unit, multi-pumping stations running in parallel. It is difficult to calculate the problem and make decisions, so the reliability of problem models need to be improved, the efficiency and the stability of the calculating method need to be increased.
     The usual adjusting mode of operating conditions is variable angle adjustment and speed adjustment, and some studies have shown that, when taking into account the life and price of conversion device, the effect of optimal operation of pumping stations by variable speed adjustment is not obvious. So this paper only studies the optimal operation of pumping stations by variable angle adjustment, and the possible similarity during the process of pump blade adjusting is discussed. When calculating the problem of optimal operation of pumping stations, traditional deterministic algorithms are make sure to find the optimal solution, but the computational efficiency is very low; some researches for approximation algorithms only can be applied in the problem, focuses on the comparison between the optimal operation scheme and the design scheme, put less attention to how to improve the performance of algorithms according to characteristics of the problem, or avoid algorithm for trapped in local optimum and leave out the global optimal. Therefore, this dissertation achieves to study the optimal operation of pumping stations problem with the application of ant colony algorithm and pump blade adjusting similarity, for better strategies to solve the problem, and optimal schemes to guide the daily operation of pumping stations. The specific study may from the following aspects.
     (1) The possible similarity during the process of pump blade adjusting is discussed. We analyze the change of velocity triangles at the inlet and outlet of a pump impeller caused by blade adjusting, examines the flow behaviors in the pump passage, and derives pump blade adjusting formulae that reflect the variations of flow and pumping head with blade adjusting. Then we develop a mathematical model for calculation of the flow index and head index of these formulae based on the experimental data of pump performances, and formulate an objective function that is the least square sum of the formulae's calculation errors relative to the test data. The calculation module of blade adjusting similarity was constructed, and an example was presented to verify its performance. With the pump performance parameters under design angle (0°), the blade adjusting similarity module can calculate parameters under any angle within the range of conventional variable angle, according to this, we are able to correct the performance errors which are caused of manual blade adjustment errors, and bring the angle adjusting performance closer to the real results.
     (2) Marco Dorigo and colleagues introduced the first ant colony optimization (ACO) algorithms in the early1990's. ACO is one of the most recent techniques for approximate optimization, the inspiring source of ACO algorithms is real ant colonies. According to similarity between optimal operation of pumping stations problem and some other combination optimal scheduling problems which have application with ACO, an ACO model for optimal operation of pumping unit is proposed and the solution method by ants searching is presented by rationally setting the object function and constrained conditions. The heuristic information and the pheromone trail update method were improved by analysis characters of the model for better performance. A weighted directed graph was constructed and feasible solutions may be found by iteratively searching of artificial ants, and then the optimal solution can be obtained by applying the rule of state transition and the pheromone updating. The calculation module of optimal operation of single pump unit was constructed, to verify its performance, an example was presented and the result of single pump unit calculation module was compared with the result from dynamic programming or evolutionary solving method in commercial software under the same discrete condition, the result of single pump unit calculation module is better and the computing time is shorter.
     (3) Problem of optimal operation of multi-unit in pumping stations is complicated, and an efficient way must be found to solve it. Therefore, we developed an optimal multi-unit scheduling model which contains pump unit start-stop-once constraint, and proposed an ant colony collaborative hierarchical optimization algorithm to solve the model. First we discrete the water demand allocated to a single unit, take a single unit as a subsystem, using the single pump unit calculation module to find the objective of each subsystem; then according to the overall goal of the system, consider the relationship between the various subsystems, coordination modify the input and output of the subsystem, and ultimately to achieve the global optimization. For optimal schemes deciding, we proposed a projection pursuit evaluation method, selected the operating cost, the time of blade adjustment, the running time of the pump unit, operating efficiency and power consumption as the evaluation index, in order to analyze the problem of optimal operation of multi-unit in pumping stations comprehensively. The calculation module of optimal operation of multi-unit in pumping stations was constructed, to verify its performance, an example calculation was presented and the result of multi-unit calculation module was better, the final optimal scheme has less times of the blade adjusting, shorter operating time of pumps and lower electric charge, it is very suitable for daily operation.
     (4) We developed an optimal scheduling model of multi-pumping stations running in parallel, and proposed an ant colony collaborative hierarchical optimization algorithm to solve the model. First we discrete total water demand allocated to a single pumping station, take a single pumping station as a subsystem, using the multi-unit calculation module to find the objective of each subsystem; then according to the overall goal of the system, consider the relationship between the various subsystems, coordination modify the input and output of the subsystem, and ultimately to achieve the global optimization.
     The calculation module of optimal operation of multi-pumping stations running in parallel was constructed, consists of the computational method of the optimal scheduling model of multi-pumping stations running in parallel and the blade adjusting similarity calculation module. The multi-pumping stations calculation module can be applied to performance conversion under variable angle within the range of daily operation of pumping stations, and can calculate the problem of optimal operation of pumping stations with setting different adjustment step of the blade angle according to the actual regulation ability of pumping station, so that the optimal schemes are more appropriate to the actual daily operation of pumping stations. An example was presented to verify the performance of the multi-pumping stations calculation module, and the optimization effect of the module is obvious, which indicates that the module can provide a high application value to the field of optimal operation of pumping stations and related fields.
引文
[1]马文正,丘传忻,贺贵明.泵站运行的优化调度[J].水利学报,1993,(03):35-41.
    [2]王腊春.中国水问题—水资源与水管理的社会研究[M].南京:东南大学出版社,2007.
    [3]陈坚,李琪,许建中.中国泵站工程现状及“十一五”期间泵站更新改造任务[J].水利水电科技进展,2008,28(02):84-88.
    [4]http://www.jsnsbd.gov.cn/
    [5]关醒凡.现代泵技术手册[M].北京:宇航出版社,1995.
    [6]刘超.泵站经济运行[M].北京:水利电力出版社,1995.
    [7]程吉林,张仁田,邓东升等.南水北调东线泵站变速运行模式的适应性[J].排灌机械工程学报,2010,28(05):434-438.
    [8]Marco Dorigo.蚁群优化[M].北京:清华大学出版社,2007.
    [9]Marco Dorigo,V Maniezzo.A colorni.Ant System:optimization by a colony of cooperating agents. IEEE Trans.on Systems, Man and Cybernetics-part B Cybernetics, 1996,26(2).
    [10]Marco Dorigo. Optimization, learning and natural algorithms [D].PhD thesis, Dipartimento di Elettronica, Politecnico di Milano, Italy,1992.
    [11]Marco Dorigo, Blum C. Ant colony optimization theory [J]. A survey. Theoret Comput Sci,2005,344(2-3):243-78.
    [12]Marco Dorigo, Di Caro G, Gambardella LM. Ant algorithms for discrete optimization [J]. Artificial Life,1999,5(2):137-72.
    [13]骆辛磊.机电排灌“最小功”探讨[J].水利学报,1987,07:10-19.
    [14]骆辛磊,谭蒲辉,李桂元等.新河泵站系统节能优化调度[J].水电能源科学,1987,5(04):305-312.
    [15]高占义,窦以松,黄林泉.大禹渡梯级泵站优化调度研究[J].水利学报,1990,05:1-11.
    [16]李继珊,刘光临,潘卫平等.多级泵站的优化调度及经济运行研究[J].水利学报,1992,(12):18-26.
    [17]刘超,严登丰.泵站运行的最优控制[J].江苏农学院学报,1987,8(01):43-50.
    [18]仇宝云,刘超.泵站水泵叶片调节方式概论[J].水泵技术,1997,04:29-33.
    [19]仇宝云,冯晓莉,袁寿其等.南水北调东线工程梯级泵站机组变工况方式选择[J].水力发电学报,2006,25(03):121-129.
    [20]冯晓莉,仇宝云.南水北调工程江都抽水站变角经济运行研究[J].扬州大学学报,2006,09(02):65-68.
    [21]冯晓莉,仇宝云,黄海田等.南水北调东线江都排灌站优化运行研究[J].水力发电学 报,2008,111(04):131-134.
    [22]程吉林,张礼华,张仁田等.泵站叶片可调单机组日运行优化方法研究[J].水利学报,2010,41(04):499-504.
    [23]张礼华,程吉林,张仁田等.江都四站站内多机组变角优化运行方式研究[J].扬州大学学报(自然科学版),2010,13(02):75-78.
    [24]仇锦先,程吉林,张仁田等.动态规划逐次渐近法在江都三站叶片全调节优化中的应用[J].水利水电科技进展,2010,30(06):71-73.
    [25]仇宝云,黄海田,莫岳平等.高港泵站1-3号机组变频调速效益分析[J].灌溉排水,2000,19(04):56-60.
    [26]仇锦先,程吉林,张仁田等.江都站不同型号机组变速优化运行效果分析[J].灌溉排水学报,2009,28(04):32-36.
    [27]程吉林,张礼华,张仁田等.泵站单机组变速运行优化方法研究[J].农业机械学报,2010,41(03):131-134.
    [28]仇宝云,冯晓莉,袁寿其.大型泵站变速-变角综合经济运行研究[J].农业机械学报,2005,36(10):58-61.
    [29]冯晓莉,仇宝云,王斐等.南水北调东线高港泵站优化运行方案研究[J].水利学报,2010,41(04):412-418.
    [30]程吉林,张礼华,张仁田等.泵站单机组叶片调节与变频变速组合日运行优化方法研究[J].水力发电学报,2010,29(06):217-222.
    [31]朱满林,杨晓东,张言禾.梯级泵站优化调度研究[J].西安理工大学学报,1999,15(01):67-70.
    [32]刘正祥,蒋丽娟,张平燕.动态规划_模拟技术在多级泵站优化运行中的应用[J].灌溉排水,2000,19(02):62-64.
    [33]刘超,耿卫明.泵站经济运行的数值解法[J].排灌机械,2004,22(03):14-17.
    [34]陈磊.大规模供水系统直接优化调度研究[D].[博士论文].杭州:浙江大学,2005.
    [35]龚懿,程吉林,张仁田等.泵站多机组叶片全调节优化运行分解-动态规划聚合方法[J].农业机械学报,2010,41(09):27-31.
    [36]李强.基于遗传算法的梯级泵站优化运行研究[D].[硕士论文].武汉:武汉大学,2005.
    [37]王毅,曹树良.遗传算法在并联水泵系统运行优化中的应用[J].流体机械,2003,31(10):22-25.
    [38]魏新华,郭加宏.模拟退火遗传算法的泵站优化运行[J].上海大学学报(自然科学版),2009,15(01):32-36.
    [39]高光敏,史春城,李森等.基于粒子群算法的变频调速泵站优化运行研究[J].长春工程 学院学报(自然科学版),2009,10(04):36-39.
    [40]鄢碧鹏,成立.供水泵站优化运行的混沌算法[J].排灌机械工程学报,2010,28(01):56-58.
    [41]Avi Ostfeld, Ariel Tubaltzev. Ant colony optimization for least-cost design and operation of pumping water distribution systems [J]. Journal of Water Resources Planning and Management,2008,134(2):107-118.
    [42]Jozsef Gergely Bene, Istvan Selek, Csaba Hos. Neutral Search Technique for Short-Term Pump Schedule Optimization [J]. Journal of Water Resources Planning and Management,2010,136(1):133-137.
    [43]S. Pezeshk, O. J. Helweg. Adaptive search optimization in reducing pump operating costs [J]. Journal of Water Resources Planning and Management,1996,122(1):57-63.
    [44]Srinivasa Lingireddy, Don J. Wood. Improved operation of water distribution systems using variable-speed pumps [J]. Journal of Energy Engineering,1998(12):90-103.
    [45]Lehar M. Brion, Larry W. Mays, Methodology for optimal operation of pumping stations in water distribution systems [J]. Journal of Hydraulic Engineering,1991, 117(11):1551-1569.
    [46]Dritan Nace, Sabrina Demotier, Jacques Carlier, et al. Using linear programming methods for optimizing the real-time pump scheduling [J]. proceedings of the world water and environmental resources congress 2001,2004.
    [47]Omid Bozorg Haddad, Miguel A. Dynamic penalty function as a strategy in solving water resources combinatorial optimization problems with honey-bee mating optimization (HBMO) algorithm [J]. Journal of Hydroinformatics,2007,233:250.
    [48]Edson da Costa Bortoni, Roberto Alves de Almeida, Augusto Nelson Carvalho Viana. Optimization of parallel variable-speed-driven centrifugal pumps operation [J]. Energy Efficiency,2008,1(3):167-173.
    [49]Pulido-Calvo, J. Roldan, R. Lopez-Luque, et al. Demand Forecasting for Irrigation Water Distribution Systems [J]. Journal of Irrigation and Drainage Engineering,2003, 129(6):422-432.
    [50]Rodin,S.I. Use of genetic algorithms for optimal control of bulk water supply [J]. Journal of Irrigation and Drainage Engineering,2004,130(5):357-365.
    [51]Vilas Nitivattananon, Elaine C. Sadowsk, Rafael G. Quimpo. Optimization of water supply system operation [J]. Journal of Water Resources Planning and Management, 1996,122(5):374-384.
    [52]Ryszard Klernpous, Jerzy Kotowski, Jan Nikodem, et al. Optimization algorithms of operative control in water distribution systems [J]. Journal of Computational and Applied Mathematics,1997(84):81-89.
    [53]Chad Wegley, Muzaffar Eusuff, Kevin Lansey. Determining pump operations using particle swarm optimization [J].Joint Conference on Water Resource Engineering and Water Resources Planning and Management,2004(104):1-6.
    [54]A Colorni, Marco Dorigo, V Maniezzo.Distributed optimization by ant colonies. Proceedings of 1st European Conference on Artificial Life,1991:134-142.
    [55]B Bullnheimer, R F Hartl, C Strauss.A new rank based version of the Ant System:a computational study.Central European Journal for Operations Research and Economics, 1999,7(1):25-38.
    [56]T Stutzle, H H Hoos. MAX-MIN ant system. Future Generation Computer Systems,2000, 16(8):889-914.
    [57]Marco Dorigo, L M Gambardella. ant colony system:a cooperative learning approach to the traveling salesman problem. IEEE Trans.on evolutionary computation, 1997,1(1):53-66.
    [58]L M Gambardella, Marco Dorigo. Ant-Q:a reinforcement learning approach to the traveling salesman problem. Proceedings of the Twelfth International Conference on Machine Learning(ML-95),1995:252-260.
    [59]V Maniezzo. Exact and approximate nondeterministic tree-search procedures for the quadratic assignment problem. INFROMS journal on computing,1999, 11 (04):358-369.
    [60]M Mathur, S B Karale, S Priye, et al. Ant colony approach to continuous function optimization. Ind. Eng. Chem. Res,2000 (39):3814-3822.
    [61]O Cordon, L F de Viana, F Herrera, et al. A new ACO model integrating evolutionary computation concepts:the best-worst Ant System. PROC ANTS 2000,2000:22-29.
    [62]C Blum, Marco Dorigo. The hyper-cube framework for ant colony optimization. Proceedings of 2001 metaheuristic international conference,2001 (02):399-403.
    [63]X M Hu, J Zhang, Y Li. Orthogonal methods based ant colony search for solving continuous optimization problems. Journal of Computer Science and Technology,2008 23(01):2-18.
    [64]Ying Lin, Jun Zhang, Jing Xiao. A pseudo parallel ant algorithm with an adaptive migration controller. Applied Mathematics and Computation,2008, 205(02):677-687.
    [65]Marco Dorigo, Maniezzo V, Colorni A, Positive feedback as a search strategy. Technical Report 91-016, Dipartimento di Elettronica, Politecnicodi Milano, Italy,1991.
    [66]Maniezzo V, Colorni A. The Ant System applied to the quadratic assignment problem. IEEE Trans Data Knowledge Engrg 1999; 11(5):769-78.
    [67]Stutzle T. An ant approach to the flow shop problem. In:Proceedings of the 6th european congress on intelligent techniques & soft computing(EUFIT'98). Aachen: Verlag Mainz; 1998. p.1560-4.
    [68]den Besten ML, Stiitzle T, Marco Dorigo. Ant colony optimization for the total weighted tardiness problem. In:Schoenauer M, Deb K, Rudolph G,Yao X, Lutton E, Merelo JJ, Schwefel H-P, editors. Proceedings of PPSN-Ⅵ, sixth international conference on parallel problem solving fromnature. Lecture Notes in Comput Sci, vol. 1917. Berlin:Springer; 2000. p.611-20.
    [69]Gagne C, Price WL, Gravel M. Comparing an ACO algorithm with other heuristics for the single machine scheduling problem with sequence-dependent setup times. J Oper Res Soc 2002;53:895-906.
    [70]Merkle D, Middendorf M, Schmeck H. Ant colony optimization for resource-constrained project scheduling. IEEE Trans Evolutionary Comput2002;6 (4):333-46.
    [71]Blum C. Beam-ACO-Hybridizing ant colony optimization with beam search:An application to open shop scheduling. Computers & Opera-tions Res 2005;32(6):65-91.
    [72]Gambardella LM, Taillard eD, Agazzi G. MACS-VRPTW:A multiple ant colony system for vehicle routing problems with time windows.In:Come D, Marco Dorigo, Glover F, editors. New ideas in optimization. London:McGraw-Hill; 1999. p.63-76.
    [73]Reimann M, Doerner K, Hartl RF. D-ants:Savings based ants divide and conquer the vehicle routing problems. Comput Oper Res2004;31 (4):563-591.
    [74]Gandibleux X, Delorme X, T'Kindt V. An ant colony optimisation algorithm for the set packing problem. In:Marco Dorigo, Birattari M, Blum C,Gambardella LM, Mondada F, Stutzle T, editors. Proceedings of ANTS 2004—Fourth international workshop on Ant colony optimizationand swarm intelligence. Lecture Notes in Comput Sci, vol.3172. Berlin:Springer; 2004. p.49-60.
    [75]Costa D, Hertz A. Ants can color graphs. J Oper Res Soc 1997;48:295-305.
    [76]Socha K., Sampels M, Manfrin M. Ant algorithms for the university course timetabling problem with regard to the state-of-the-art. In:Cagnoni S, Romero Cardalda JJ, Corne DW, Gottlieb J, Guillot A, Hart E, Johnson CG, Marchiori E, Meyer A, Middendorf M, Raidl GR, ed-itors. Applications of evolutionary computing, proceedings of EvoWorkshops 2003. Lecture Notes in Comput Sci, vol.2611. Berlin:Springer;2003. p. 334-45.
    [77]Michel R, Middendorf M. An island model based ant system with lookahead for the shortest supersequence problem. In:Eiben AE, B ck T,Schoenauer M, Schwefel H-P, editors. Proceedings of PPSN-V, fifth international conference on parallel problem solving from nature. LectureNotes in Comput Sci, vol.1498. Berlin:Springer; 1998. p. 692-701.
    [78]Gambardella LM, Marco Dorigo. Ant Colony System hybridized with a new local search for the sequential ordering problem. INFORMS J Comput2000;12 (3):237-55.
    [79]Solnon C. Ant can solve constraint satisfaction problems. IEEE Trans Evolutionary Comput 2002;6(4):347-57.
    [80]Parpinelli RS, Lopes HS, Freitas AA. Data mining with an ant colony optimization algorithm. IEEE Trans Evolutionary Comput2002;6(4):321-32.
    [81]Bui TN, Rizzo JR. Finding maximum cliques with distributed ants. In:Deb K, et al., editors. Proceedings of the genetic and evolutionarycomputation conference (GECCO 2004). Lecture Notes in Comput Sci, vol.3102. Berlin:Springer; 2004. p.24-35.
    [82]Arce, A.Ohishi, T. Soares, S. Optimal dispatch of generating units of the Itaipu hydroelectricplant[J]. Power Systems, IEEE Transactions on,2002,17 (1):154-158.
    [83]叶渊杰,陈坚,徐艳茹.我国大泵叶片调节机构应用与研究综述[J].中国农村水利水电,2009,08(4):153-156.
    [84]潘中永,谢蓉,曹英杰等.叶片安放角变化规律对离心泵性能影响分析[J].排灌机械,2009,27(5):319-322.
    [85]刘建交,把多铎,向华琦.两种水泵性能曲线拟合方法的研究[J].水电能源科学,2012,30(2):136-138.
    [86]周龙才,丘传忻.水泵性能曲线的正交多项式拟合[J].排灌机械,2001,19(4):8-11.
    [87]葛强,陈松山,颜红勤.基于AutoCAD与Excel的水泵性能曲线复原新方法[J].水泵技术,2006,(4):29-31.
    [88]李慈祥,张仁田.移动最小二乘法在水泵性能曲线拟合中的应用[J].南水北调与水利科技,2011,9(2):91-93.
    [89]徐波宏,殷新春,刘超等.一种基于骨架的水泵性能曲线复原方法[J].扬州大学学报(自然科学版),2007,10(4):58-61.
    [90]何钟宁,周止富,潘光星等.基于最小二乘曲面拟合的泵装置特性预测方法[J].灌溉排水学报,2008,27(5):107-109.
    [91]李彦军,严登丰,袁寿其.大型低扬程泵与泵装置特性预测[J].农业机械学报,2007,38(10):36-40.
    [92]刘超.水泵及水泵站[M].北京:中国水利水电出版社,2009.
    [93]刘宁,江易森.南水北调工程水泵模型同台测试[M].北京:中国水利水电出版社,2006.
    [94]王素欣,高利,崔小光等.多集散点车辆路径问题及其蚁群算法研究[J].系统工程理论与实践,2008,28(2):143-147.
    [95]张利平,吴正佳.改进蚁群算法在车间作业调度中的应用研究[J].三峡大学学报自然科学版,2009,31(2):75-78.
    [96]徐刚,马光文.基于蚁群算法的梯级水电站群优化调度[J].水力发电学报2005,24(5):7-10.
    [97]赵雪花,黄强,吴建华.蚁群算法在水电站厂内经济运行中的应用[J].水力发电学报,2009,28(2):139-142.
    [98]金菊良, 丁晶.水资源系统工程[M].成都:四川科技大学出版社,2002.
    [99]王柏,张忠学,李芳花等.基于改进双链量子遗传算法的投影寻踪调亏灌溉综合评价[J].农业工程学报,2012,28(2):84-89.
    [100]袁丹青,黄良勇,丛小青等.防洪排涝泵站最优调度模型的研究[J].排灌机械,2003,20(6):16-18.
    [101]余方斌,陈坚.大型泵站水泵最佳运行方案研究[J].水泵技术,2002,3:38-41.
    [102]陈守伦,芮钧,徐青等.泵站日优化运行调度研究[J].水电能源科学,2003,21(3):82-83.
    [103]马峥,陈红勋.优化运行理论在泵站综合自动化系统中的应用[J].农业机械学报,2004,35(1):73-76.
    [104]龙新平,朱劲木,刘梅清等.基于性能曲面拟合的泵站优化调度分析[J].水利学报,2004,11:27-32.
    [105]鄢碧鹏,刘超.混沌优化算法在泵站经济运行中的应用[J].灌溉排水学报,2004,23(3):38-40.
    [106]张承慧,夏东伟,李洪斌等.城市水工业系统泵站优化调度问题建模方法研究[J].控制与决策,2004,19(5):582-585.
    [107]徐青,金明宇,吴玉明等.泵站经济运行中机组投入顺序的模糊优选[J].中国农村水利水电,2004,9:95-97.
    [108]熊晓明,刘光临.梯级泵站的实时优化调度研究[J].农业机械学报,2005,36(12):81-83.
    [109]俞亭超,张士乔.基于遗传算法供水系统优化调度模型[J].系统工程理论与实践,2005,12:88-95.
    [110]朱劲木,龙新平,刘梅清等.东深供水工程梯级泵站的优化调度[J].水力发电学报,2005,24(3):123-127.
    [111]张礼华,程吉林.中小型灌区排涝泵站优化运行模式探讨[J].灌溉排水学报,2006,25(5):33-35.
    [112]Kennedy J, Eberhart R. Particle swarm optimization[C].//Proceedings of IEEE International Conference on NeuralNetworks. Piscataway:IEEE Service Center,1995,4:1942-1948.
    [113]Sun Chaoli, Zeng Jianchao, Pan Jeng-shyang. An improved vector particle swarm optimization for constrained op timization problems[J]. Information Sciences,2011, 181(6):1153-1163.
    [114]冯晓莉,仇宝云,杨兴丽等.大型复杂并联梯级泵站系统运行优化研究[J].水利学报,2012,43(9):1058-1065.
    [115]张承慧,张希华,程金.供水泵站优化运行最小流量偏差控制策略研究[J].机械工程学报,2004,40(3):100-105.
    [116]廖莉,张承慧,林家恒等.基于胞腔排除双种群遗传算法的泵站优化调度[J].控制理论与应用,2004,21(1):63-69.
    [117]张承慧,李洪斌,廖莉等.变频调速给水泵站效率最优控制策略[J].控制理论与应用,2004,21(3):470-474.
    [118]程芳,陈守伦.泵站优化调度的分解协调模型[J].河海大学学报自然科学版,2003,31(2):136-139.
    [119]马太玲,袁保惠.灌排泵站变频调速适用性及经济性分析[J].排灌机械,2001,19(2):19-21.
    [120]周龙才,赵天宇.泵站变速节能的优化计算[J].中国农村水利水电,2001,2:42-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700