用户名: 密码: 验证码:
黄瓜枯萎病高效拮抗枯草芽孢杆菌的筛选及生防机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄瓜枯萎病是保护地黄瓜生产中的严重障碍,由于防治过程中化学农药的大量使用,目前已造成了严重的环境污染和经济损失,因此研制高效、安全、无污染的绿色生物农药显得尤为迫切。枯草芽孢杆菌是土壤和植物微生态区系的优势生物种群,具有很高的抗逆能力和抗菌防病作用,在生物防治领域具有巨大的应用开发潜力。筛选高效拮抗黄瓜枯萎病菌的枯草芽孢杆菌,研究菌株作用机理以及田间防治效果具有重要的理论和实践意义。
     本文从采集的10份植物根围土样中,以黄瓜枯萎病菌尖镰孢菌(Fusariumoxysporum)为指示菌株,筛选出1株高效广谱拮抗生防菌株B29。经形态学、生理生化反应及BIOFOSUN微生物鉴定药敏分析系统鉴定为枯草芽孢杆菌(Bacillus subtilis)。
     利用单因子实验对枯草芽孢杆菌B29菌株液体发酵培养基及培养条件进行了优化。结果表明,该菌株的最优培养基为1%全糖粉、0.6%牛肉膏和0.3%酵母膏;最适培养条件为温度30℃、初始pH值7.0~7.5、装液量50mL/250mL、接种种龄15~18h、培养时间32h。研究了B29菌株的20L自控罐发酵和2000L发酵罐中试发酵,在稳定的中试生产工艺下生产的枯草芽孢杆菌菌剂达每毫升35亿活芽孢。
     通过室内生测试验,求出B29菌株抑制尖镰孢菌生长的有效中浓度EC50=9.17×105活芽孢/mL。1年2季4点田间小区试验表明:35亿/毫升枯草芽孢杆菌100×(3.5×107cfu/mL)、250×(1.4×107cfu/mL)和500×(7×106cfu/mL)稀释菌液对黄瓜枯萎病的防效分别为70.3~88.2%、62.3~85.9%和54.7~80.6%。2年田间大区示范中,枯草芽孢杆菌B29菌剂(7×106cfu/mL)对黄瓜枯萎病防效达84.9%,增产12.57%。
     研究了35亿/毫升枯草芽孢杆菌菌剂的毒理学、对环境生物的毒性和对田间几种主要蔬菜及作物的安全性。结果枯草芽孢杆菌菌剂急性经口、经皮毒性LD50均大于5000mg/kg,属于微毒类;对家兔皮肤无刺激性,对家兔眼为轻度刺激性;致敏率为0,属弱致敏物。35亿/毫升枯草芽孢杆菌菌剂对鹌鹑、蜜蜂、斑马鱼、家蚕的急性毒性为低毒级。另外枯草芽孢杆菌B29菌株对几种主要蔬菜及作物种子的出苗和生长发育没有不良影响。
     对枯草芽孢杆菌B29菌株产生抗菌物质的培养条件进行了优化。结果表明,最佳培养条件为温度30℃、初始pH值7.5、装液量75mL/250mL、培养时间120h。利用30%~70%(NH)2SO4饱和溶液从发酵液中提取获得的抗菌粗提物对高温具有一定的稳定性;对蛋白酶K具有部分耐受性,对胰蛋白酶和胃蛋白酶较敏感。经DEAE-52纤维素吸附和Bio-Gel P-100分子筛凝胶层析分离,成功纯化获得具有抑菌活性的单一蛋白组分B29I;通过SDS-PAGE、IEF-PAGE和HPLC测定该蛋白分子量为42.3kDa,等电点为5.69,纯度达97.81%;通过质谱分析获得了抗菌蛋白B29I的肽指纹图谱,经检索初步确定抗菌蛋白B29I为一种新蛋白,其N端序列为GRIWHN,3个随机肽段序列分别为KTHVLEDEFK,KGYQTGDFGAYLH和RTYEVAEESPVLGL。研究了抗菌蛋白B29I的抑菌能力和作用机理,结果表明,抗菌蛋白B29I抑制尖镰孢菌和立枯丝核菌菌丝生长的IC50值分别为45μM和112μM;抗菌蛋白B29I明显抑制尖镰孢菌(F. oxysporum)孢子萌发,并抑制芽管伸长,同时导致部分萌发的孢子变形扭曲、肿胀和破裂。
     采用利福平抗性诱导和黄绿荧光蛋白基因分别对枯草芽孢杆菌B29菌株进行标记,研究该生防菌在黄瓜幼苗根际的定殖规律。结果在温室和田间自然条件下,通过浸种、灌根或两种处理方式相结合,枯草芽孢杆菌B29菌株均可在黄瓜幼苗根内、茎基部和根际土壤中很好地定殖。浸种和灌根相结合的处理方式利于生防菌的定殖。该菌株较强的定殖能力使其可以充分发挥空间、营养竞争和抑制病菌的作用,从而表现较好的防治效果。
     对枯草芽孢杆菌B29菌株诱导黄瓜根系相关防御反应酶活性的变化趋势进行了研究。结果表明该菌株接种能够诱导黄瓜根系苯丙氨酸解胺酶(PAL)、多酚氧化酶(PPO)和过氧化物酶(POD)活性有不同程度的提高,尤其在挑战接种病原菌后,3种防御反应酶活性上升的幅度比单独接种要高,说明挑战接种有利于诱导抗性的表达。结合枯草芽孢杆菌B29菌株对黄瓜枯萎病的田间防效试验,可以说明诱导抗性是其生防作用机制之一。
Cucumber Fusarium wilt disease is one of the most serious diseases which ismore epidemic under conditions of protected field cultivation at present. Since alot of synthetic chemicals were used in disease prevention and control, it hasalready caused serious environmental pollution and economic loss. It seemsurgently necessary to explore biopesticide that will provide effective controlwhile minimizing negative consequences for human health and the enviroment.Ubiquitous in soils and plant rhizosphere, the antagonistic strains of Bacillussubtilis have shown great application and development value in the field ofbiocontrol and have the ability of high stress resistance and antifungal activities.In order to control cucumber Fusarium wilt disease efficiently, screening strongantagonistic strain of Bacillus subtilis and studying the mechanism and controlefficiency in the field would not only be of great value theoretically, butpractically as well.
     The antagonistic strain B29was isolated from10soil samples of plant rhizo-sphere against Fusarium oxysporum, which was identified as Bacillus subtilis onthe basis of its morphological, biochemical and physiological characteristics, andBIOFOSUN microbial identification and analysis.
     The culture medium and fermentation conditions were optimized. The resultsshowed that optimal medium was composed of1%glucose,0.6%beef extract and0.3%yeast extract. The optimal fermentation conditions were culture temperature30℃, initial pH7.0~7.5, flasks containing50mL in250mL flask, inoculation age15~18h and culture time32h. The fermentation of Bacillus subtilis B29wasstudied with20L and2000L fermentor. In stable pilot-scale process, the agentproduction of Bacillus subtilis B29reached3.5×109cfu/mL.
     The indoor control experiment showed the EC50of Bacillus subtilis B29against Fusarium oxysporum was9.17×105cfu/mL. The control efficiencies of100(3.5×107cfu/mL),250(1.4×107cfu/mL) and500(7×106cfu/mL) dilution timesof Bacillus subtilis agent to cucumber Fusarium wilt were70.3~88.2%,62.3~85.9%and54.7~80.6%respectively in4field plots in2seasons in1year. TheFusarium wilt of cucumber was suppressed by using B29to an average of84.9%in field trials during2years, and the yield was increased by12.57%.
     Toxicology, ecotoxicology and the safety to several major crops of Bacillussubtilis agent were studied. The acute toxicity of Bacillus subtilis strain B29to big mouse through its mouth and skin was examined and the LD50was beyond5000mg/kg. It showed no stimulation on rabbit eyes, less stimulation on rabbitskin and less allergic reaction on guinea pig skin. It was also low toxic topartridges, bees, zebra fish and silkworms. The safety of strain B29to9majorcrops was investigated and no inhibition on their seedling rate, growth anddevelopment was found.
     The fermentation conditions of antifungal substance produced from strainB29were optimized. The optimal fermentation conditions were shown with initialpH7.5,75mL/250mL and at30℃for120h. The antifungal substance wasprecipitated by (NH4)2SO4from30%to70%. The crude antifungal substance ofstrain B29was stable to heat to some extent, partially tolerant to proteinase K,and more sensitive to trypsinase and pepsin. An antifungal protein was isolatedfrom a culture of Bacillus subtilis B29. The isolation procedure comprised ionexchange chromatography on DEAE-52cellulose and chromatography onBio-Gel P-100. The protein was absorbed on DEAE-cellulose and Bio-Gel P-100. The purified antifungal fraction was designated as B29I, with a molecularmass of42.3kDa by SDS-PAGE, pI value5.69by IEF-PAGE, and97.81%purityas detected by HPLC. The PMF of antifungal protein B29I was obtained byMALDI-TOF mass spectrometry, and it was an unreported protein as searched inthe Mascot database. The amino acid of the antifungal protein B29I wassequenced. The result showed that N-terminal amino acid sequences wereGRIWHN and the three peptide segments amino acid sequences wereKTHVLEDEFK, KGYQTGDFGAYLH, and RTYEVAEESPVLGL respectively.B29I exhibited inhibitory activity on mycelial growth in Fusarium oxysporum,Rhizoctonia solani, Fusarium moniliforme and Sclerotinia sclerotiorum. The IC50values of its antifungal activity toward Fusarium oxysporum and Rhizoctoniasolani were45μM and112μM, respectively. B29I also demonstrated aninhibitory effect on conidial spore germination of Fusarium oxysporum,suppression of germ-tube elongation, and induced distortion, tumescence, andrupture of a portion of the germinated spores.
     In order to investigate the colonization of Bacillus subtilis B29in cucumberrhizosphere, the strain was marked by using the method of antibiotic (rifampicin)resistance or EYFP gene. The results showed that strain B29colonized in the root,basal stem and rhizosphere soil of cucumber seedling after soaking seed orwatering root treatment or combination treatment in greenhouse or in field. It wasbetter for colonization by the treatment first soaking seed then watering root. Thestrong ability of Bacillus subtilis B29to colonize helped it to compete site and nutrients with pathogens and then to inhibit pathogens effectively.
     The changes of defense enzymes induced by Bacillus subtilis B29incucumber roots were studied. Results showed that the activities of defenseenzymes(PAL, PPO, POD) were increased to some extent after inoculation withBacillus subtilis B29. Especially after challenging inoculation with Fusariumoxsporum, the changes of defense enzymes were increased much more than singleinoculation. It suggested that challenging inoculation was good for inducedsystemic resistance. It could come to a conclusion that induced systemicresistance was one of biocontrol mechanisms combined with the controlefficiencies of Bacillus subtilis B29to cucumber Fusarium wilt disease.
引文
1P. E. Russell. Fungicide Resistance: Occurrence and Management. J. Agric.Sci.1995,(124):317~323
    2杨谦.植物病原菌抗药性概论.黑龙江科学技术出版社,1995:1~10
    3R. J. Cook. Making Greater Use of Introduced Microorganisms for BiologicalControl of Plant Pathogens. Ann. Rev. Phytopathol.1993,(31):53~80
    4R. J. Cook, W. L. Bruckart, J. R. Coulson, et al. Safety of MicroorganismsIntended for Pest and Plant Disease Control: a Framework for ScientificEvaluation. Biol. Control.1996,(7):333~351
    5T. B. Adhikari, C. M. Joseph, G. Yang, et al. Evaluation of Bacteria Isolatedfrom Rice for Plant Growth Promotion and Biological Control of SeedingDisease of Rice. Can. J. Microbiol.2001,(47):916~924
    6黄海婵,裘娟萍.枯草芽孢杆菌防治植物病害的研究进展.农药市场信息.2005:14
    7黄丽丹,陈玉惠.生防菌及相关生物技术在植物病害防治中的应用.西南林学院学报.2006,26(1):85~88
    8程洪斌,刘晓桥,陈红漫.枯草芽孢杆菌防治植物真菌病害研究进展.上海农业学报.2006,22(1):109~112
    9程亮,游春平,肖爱萍.拮抗细菌的研究进展.江西农业大学学报.2003,25(5):732~737
    10J. Obagwu, L. Korsten. Integrated Control of Citrus Green and Blue MoldsUsing Bacillus subtilis in Combination with Sodium Bicarbonate or Hotwater.Postharvest Biol. Technol.2003,(28):187~194
    11E. A. B. Emmert, Jo Handelsman. Biocontrol of Plant Disease: a (Gram-)Positive Perspective. FEMS Microbiol. Lett.1999,(171):1~9
    12杨佐忠.枯草杆菌拮抗体在植物病害生物防治中的应用.四川林业科技.2001,(9):41~43
    13M. Shoda. Bacterial Control of Plant Diseases. J. Biosci. Bioeng.2000,89(6):515~521
    14J. Aldrich, R. Baker. Biological Contronl of Fusarium roseum f. sp. dianthi byBacillus subtilis. Plant Dis. Reptr.1970,(54):446~448
    15R. S. Utkhede, Antagonism of Isolates of Bacillus subtilis to Phytophthoracactorum. Can. Bot.1984,(62):1032~1035
    16C. J. Baker, J. R. Stavely, N. Mock. Biocontrol of Bean Rust by Bacillussubtilis under Field Condition. Plant Disease.1985,(69):770~772
    17G. C. Papavizas, R. D. Lumsden. Biological Control of Soilborne FungalPropagules. Annu. Rev. Phytopathol.1980,(18):389~413.
    18S. F. Hwang, P. Chakravarty. Potential for the Integrated Control of Rhizocto-nia Root-Rot of Pisum sativum Using Bacillus subtilis and a Fungicide. Z.PflKrankh. PflSchutz.1992,(99):626~636
    19王雅平,刘伊强,潘乃穟,等.枯草芽孢杆菌A014菌株防治小麦赤霉病的初步研究.生物防治通报.1992,8(2):54~57
    20王雅平,刘伊强,潘乃穟,等.枯草芽孢杆菌TG26防病增产效应的研究.生物防治通报.1993,9(2):63~68
    21张学君,赵军,王金生.枯草芽孢杆菌B3菌株对小麦根系和茎基部的定殖作用研究.生物防治通报,1994,10(4):171~174
    22孔建,王文夕,赵白鸽,等.枯草芽孢杆菌B-903菌株抗真菌作用研究初报.生物防治通报.1992,8(2):54~57
    23王文夕,孔建,赵白鸽,等.枯草芽孢杆菌B-903菌株抗菌物质生产条件及部分特性的研究,华北农学报,1994,9(2):98~103
    24胡剑,赵永歧,王岳五,等.枯草杆菌Bs-98分泌的抗真菌蛋白的分离纯化及其部分性质的研究.微生物学通报,1997,24(1):3~6
    25陈志谊,高太东,严大富,等.枯草芽孢杆菌B-916防治水稻纹枯病的田间试验.中国生物防治.1997,13(2):75~78
    26顾真荣,马承铸,韩长安.枯草芽孢杆菌G3防治植病盆栽试验.上海农业学报.2002,18(1):77~80
    27纪明山,王英姿,程根武,等.西瓜枯萎病拮抗菌株筛选及田间防效试验.中国生物防治.2002,18(2):71~74
    28王进强,吴刚,许文耀.植物病害生防制剂的研究进展.福建农林大学学报(自然科学版).2004,33(4):448~452
    29雷白时,姜军坡,王伟,等.棉花黄萎病拮抗细菌7-30菌株的筛选与鉴定.安徽农业科学.2009,37(2):672~674
    30C. W. Bacon, I. E. Yates, D. M. Hinton, et al. Biological Control of Fusariummoniliforme in Maize. Environ. Health Perspect.2001,109(2):325~332
    31何红,邱思鑫,蔡学清,等.辣椒内生细菌BS21和BS22在植物体内的定殖及鉴定.微生物学报,2004,44(1):13~18.
    32杜立新,冯书亮,曹克强,等.枯草芽孢杆菌BS-208和BS-209菌株在番茄叶面及土壤中定殖能力的研究.河北农业大学学报.2004,27(6):78~82
    33O. Asaka, M. Shoda. Biocontrol of Rhizoctonia solani Damping-off ofTomato with Bacillus subtilis RB14. Appl. Environ. Microbiol.1996,62(11):4081~4085
    34M. Kilian, U. Steiner, B. Krebs, et al. FZB24(r) Bacillus subtilis Mode ofAction of a Microbial Agent Enhancing Plant Vitality. Pflanzenschutz-Nachri.Bayer.2000,53(1):72~93
    35O. N. Reva, C. Dixelius, J. Meijer, et al. Taxonomic Characterization and PlantColonizing Abilities of Some Bacteria Related to Bacillus amyloliquefaciensand Bacillus subtilis. FEMS Microbiol. Ecol.2004,(48):249~259
    36田涛,亓雪晨,王琦,等.芽孢杆菌绿色荧光蛋白标记及其在小麦体表定殖的初探.植物病理学报.2004,34(4):346~351
    37C. M. J. Ferguson, N. A. Boothl, E. J. Allan. An ELISA for the Detection ofBacillus subtilis L-form Bacteria Confirms Their Symbiosis in Strawberry.Lett. Appl. Microbiol.2000,(31):390~394
    38R. K. Cheryl, L. B. Kaysie, L. A. Dante, et al. Small-Scale DNA SamplePreparation Method for Field PCR Detection of Microbial Cells and Spores inSoil. Appl. Environ. Microbiol.1998,64(7):2463~2472
    39张玉勋,李光,张光明.拮抗细菌在大棚温室番茄叶片定殖及对灰霉病害的控制效果.植物病理学报.2000,30(1):91
    40余桂容,叶华智,张敏.小麦赤霉病的生物防治的研究Ⅱ.拮抗芽孢杆菌在麦穗上的消长动态及生物学特性.四川农业大学学报.2002,20(4):324~327
    41蔡学清,何红,胡方平.双抗标记法测定枯草芽孢杆菌BS-2和BS-1在辣椒体内的定殖动态.福建农林大学学报.2003,32(1):41~45
    42刘忠梅,王霞,赵金焕,等.有益内生细菌B946在小麦体内的定殖规律.中国生物防治.2005,21(2):113~116
    43马艳,赵江涛,常志州,等.西瓜内生枯草芽孢杆菌BS211的拮抗活性及盆栽防效.江苏农业学报.2006,22(4):388~393
    44D. Errampalli, M. B. Cassidy. Application of the Green Fluorescent Proteinas a Molecular in Environmental Microorganisms. J. Microbiol. Methods.1999,(35):187~199
    45O. Shimomura, F. H. Johnson, Y. Saiga, Extraction, Purification andProperties of Aequorin, a Bioluminescent Protein from the LuminousHydromedusan Aequorea. J. Cell Comp. Physiol.1962,(59):223~239
    46D. J. Gage, T. Bobo, S. R. Long. Use of Green Fluorescent Protein to Visua-lize the Early Events of Symbiosis between Rhizobium meliloti and Alfalfa(Medicago sativa). J. Bacteriol.1996,178(24):7159~7166
    47B. L. Epel, H. S. Padgett, M. Heinlein, et al. Plant Virus Movement ProteinDynamics Probed with a GFP-Protein Fusion. Gene.1996,173(1):75~79
    48C. Ramos, L. M lbak, S. Molin. Bacterial Activity in the RhizosphereAnalyzed at the Single-Cell Level by Monitoring Ribosome Contents andSynthesis Rates. Appl. Environ. Microbiol.2000,(66):801~809
    49W. Ma, K. Zalec, B.R. Glick. Biological Activtty and Colonization Pattern ofthe Bioluminescened-Labeled Plant Growth-Promoting Bacterium Kluyveraascorbata SUD165/26. FEMS Microbiol. Ecol.2001,35(2):137~144
    50T. A. Ciche, J. C. Ensign. For the Insect Pathogen Photorhabdus luminescens,Which End of a Nematode Is Out? Appl. Environ. Microbiol.2003,69(4):1890~1897
    51H. R. Etebarian, P. L. Sholberg, K. C. Eastwell, et al. Biological Control ofApple Blue Mold with Pseudomonas fluorescens. Can. J. Microbiol.2005,51(7):591~598
    52王平,冯新梅,李阜棣.发光酶基因标记的华癸根瘤菌JS5A16L在紫云英根圈的定殖动态.土壤学报,2001,38(2):265~269
    53吕泽勋,李久蒂,朱至清.用绿色荧光蛋白基因(gfp)标记产酸克雷伯氏菌SG-11研究其在水稻苗期根部的定殖.农业生物技术学报,2001,9(1):13~18
    54姚震声,陈中义,陈志谊,等.绿色荧光蛋白基因标记野生型生防枯草芽孢杆菌的研究.生物工程学报.2003,19(5):551~555
    55F. H. Johnson, D. H. Campbell. The Retardation of Protein Denaturation byHydrostatic Pressure. J. Cell Comp. Physiol.1945,(26):43~46
    56刘颖,徐庆,陈章良.抗真菌肽LP-1的分离纯化及特性分析.微生物学报.1999,39(5):441~447
    57D. R. Maget, F. Peypoux. Iturins, a Special Class of Pore-Forming Lipopep-tides: Biological and Physicochemical Properties. Toxicology,1994,(87):15l~l74
    58T. Stein. Bacillus subtilis Antibiotics: Structures, Syntheses and SpecificFunctions. Mol. Microbiol.2005,56(4):845~857
    59S. Nakayama, S. Takahashi, M. Hirai, et al. Isolation of New Variants ofSurfaction by a Recombiant Bacillus subtilis. Appl. Microbiol. Biotechnol.1997,48(1):80~82
    60张桂英,廖咏梅,张君成.甘蔗黑穗病菌拮抗性芽孢杆菌的抗菌作用与伊枯草菌素A的产生有关.广西科学.2004,11(3):269~272
    61K. Arima, A. Kakinuma, G. Tamura. Surfactin, a Crystalline PeptidelipidSurfactant Produced by Bacillus stubilis: Isolation, Characterization and itsInhibition of Fibrin Clot Formation. Biochem. Biophys. Res. Commun.1968,(31):488~494
    62H. P. Bais, R. Fall, J. M. Vivanco. Biocontrol of Bacillus subtilis AgainstInfection of Arabidopsis Roots by Pseudomonas syringae is Facilitated byBiofilm Formation and Surfactin Production. Plant Physiol.2004,134:307~319
    63高学文,姚仕义, Huong Pham,等.枯草芽孢杆菌B2菌株产生的抑菌活性物质分析.中国生物防治.2003,19(4):175~179
    64高学文,姚仕义, Huong Pham,等.基因工程菌枯草芽孢杆菌GEB3产生的脂肽类抗生素及其生物活性研究.中国农业科学.2003,36(12):1496~1501
    65别小妹,陆兆新,吕凤霞,等. Bacllius subtilis fmbR抗菌物质的分离和鉴定.中国农业科学.2006,39(11):2327~2334
    66J. S.-M. Tschen. Control of Rizoctonia soanli by Bacillus subtilis. Trans.Mysol. Soc. Japan.1987,(28):483~493
    67N. Vanittanakom, W. Loeffler, U. Koch, et al. Fengycin-a Novel Antifungal LipopeptideAntibiotic Produced by Bacillus subtilis F29-3. J. Antibiot.1986,(39):888~901
    68W. Loeffler, J. S.-M. Tschen, N. Vanittanakom, et al. Antifungal Effects ofBacilysin and Fengycin from Bacillus subtilis F29-3. A Comparison withActivities of Other Bacillus Antibiotics, J. Phytopathol.1986,(115):204~213
    69A. L. Moyne, T. E. Cleveland, S. Tuzun. Molecular Characterization andAnalysis of Operon Encoding the Antifungal Lipopeptide Bacillomycin D.FEMS Microbiol. Lett.2004,(234):43~49
    70Y. Liu, Z. Chen, T. B. Ng, et al. Bacisubin, an Antifungal Protein withRibonuclease and Hemagglutinating Activities from Bacillus subtilis StrainB-916. Peptides.2007,(28):553~559
    71顾真荣,马承铸,韩长安.产几丁质酶芽孢杆菌的筛选鉴定和酶活力测定.上海农业学报,2001,17(3):92~96
    72王雅平,刘伊强,潘乃穟,等.抗真菌蛋白BII的分离纯化及其性质研究.生物化学与生物物理学报.1993,25(4):391~397
    73刘伊强,王雅平,潘乃穟,等.拮抗菌TG26的鉴定及其抗菌蛋白BI的纯化和部分特性.植物学报.1994,36(3):197~203
    74谢栋,彭憬,王津红,等.枯草芽孢杆菌抗菌蛋白X98Ⅲ的纯化与性质.微生物学报.1998,38(1):13~19
    75童有仁,马志超,陈卫良,等.枯草芽孢杆菌B-034拮抗蛋白的分离纯化剂特性分析.微生物学报.1999,34(4):339~343
    76刘永峰,陈志谊,张杰,等.枯草芽孢杆菌B-916胞外抗菌蛋白质的性质.江苏农业学报.2005,21(4):288~293
    77何青芳,陈卫良,马志超.枯草芽孢杆菌A30菌株产生的拮抗肽的分离纯化与理化性质研究.中国水稻科学.2002,16(4):361~365
    78何红,蔡学清,等.内生菌BS-2菌株的抗菌蛋白及其防病作用.植物病理学报.2003,33(4):373~378
    79蒙显英,黎起秦,冯家勋,等.芽孢杆菌产生的抗菌物质的研究进展.中国植保导刊.2004,24(12):13~15
    80林福呈,李德葆.枯草芽孢杆菌(Bacillus subtilis)S9对植物病原真菌的溶菌作用.植物病理学报.2003,33(22):174~177
    81董汉松.植物抗病防卫基因表达调控与诱导抗性遗传的机制.植物病理学报.1996,26(4):289~293.
    82Q. Zhu, T. Dabi, A. Beeche, et al. Cloning and Properties of a Rice GeneEncoding Phenylalanine Ammonia-lyase. Plant Mol. Biol.1995,29(3):535~550
    83A. E. Moore, B.A. Stone. Effect of Senescence and Hormone Treatment onthe Activity of a β-1,3-Glucan Hydrolase in Nicotiana glutinosa Leaves.Planta.1972,(104):93~109
    84R. S. Beffa, R. M. Hofer, M. Thomas, et al. Decreased Susceptibility to VirusDisease of β-1,3-Glucanase-Deficient Plants Generated by AntisenseTransformation. Plant Cell.1996,(8):1001~1011
    85李德全,陈志谊,聂亚锋.生防菌Bs-916及高效突变菌株抗菌物质及其对水稻抗性诱导作用的研究.植物病理学报,2008,38(2):192~198
    86陈中义,张杰,黄大昉.植物病害生防芽孢杆菌抗菌机制与遗传改良研究.植物病理学报,2003,33(2):97~103
    87徐韶,庄敬华,高增贵,等.内生细菌与木霉复合处理诱导甜瓜对枯萎病的抗性.中国生物防治.2005,21(4):254~259
    88冯东昕.黄瓜枯萎病病原菌研究及抗病育种进展.中国蔬菜,1994,(5):56~58
    89D. Davis. Fusaric Acid in Selective Pathogenicity of Fusarium oxysporum.Phytopathol.1967,(57):808
    90B. Barna. The Influence of Nitrogen on the Sensitivity of Tomato Plants toCulture Filtrates of Fusarium to Fusaric Acid. Physiol. Plant Pathol.1983,(23):257~263
    91沈萍,范秀容,李广武.微生物学试验.第三版.高等教育出版社,1999:215
    92J. Samkrook, D.W. Russell.分子克隆实验指南.黄培堂,王嘉玺,朱厚础,等译.第三版.科学出版社,2002:1595
    93孔建,王文夕,赵白鸽,等.枯草芽孢杆菌B-903菌株抗菌物质的研究.微生物学报.1992,32(6):445~449
    94范秀容,沈萍.微生物学试验.高等教育出版社,1980:42~44130~13556~64
    95黄彰欣.植物化学保护实验指导.农业出版社,1993:8~10
    96赤井重恭,桂琦一.植物病理学实验指导.李清铣译.上海科学技术出版社,1981:120~121
    97方中达.植病研究方法.中国农业出版社,1979:142~144
    98R. E. Buchanan, N. E. Gibbons,等编.伯杰细菌鉴定手册.中国科学院微生物研究所《伯杰细菌鉴定手册》翻译组译.第八版.科学出版社,1984:729~735
    99GB15670一1995农药登记毒理学试验方法.中华人民共和国国家标准
    100霍恩(Horn)法LD50计算表. GB15193.3-2003急性毒性试验.中华人民共和国卫生部,中国国家标准化管理委员会.2003
    101化学农药环境安全评价试验准则.国家环境保护局,1989:1~25
    102GB/T13267-91,水质—物质对淡水鱼(斑马鱼)急性毒性测定方法
    103檀根甲,李辉.植物病害防治效果和保产率的计算.安徽农学通报.1998,4(3):51~52
    104周先碗,胡晓倩.生物化学仪器分析与实验技术.化学工业出版社,2003:209
    105郭尧君.蛋白质电泳实验技术.科学出版社,1999:123~157
    106D. R. Marshak,等著.蛋白质纯化与鉴定实验指南.朱厚础等译.科学出版社,1999:259~261
    107M. M. Bradford. A rapid and sensitive method for the quantification ofmilligram quantities of protein utilizing the principle of protein dye binding.Anal. Biochem.1976,72(1-2):248~254
    108何忠效,张树政.电泳(生物化学实验技术丛书).科学出版社,1999
    109汪家政,范明.蛋白技术手册.科学出版社,2000:124~134
    110秦鑫,吕忠恕.玉米苗苯丙氨酸解氨酶活性周期性变化的研究.兰州大学学报(自然科学版).1985,21(1):61~64
    111李靖,利容千,袁文静.黄瓜感染霜霉病菌叶片中一些酶活性的变化.植物病理学报.1991,21(4):227~233
    112陈双雅,张永祥,王春霞.生物防治水仙叶大褐斑病的拮抗菌株的鉴定.中国生物防治.2000,16(2):84~86
    113郭荣君, Y. Ohtsu,李世东,等.拮抗芽孢杆菌的体外筛选新方法.杨怀文主编.2005年全国生物防治学术研讨会,上海,2005.迈入二十一世纪的中国生物防治.北京,中国农业科技出版社.2005:400~402
    114董红强,慕卫,刘峰,等.棉花苗期病害拮抗细菌的筛选及其防效测定.棉花学报.2007,19(3):210~213
    115陈志谊,许志刚,高泰东,等.水稻纹枯病拮抗细菌的评价与利用.中国水稻科学.2000,14(2):98~102
    116东秀珠,蔡妙英,等.常见细菌系统鉴定手册.科学出版社,2001:4
    117C. E. Stager, J. R. Davis. Automated Systems for Identification ofMicroorganisms. Clin. Microbiol. Rev.1992,(5):302~307
    118张根伟.枯草芽抱杆菌BS-6液体发酵条件的研究.河北省科学院学报.2005,22(1):54~58.
    119王雪莲,王敏,骆健美,等.枯草芽孢杆菌生防菌B579最佳培养基响应面法优化.江苏农业学报.2009,25(1):212~215
    120李红霞,韩秀英,马志强,等.几种生物农药对黄瓜霜霉病的防治效果.农药.2006,45(11):778~779
    121李金文,周晶,陈华.10亿活芽孢/g枯草芽孢杆菌防治棉花黄萎病药效试验.湖北植保.2009,2:25~26
    122R. R. Sharma, D. Singh, R. Singh. Biological Control of Postharvest Diseasesof Fruits and Vegetables by Microbial Antagonists: A Review. Biol. Control.2009,50(3):205~221
    123蔡道基.农药环境毒理学研究.中国环境科学出社,1999:11~18
    124胡玲玲,刘慧君,赵媛.农药对环境生物的安全性评价.现代农业科学.2008,15(7):36~38
    125蔡道基.化学农药对环境安全性评价.环境化学.1991,10(3):41~46
    126赵华,李康,吴声敢,等.毒死蜱对环境生物的毒性与安全性评价.浙江农业学报.2004,16(5):292~298
    127龚瑞忠,陈锐,陈良燕.吡虫啉对环境生物的毒性与安全性评价.农药科学与管理.1999,20(3):12~16
    128苍涛,赵学平,吴长兴,等.甲氨基阿维菌素苯甲酸盐对4种非靶生物毒性及安全性评价.农药.2007,46(7):481~483
    129Y.-K. Chan, M. E. Savard, L. M. Reid, et al. Identification of LipopeptideAntibiotics of a Bacillus subtilis Isolate and Their Control of Fusariumgraminearum Diseases in Maize and Wheat. BioControl.2009,54(4):567~574
    130V. K. Chebotar’, N. M. Makarova, A. I. Shaposhnikov, et al. Antifungal andPhytostimulating Characteristics of Bacillus subtilis Ch-13RhizosphericStrain, Producer of Bioprepations. Appl. Biochem. Microbiol.2009,45(4):419~423
    131J. H. Wong, J. Hao, Z. Cao, et al. An Antifungal Protein from Bacillusamyloliquefaciens. J Appl. Microbiol.2008,105(6):1888~1898
    132邢介帅,李然,赵蕾,等.生防芽孢杆菌T2胞外蛋白酶的纯化及其抗真菌作用.植物病理学报.2008,38(4):377~381
    133李术娜,马平,胡明,等.棉花黄萎病拮抗细菌筛选与B-101菌株抗菌蛋分离.植物病理学报.2008,38(4):445~448
    134R. Iijima, S. Kurata, S. Natori. Purification, Characterization and cDNACloning of an Antifungal Protein from the Hemolymph of Sarcophagaperegrine (Flesh Fly). J. Biol. Chem.1993,268(16):12055~12062
    135S. K. Lam, T. B. Ng. Isolation of a Novel Thermolabile HeterodimericRibonuclease with Antifungal and Antiproliferative Activities from Roots ofthe Sanchi Ginseng Panax notoginseng. Biochem. Biophys. Res. Commun.2001,285(2):419~423
    136S. K. Lam, T. B. Ng. Isolation of a Small Chitinase-like Antifungal Proteinfrom Panax notoginseng (Sanchi Ginseng) Roots. Int. J. Biochem. CellBiol.2001,33(3):287~292
    137S. K. Lam, T. B. Ng. First Simultaneous Isolation of a Ribosome InactivatingProtein and an Antifungal Protein from a Mushroom (Lyophyllum shimeji)together with Evidence for Synergism of Their Antifungal Effects. Arch.Biochem. Biophys.2001,393(2):271~280
    138黄昌华,夏文胜,郭崇明,等. B-HCH菌株的培养及代谢物的初步研究.中国生物防治.1996,12(1):11~14
    139孔建,王文夕,赵白鸽,等.枯草芽孢杆菌B-903菌株的研究.Ⅱ抗菌物质的理化特性.中国生物防治.2000,16(1):12~14
    140翟茹环,尚玉珂,刘峰,等.枯草芽孢杆菌G8抗菌蛋白的理化性质和抑菌作用.植物保护学报.2007,34(6):592~596
    141陈力,王中康,黄冠军,等.柑橘溃疡病生防菌株COBS03的鉴定及其培养特性研究.中国农业科学.2008,41(8):2537~2545
    142A. L. Moyne, T. E. Cleveland, S. Tuzun. Molecular Characterization andAnalysis of Operon Encoding the Antifungal Lipopeptide Bacillomycin D.FEMS Microbiol. Lett.2004,234(1):43~49
    143W. Leelasuphakul, P. Hemmanee, S. Chuenchitt. Growth InhibitoryProperties of Bacillus subtilis Strains and Their Metabolites Against theGreen Mold Pathogen (Penicillium digitatum Sacc.) of Citrus Fruit.Postharvest biol. Technol.2008,48(1):113~121
    144H. X. Wang, T. B. Ng. Isolation of Cicadin, a Novel and Potent AntifungalPeptide from Juvenile Cicadas. Peptides.2002,23(1):7~11
    145H. X. Wang, T. B. Ng. Eryngin, a Novel Antifungal Peptide from FruitingBodies of the Edible Mushroom Pleurotus eryngii. Peptides.2004,25(1):1~5
    146P. H. K. Ngai, Z. Zhao, T. B. Ng. Agrocybin, an Antifungal Peptide from theEdible Mushroom Agrocybe cylindracea. Peptides.2005,26(2):191~196
    147Y. W. Lam, H. X. Wang, T. B. Ng. A Robust Cysteine-deficient Chitinase-likeAntifungal protein from Inner Shoots of the Edible Chive Allium tuberosum.Biochem. Biophys. Res. Commun.2000,279(1):74~80
    148T. B. Ng, H. X. Wang. Panaxagin, a New Protein from Chinese GinsengPossesses Anti-fungal, Anti-viral, Translation-inhibiting and RibonucleaseActivities. Life Sci.2001,68(7):739~749
    149C. Carrillo, J. A. Teruel, F. J. Aranda, et al. Molecular Mechanism ofMembrane Permeabilization by the Peptide Antibiotic Surfactin. Biochim.Biophys. Acta.2003,1611(1-2):91~97
    150K. Tsuge, T. Akiyama, M. Shoda. Cloning, Sequencing, and Characterizationof the Iturin A Operon. J. Bacteriol.2001,183(21):6265~6273
    151M. Grover, L. Nain, A. K. Saxena. Comparision between Bacillus subtilisRP24and its Antibiotic-Defective Mutants. World J. Microbiol. Biotechnol.2009,25(8):1329~1335
    152R. Rajesh, B. Shen, C. Yu, et al. Molecular and Biochemical Detection ofFengycin-and BacillomycinA D-Producing Bacillus spp., Antagonistic toFungal Pathogens of Canola and Wheat. Canadian J. Microbiol.2007,53(7):901~911
    153J. W. Kloepper. A Review of Issues Related to Measuring Colonization ofPlant Roots by Bacteria. Can. J. Microbiol.1992,38(6):667~672
    154L. Liu, J.W. Kloepper, S. Tuzun. Induction of Systemic Resistance inCucumber against Fusarium wilt by Plant Growth-promoting Rhizobacteria.Phytopathol.1995,85(6):695~698
    155G. D. Meyer, J. Bigirimana, Y. Elad. Induced Resistance in Trichodermaharzianum T39Biocontrol of Botrytis cinerea. Plant Pathology.1998,104(3):279~286
    156G. Wei, J. W. Kloepper, S. Tuzun. Induction of Systemic Resistance ofCucumber to Colletotrichum orbiculare by Select Strains of PlantGrowth-promoting Rhizobacteria. Phytopathol.1991,81(12):1508~1512.
    157M. S. Meera, M. B. Shivanna, K. Kageyama, et al. Plant Growth PomotingFungi from Zoysiagrass Rhizosphere as Potential Inducers of SystemicResistance in Cucumbers. Phytopathol.1994,84(12):1399~1406
    158S. P. Tian, G. Harman. Defense Response Induced by Seed Treatment withTrichoderma harzianum in Maize Mo17. Acta Phytopathologica Sinica.2008,38(6):626~634
    159范晓静,邱思鑫,吴小平,等.绿色荧光蛋白基因标记内生枯草芽孢杆菌.应用与环境生物学报.2007,13(4):530~534
    160李长松.拮抗细菌生物防治植物土传病害的研究进展.生物防治通报.1992,8(4):168~192
    161罗明,芦云,张祥林,等.内生拮抗细菌在哈密瓜植株体内的传导定殖和生防作用研究.西北植物学报.2007,27(4):719~725
    162游春平,刘任,肖爱萍,等.拮抗细菌bio_d5在香蕉根部定殖力的测定.华中农业大学学报.2008,27(3):363~366
    163胡江春,薛德林,马成新,等.植物根际促生菌(PGPR)的研究与应用前景.应用生态学报.2004,15(10):1963~1966
    164S. E. Tjamos, E. Flemetakis, E. J. Paplomatas, et al. Induction of Resistanceto Verticillium dahliae in Arabidopsis thaliana by the Biocontrol AgentK-165and Pathogenesis-related Proteins Gene Expression. Mol. PlantMicrobe Interact.2005,18(6):555~561
    165L. C. VanLoon, P. Bakker. Induced Systemic Resistance as a Mechanism ofDisease Suppression by rhizobacteria in Siddiqui ZA, ed. PGPR: Biocontroland Biofertilization. Dordrecht Springer.2005:39~66
    166C. M. Ryu, M. A. Farag, C. H. Hu, et al. Bacterial Volatiles InducedSystemic Resistance in Arabidopsis. Plant Physiol.2004,134(3):1017~1026
    167J. W. Kloepper, C. M. Ryu, S. Zhang. Induced Systemic Resistance andPromotion of Plant Growth by Bacillus spp. Phytopathol.2004,94(11):1259~1266

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700