用户名: 密码: 验证码:
钻机负载自适应液压控制系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了满足大功率钻进以及复杂钻进控制的需要,本文从提高钻机液压系统负载自适应能力的角度出发,提出了钻机负载自适应液压控制系统设计方案,并采用电液比例控制和Fuzzy-PID算法,实现了对钻压、转速和钻速的闭环控制。
     首先,针对目前钻机液压系统钻进控制性能不稳定,能量损耗大,钻进效率低等缺陷,从适应钻探负载特性这一客观要求出发,对液压系统的性能要求进行了分析和总结。
     其次,通过建立控制模型,对负载敏感系统的静、动态特性,主要影响因素以及设计参数选取等进行了细致的分析和研究。在此基础上,设计了新型全液压岩芯钻机负载敏感液压系统。
     接着,针对随钻测量系统要求振动小、钻进平稳可靠、钻孔垂直等复杂的工作特性,结合负载敏感系统和电液比例控制系统的技术优势,提出了随钻测量钻机电液比例闭环控制系统设计方案。为研制智能化随钻测量钻机提供坚实的技术保障。
     最后,利用电液比例控制技术建立了钻进控制模拟试验台。并以此为基础,设计了钻进参数检测系统和电液比例闭环控制系统,并采用改进的PID和Fuzzy-PID控制算法实现了钻压、转速和钻速的闭环反馈控制,为今后设计更为先进智能化的钻进控制算法和策略奠定了良好基础。
Hydraulic system has the characteristics of large ratio between power and weight, compact conformation, flexible configuration, large torque in low-velocity and easy to implement. So it has been applied in drill design widely. At present, the fully hydraulic drill rig with the top drive head is the leading type for the foreign drill, which was extensively applied to exploration of mineral resources, groundwater resources, and geothermal energy, engineering geological investigation and foundation engineering etc. The results and analyses have shown that the drilling load is complex and variable, the main affecting factors are drilling technology, drilling parameters, stratum, equipment conditions, and drilling conditions etc.
     During the drilling process, these affecting factors are non-linear, time-varying and indeterminate. Moreover, there are complicated interactions among them, difficult to estimate and control accurately. Therefore, drilling load change not only has the characteristics of randomicity, fuzziness, and relevance, but also the discreteness, dynamic development etc.
     The functions and characteristics of hydraulic system are the key factors to decide whether the fully hydraulic drilling’s performance is excellent. For the hydraulic system of drill rig, the key question is how to satisfy the objective request of the drilling load characteristics with the driving characteristics of hydraulic systems. However, at present, majority of entire hydraulic drill used the simple switch control hydraulic system consist of manual control valve and pump in domestic and foreign , which not only result in the bad drilling control ability and load adaptability, but also the low drilling efficiency and energy efficiency.
     In order to overcome the performance deficiencies of the hydraulic system applied in old drilling machine, and satisfy the requirements of high power drilling and the complex drilling control, this paper introduces a new scheme of drilling hydraulic system for improving the load adaptability, and a lot of analyses and the researches have been done such as the system structure, the control principle and the function characteristic etc. The researches establish the foundation of the automation and the intellectualization of drilling equipment for further improving the ablility of drilling control and load adaptability of the entire hydraulic drill and achieving the higher drilling efficiency.
     First, this paper fully introduces the analyses and researches of the function and load characteristic of the drill rig . At present, the drill hydraulic system was instability which is easy to be influenced by load and has large energy loss and low drilling efficiency. For meeting the requirement of adapting to characteristic of load, this paper put forward the general scheme of new drill hydraulic system with load adaptability, which has the ability to monitoring and identifying variety of load in real-time, and can adjust states of control system automatically according to condition of load, for keeping optimum drilling efficiency.
     Then, on the base of establishing the control model, by theoretical analysis and computer simulation, the further analyses and researches were carried out fully in this paper, which include the dynamic or static characteristic of load sensing system, key influential factor and load adaptability of drilling. The result was as follows:
     ①In normal operating condition, the flow rate of load sensing system is proportional to the opening of throttle valve, which is not affected by load change, and has a good rigid mechanical characteristic;
     ②As the load pressure and pressure difference set up by LS valve are both low, the load sensing system may be in the unstable state;
     ③The larger opening of throttle valve will result in supersaturation of system, in which the flow rate can not be adjusted;
     ④Increasing the length of oil pipe and damping of LS pipe will cause response lag, but enhance the stability of system;
     ⑤When the pressure difference is set up to 2MPa by LS valve, the response speed of system is vary fast, further increasing value of pressure difference is not effective;
     ⑥Increasing damping of load properly will be help for improving the stability of system, and reducing the overshoot and adjustment time;
     ⑦The large moment of inertia of load will lead to low response speed of the system , large overshoot and adjustment time.
     Based on research above, the new type hydraulic control system of core drill rig was developed, which adopt the load sensing system and constant pressure control system. The load sensing system was applied to control the rotation operation and hoisting operation, and the constant pressure system was applied to control the feed operation. The system can supply flow required by feed force, according to load change, and satisfy the requirement of persistent and stable feed, so it has excellent load adaptability. The new hydraulic system enhanced the load adaptabiliy and drilling control ability, reduced the energy loss, and improved the overall performance of core drill. Compared to mechanical-hydraulic load sensing system, the electro-hydraulic control system further adapts to the demands of developing the intelligent drilling control system, because it can adopt the flexible control algorithm. Aiming at the operating characteristics of MWD system, which demand small vibration, much stability, and low rake, the electro-hydraulic control circuits for feed pressure and rotary speed were devised, which consisted of the pilot proportional pressure regulating pump and electro-hydraulic proportional displacement pump. By using computer simulation, the operating characteristics of control circuits were analyzed, which laid the foundation for optimizing structure and parameter of system. For the feeding control system, ti demanded that the output pressure of system is not affected by load change nor rotary speed of power machine, which has a upstanding load adaptability. It also demanded that the length of the pipe connecting proportional pressure must be short in order to assuring stability and precision of control system. For rotary control system, the rotary speed is not influenced by load change and has rigid mechanical features. The ramp control singal can assure the stability and not influence the response rate. Based on analyses above, combining the technical advantages of load sensing system and electro-hydraulic proportional control system, the scheme of electro-hydraulic closed-loop control system was brought forward, which was applied to design of MWD drill rig. It will further improve the control ability and load self-adaptability of hydraulic system, and supply the stable technical support for developing intelligent MWD drill rig.
     At last, by making use of electro-hydraulic proportional technology, the test-bed with automatic drilling control system was built up, which has the ability of monitoring, recording and controlling the drilling parameters in real-time. The results of dynamic testing of control system showed that both response rate of pressure and rotary speed were fast, and the response time of pressure was about 0.2s, and the that of rotary speed was about 0.5s, which can meet the requirement of the real-time control. But, because there were much disturbing factors, both accuracy and stability of the open-loop control system were not so well.
     For enhancing the anti-jamming ability of system, the ameliorate PID algorithm which structure and parameter were optimized by theoretical analysis and experimental investigation, was applied to realizing the feedback control of feed force and rotary speed. The testing results show that when proportional coefficient KP is 0.5, integral time coefficient TI is 10, and differential time coefficient TD is zero, the performance of closed-loop control system is outstanding. The pressure error is less than 50N, and rotary speed error is less than 7.5r/min. So the PID algorithm improved the accuracy and stability of control system.
     For improving the stability and adaptability to the complex environmental change of control algorithm, combining the advantages of fuzzy algorithm and PID algorithm, compound fuzzy-PID control algorithm was devised. By testing, after optimizing combination of control parameter, the more excellent performance of closed-loop control for rotary speed and penetration rate was achieved. The actual result showed that rotary speed became more stable, and the penetration rate was limited in a small setting range and the error was only about 10%. So Fuzzy-PID algorithm has outstanding control features such as stronger adaptability and higher precision. Both the stability and reliability of electro-hydraulic control system are enhanced. It will be a favorable basis for developing the more advanced control algorithm and strategy.
引文
[1] 桂暖银. 岩芯钻机的负载特性及交流变频调速驱动系统的研究[博士论文]. 中国地质大学(北京),1994.5:1~35
    [2] 庞海荣. 全液压钻机电液比例技术的应用研究. [硕士论文] 煤炭科学研究总院西安分院,2003.7:1~7
    [3] 单志刚. 金刚石钻进过程微机监测识别系统的研究[博士论文]. 中国地质大学(武汉),1992.6:1~34
    [4] 杨华勇,曹剑,徐兵,吴根茂. 多路换向阀的发展历程与研究展望[J]. 机械工程学报,2005,41(10):1~5
    [5] 王庆丰,魏建华,吴根茂等. 工程机械液压控制技术的研究进展与展望[J]. 机械工程学报,2003,39(12):51~56
    [6] Henke R W. Evolution of load-sensing hydraulics[J]. Diesel Progress International Edition,1998,17(4):53~55
    [7] Yao B,Chris D. Energy-saving adaptive robust motion control of single-rod hydraulic cylinders with programmable valves[C]. In:Proc.of the American Control Conference,Anchorage, AK. 2002,5:4819~4824
    [8] Marc E M. Control of mobile hydraulic cranes[C]. In: Proc.of first FPNI-PhD symposium, Hamburg. 2000,9:475~483
    [9] 孙增圻等著. 智能控制理论与技术[M]. 北京:清华大学出版社,广西:广西科学技术出版社,2002.9:1~14,52~81
    [10] 孙增圻,张再兴. 智能控制的理论与技术[J]. 控制与决策,1996,11(1):1~7
    [11] Antsaklis P J. Intelligent learning control[J]. IEEE Control Systems, 1995, 15(3):5~8
    [12] Antsaklis P J. Defining intelligent control[J]. IEEE Control Systems, 1994, 14(3):4~5,58~66
    [13] http://www.atlascopco.com
    [14] 孙友宏. 地球物理参数随钻测量系统及钻机研制项目设计书[R]. 吉林大学,2005.6:5~10
    [15] 夏柏如. SCC 钻进系统和最优化控制钻进的试验与研究[博士论文]. 中国地质大学(北京),1988.6:1~45
    [16] 鄢泰宁,曹鸿国,乌效鸣编著. 检测技术及勘察工程仪表[M]. 武汉:中国地质大学出版社,1996.5:124~180
    [17] 刘桂芹. 电液比例控制技术在工程钻机中应用的研究[硕士论文]. 中国地质大学(武汉),2006.5:1~10
    [18] 冯德强. 钻机设计[M]. 北京:中国地质大学出版社,1993,10:316~327
    [19] 杨惠民主编. 钻探设备[M]. 北京:地质出版社,1988.11:85~96,106~143
    [20] 张祖培,刘宝昌. 碎岩工程学[M]. 北京:地质出版社,2004.11:36~49
    [21] 李世忠主编. 钻探工艺学(上册)[M]. 北京:地质出版社,1992.6:54~62
    [22] 许福玲,陈尧明. 液压与气压传动[M]. 北京:机械工业出版社,2001.4:24~30,132~151
    [23] 吉林工业大学等编写. 工程机械液压与液力传动(上册)[M]. 北京:机械工业出版社,1979.6:192~233
    [24] 吉林工业大学等编写. 工程机械液压与液力传动(下册)[M]. 北京:机械工业出版社,1979.6:1~17
    [25] 孔晓武. 带长管道的负载敏感系统研究[博士论文]. 浙江大学,2003.6:17~20,84~103
    [26] 董光源. 负荷传感控制液压系统[J]. 工程机械,1995(1):20~38
    [27] 顾临怡,谢英俊. 多执行器负载敏感系统的分流控制发展综述[J]. 机床与液压,2001(3):3~6
    [28] 方旭东. 液压挖堀机中负荷传感系统的分析与计算[J]. 同济大学学报,2001,29(9):1097~1100
    [29] 王世富,马俊功,王占林. 机载智能泵负载敏感的实现方法[J]. 机床与液压,2004(1):30~32
    [30] 耿国卿,耿子龙,张少红. 负荷传感技术在挖掘装载机中的应用[J]. 建筑机械,2005(7):87~89
    [31] Duqiang Wu. Modeling and experimental evaluation of a load-sensing and pressure compensated hydraulic system[D].Ph.D Thesis, University of Saskatchewan, Ganada, 2003.6
    [32] Dobchuk,J.W., Burton,R.T., Nikiforuk,P.N., and Ukrainetz,P.R. Mathematical Modeling of a Variable Displacement Axial Piston Pump[J]. Fluid Power Systems and Technology. ASMS.1999,6:1~8
    [33] Book,R. and Goering,C.E. Load Sensing Hydraulic System Simulation[J]. Applied Engineering in Agriculture. ASAE.1997,13(1):17~25
    [34] Kim,S.D.and Cho,H.S. Stability Analysis of a Load-Sensing Hydraulic System[J]. Proceeding of Institute of Mechanical Engineering. PartA. 1988,202:79~88
    [35] 胡燕平,吴根茂,魏建华. 两种负载敏感控制系统特性研究[J]. 浙江大学学报,1998,32(增):24~28
    [36] 伍燕芳,葛思华,王佑民等. 负载敏感系统的稳定性分析[J]. 西安交通大学学报,1992,26(2):23~28
    [37] 孔晓武. 考虑管路效应的负载敏感泵动态特性分析[J]. 工程设计学报,2005,12(4):219~231
    [38] 孔晓武. 负载敏感系统中反馈管路的动态特性[J]. 机床与液压,2005(8):70~72
    [39] 岑豫皖. 液压管道对电液伺服系统稳定性影响的研究[J]. 机床与液压,1998(4):58~60
    [40] 赵喜容,任德志. 管道对液压系统静动特性的影响[J]. 机床与液压,1997(5):41~42
    [41] Erkkila,M. Practical Modeling of Load-Sensing Systems[C].Proceeding of the Sixth Scandinavian International Conference on Fluid Power, SICFP’99, 1999, Tampere, Finland, p445
    [42] 永青. 负载感应型泵控系统动特性[J]. 北京科技大学学报,1996,18(2):150~162
    [43] Li,J. Study of Pressure-Compensated Plants of Load Sensing System with one Pump and Multi-load[C]. Proceeding of the 3rd Scandinavian International conference on fluid power. 1999:297~301
    [44] 张志涌等编. 精通 MATLAB6.5 版[M]. 北京:北京航空航天大学出版社. 2003.3:206~225
    [45] 付永领,祁晓野著. AMESim 系统建模和仿真[M]. 北京:北京航空航天大学出版社,2006.6:100~107
    [46] 刘海丽. 基于 AMESim 的液压系统建模与仿真技术研究[硕士论文]. 西北工业大学,2006.3:54~58
    [47] 许益民著. 电液比例控制系统分析与设计[M]. 北京:机械工业出版社,2005.10:81~211
    [48] 路甬祥,胡大纮著. 电液比例控制技术[M]. 北京:机械工业出版社,1988.11:297~306
    [49] 陈新元,曾良才等. 电液比例控制系统设计及其在线监控研究[J]. 机床与液压,2005(3):140~141
    [50] 郭刚,李永新. 电液比例控制系统传感器状态监测[J]. 矿山机械,2004(3):55~56
    [51] 焦阳. 钻机参数监测仪的研制[硕士论文]. 吉林大学,2006.5:8~35
    [52] 常健生主编. 检测与转换技术(第 2 版)[M]. 北京:机械工业出版社,2000.5:129~167
    [53] 中国计量出版社组编. 测量与传感电路[M]. 北京:中国计量出版社,2001.5:1~10,59~73
    [54] 杨欣,王玉凤等. 电子设计从零开始[M]. 北京:清华大学出版社,2005.10:329~334
    [55] 北京宏拓控制技术有限责任公司. PCI-7483多功能综合接口板使用说明书[R].
    [56] 裘雪红,顾新等. 微型计算机原理及接口技术[M]. 西安:西安电子科技大学出版社,2001.8:173~221
    [57] K.Dasgupta,R.Karmakar. Dynamic analysis of pilot operated pressure relief valve[J]. Simulation Modelling Practice and Theory,2002(10):35~49
    [58] K.Dasgupta,J.Watton. Dynamic analysis of proportional solenoid controlled piloted relief valve by bondgraph[J]. Simulation Modelling Practice and Theory, 2005(13):21~38
    [59] Bora Eryilmaz,Bruce H.Wilson. Unified modeling and analysis of a proportional valve[J]. Journal of Franklin Institute,2006(343):48~68
    [60] 鄢景华著. 自动控制原理[M]. 哈尔滨:哈尔滨工业大学出版社,1996.5:52~79
    [61] Richard C.Dorf,Robert H.Bishop.Modern Control Systems(Ninth Edition) [M]. Pearson Education,2001:695~702
    [62] 于海生. 微型计算机控制技术[M]. 北京:清华大学出版社,1999.3:81~95
    [63] 关景泰,温济全. 机电液控制技术[M]. 上海:同济大学出版社,2003.2:1~64
    [64] 金以慧等. 过程控制[M]. 北京:清华大学出版社,1993.4:31~45
    [65] 吴宏鑫,沈少萍. PID 控制的应用与理论依据[J]. 控制工程, 2003,10(1):37~42
    [66] (美)Evangelos Petroutsos. 邱仲潘等译. Visual Basic6 从入门到精通[M]. 北京:电子工业出版社,1999.1:494~479
    [67] 编程高手工作室编. Visual Basic 编程高手[M]. 北京:北京希望电子出版社,2001.2:171~176
    [68] 唐建国. 时滞不稳定过程的 PID 控制[J]. 重庆三峡学院学报,2003,19(6):101~104
    [69] 李学斌,唐明新. 一种新的压力 PID 分程控制方法及其应用[J]. 计算机测量与控制,2003,11(3):193~194
    [70] 马金元,秦长海. 焦炉压力的分布式控制系统及其实现算法[J]. 计算机测量与控制,2002,10(2):93~94
    [71] 熊志强,王炜. 一种新型 PID 自整定方法[J]. 控制工程,2003,10(增):134~136
    [72] 肖永利等. 位置伺服系统的一类非线性 PID 调节器设计[J]. 电气自动化,2000(1):20~22
    [73] 姜玉春,吴宏燕. PID 控制器参数的整定[J]. 莱钢科技,2006,122(2):54~55
    [74] 李钟慎. PID 控制器的解析法整定及其 MATLAB 实现[J]. 计算技术与自动化,2003,22(1):40~43
    [75] 刘向杰,周孝信,柴大佑. 模糊控制研究的现状与新发展[J]. 信息与控制,1999,28(4):283~290
    [76] 李国勇著. 智能控制及其 MATLAB 实现[M]. 北京:电子工业出版社,2005.5:194~261
    [77] 孙庚山,兰西柱著. 工程模糊控制[M]. 北京:机械工业出版社,1995.11:88~211
    [78] 何平,王鸿绪著. 模糊控制器的设计及应用[M]. 北京:科学出版社,1997.1:140~209
    [79] 张化光,何希勤等. 模糊自适应控制理论及其应用[M]. 北京:北京航空航天大学出版社,2002.7:18~52
    [80] 佟绍成,王涛等. 模糊控制系统的设计及稳定性分析[M]. 北京:科学出版社,2004.4:22~45
    [81] 张辉. 牙轮钻机钻进参数的模糊控制和自寻优控制的研究[博士论文]. 东北大学,1993.6:54~83
    [82] 李洪兴,王加银,苗志宏. 模糊控制系统的建模[J]. 中国科学(A辑),2002,32(9):772~781
    [83] Wang L-X, M endel J M.Fuzzy Control of Nonlinear Systems[J]. IEEE Tran. Fuzzy Systems,1993,1(2):146~155
    [84] 李洪兴. 模糊控制的插值机理[J]. 中国科学(E 辑),1998,28(3):259~267
    [85] 杜韶云,龙伟. Fuzzy-PID 控制恒压供水系统[J]. 中国仪器仪表,2007(2):76~79
    [86] 程向新,马强,郭庆祝. 基于 Fuzzy-PID 组合智能控制理论的船用锅炉水位仿真研究[J]. 青岛远洋船员学院学报,2006,27(4):23~26
    [87] Leonid Reznik,Omar Ghanayem,Anna Bourmistrov.PID plus fuzzy controller structures as a design base for industrial applications[J]. Engineering Applications of Artificial Intelligence,2000(13):419~430
    [88] James Carvajal,Guanrong Chen,etc. Fuzzy PID controller: Design, performance evaluation, and stability analysis[J].Information Sciences, 2000(123):249~270
    [89] W.Li,X.G.Chang,F.M.Wahl,S.K.Tso.Hybrid fuzzy P+ID control of manipulators under uncertainty[J]. Mechatronics,1999(9):301~315
    [90] 牟赟,侯力,王炳炎等. 基于 Matlab 的 2 种 Fuzzy-PID 控制器的设计于仿真[J]. 机械与电子,2007(1):70~72
    [91] 常继彬. 积分分离模糊 PID 控制在中央空调温湿度控制中的应用[J]. 重庆工学院学报,2007,21(1):117~127
    [92] Edgar N.Sanchez,Hector M.Becerra,Carlos M.Velez. Combining fuzzy, PID and regulation control for an autonomous mini-helicopter[J]. Information Siences, 2007(177):1999~2022

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700