用户名: 密码: 验证码:
稀土掺杂氟化物及氟氧化物的发光特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源是现代社会发展与进步的必需品。能源的可持续开发与高效率的利用一直是人们追求的永恒课题。目前达到地面的太阳能是现有的技术手段所能耗用的10000倍左右。因此利用光伏电池高效、低成本地转化太阳能为人类所用仍然是一项艰巨的任务。一个限制太阳能电池转换效率的主要问题在于光伏电池对太阳能全谱的不敏感。在c-Si (Eg=1.1ev)太阳能电池中,由Shockley-Queisser极限定义,最大效率上限为31%。目前,为了增加单节太阳能电池的效率,三价稀土离子由于具有丰富的能级结构能够很好的进行光调控,成为主要的实现有效光谱转换的选择。上转换过程、下转换量子剪裁过程应用到光谱转换层中最为广泛,尽管这些基础研究取得了一定的进展,但在实际应用中仍然存在着不足。围绕着对近红外量子剪裁等基础物理问题的深层次理解,以及亟需深入研究在上转换材料中提高上转换效率、调控上转换发光、在不同基质材料中上转换发光过程的特异性等基础研究内容,我们开展了一系列的研究工作。取得的主要成果有:
     [1]采用溶剂热的方法制得了LaF3:Sm3+六角相纳米晶材料,系统研究了在可见光激发的下转换近红外发射,得出了在LaF3:Sm3+(0.4mol%)纳米晶中最高的理论量子剪裁效率能够达到193%,考虑到光谱匹配的原因,LaF3:Sm3+纳米晶的近红外量子剪裁在提高Ge基太阳能电池的光谱响应中有潜在的应用。
     [2]通过系统研究立方相荧光粉NaLuF4: Er3+, Yb3+的下转换量子剪裁过程,总结出了近红外量子剪裁通道,计算了Er3+到Yb3+能量传递效率,并得出荧光粉理论的量子剪裁效率几乎相同(199%),展现了Er3+离子作为激活剂具有高的近红外量子剪裁效率。
     [3]利用溶胶-凝胶法结合胶晶模板法成功合成了YOF, GdOF和LaOF掺杂Yb3+和Er3+离子的三维有序大孔的上转换反蛋白石光子晶体;研究得出LnOF光子晶体中自发辐射速率的抑制源于有效折射率的变化而非局域态密度的降低;发现LnOF光子晶体的三维有序大孔和薄层状结构降低有效折射率以及抑制局域热效应。此工作对深入理解光子晶体效应作用于稀土离子的上转换发光过程和多功能光电器件的应用有重要意义。
     [4]我们研究了LnOF: Yb3+, Er3+纳米粉体材料的基质依赖的上转换发射谱,及温度依赖的上转换发射谱,并通过电子自旋共振谱图分析了白光宽带发射的来源。
Energy is a necessity of modern social development and progress. Sustainabledevelopment and efficient use of energy has been the pursuit of eternal subject.Currently solar energy reaching the ground is more than10,000times we canconsume by the existing technical means. Therefore, the use of photovoltaic cellsefficiently, cost-effectively converting solar energy for human use is still a dauntingtask. A major problem limiting the conversion efficiency of the solar cell is thephotovoltaic cell is not sensitive to the full spectrum of solar energy. In c-Si (Eg=1.1ev) solar cells, defined by the Shockley-Queisser limit, the maximum efficiencylimit is31%. Currently, in order to increase the efficiency of single solar cellstrivalent rare earth ions have rich level structure which have the capability of goodoptical control, become the main choice for efficient spectrum conversion. Theupconversion process and the process of down-conversion quantum cutting have beenwidely applied to the spectra conversion layer. Although the basic applied researchhas been made some progress, there are still insufficient in practice. Aiming tounderstand the near-infrared quantum cutting deeply and the mechanism ofupconversion process, such as improving the upconversion efficiency, regulating theupconversion luminescence and the specificity of upconversion luminescence indifferent matrix, we carried out a series of research work. The main results are:
     [1] Pure hexagonal LaF3: Sm3+nanocrystals were prepared via a simplesolvothermal route. The near-infrared down-convesion emissions under visible lightexcitation were systematically investigated. The highest theoretical quantum-cuttingefficiency in LaF3: Sm3+(0.4mol.%) nanocrystals can reach up to193%. Thenear-infrared quantum cutting phenomenon in LaF3: Sm3+nanocrystals have potentialapplications in improving the Ge-based solar cell spectral response, taking spectralmatching to the cause.
     [2] We studied the cubic phase phosphor NaLuF4: Er3+, Yb3+quantum cuttingprocess under the excitation of visible light. Many strong down-conversion transitionshave been observed and the possible near-infrared quantum cutting channels havebeen summarized in the near-infrared region850-2100nm. The energy transferefficiency has been calculated. Assuming Er3+quantum efficiency of ions is100%,the quantum-cutting efficiency of the phosphor in theory was almost the same199%,which shows the Er3+ion as an activator have a high near-infrared quantum cuttingefficiency so as to improve the spectral response as spectral matching layer and theconversion efficiency of the solar cell.
     [3] Yb3+and Er3+doped YOF, GdOF and LaOF three-dimensional orderedmacroporous upconversion inverse opal photonic crystals were successfullysynthesized by using sol-gel method combined with colloidal crystal template method.We found that the spontaneous emission rate was inhibited in LnOF photonic crystalscoming from the change of the effective refractive index rather than the lowerlocalized states density. The dimensional ordered macroporous and lamellar structureof LnOF can make the reduction of the effective refractive index of the photoniccrystal and the suppression of local thermal effects.
     [4] The upconversion luminescence of nanosized LnOF: Yb3+, Er3+powder werestudied.The host-dependent upconversion spectra and temperature-dependentupconversion spectra were studied. In addition, the broadband upconversionluminescence extending visible range were observed in LnOF:Yb3+,Er3+powder samples under high excitation power, and the origin was identified byelectron paramagnetic resonance (EPR). Specific luminescence mechanism iscomplex in the nonlinear optical process (upconversion luminescence process), whichremains to be further studied.
引文
[1] G. D. Scholes, G. R. Fleming, A. Olaya-Castro and R. van Grondelle, Lessonsfrom nature about solar light harvesting [J]. Nat. Chem,2011,3,763–774.
    [2] N. S. Lewis, Toward cost-effective solar energy use [J]. Science,2007,315,798–801.
    [3] H. Aguas, S. K. Ram, A. Araujo, D. Gaspar, A. Vicente, S. A. Filonovich, E.Fortunato, R. Martins and I. Ferreira, Silicon thin film solar cells on commercialtiles [J]. Energy Environ. Sci,2011,4,4620–4632.
    [4] H. A. Atwater and A. Polman, Plasmonics for improved photovoltaic devices [J].Nat. Mater,2010,9,205–213.
    [5] A. J. Nozik and J. Miller, Introduction to solar photon conversion [J]. Chem. Rev,2010,110,6443–6445.
    [6] P. K. Nayak, G. Garcia-Belmonte, A. Kahn, J. Bisquert and D. Cahen, Photovoltaicefficiency limits and material disorder [J]. Energy Environ. Sci,2012,5,6022–6039.
    [7] W. Y. Wong and C. L. Ho, Organometallic Photovoltaics: A New and VersatileApproach for Harvesting Solar Energy Using Conjugated Polymetallaynes [J].Acc. Chem. Res,2010,43,1246–1256.
    [8] J. D. Servaites, M. A. Ratner and T. J. Marks, Organic solar cells: A new look attraditional models [J]. Energy Environ. Sci,2011,4,4410–4422.
    [9] A. Yella, H. W. Lee, H. N. Tsao, C. Y. Yi, A. K. Chandiran, M. K. Nazeeruddin, E.W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin and M. Gratzel, Porphyrin-SensitizedSolar Cells with Cobalt (II/III)-Based Redox Electrolyte Exceed12%Efficiency[J]. Science,2011,334,629–634.
    [10] M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C.Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis and H. A.Atwater, Enhanced absorption and carrier collection in Si wire arrays forphotovoltaic applications [J]. Nat. Mater,2010,9,239–244.
    [11] X. H. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L.Brzozowski, D. A. R. Barkhouse, L. Levina, S. Hoogland and E. H. Sargent,Tandem colloidal quantum dot solar cells employing a graded recombinationlayer [J]. Nat. Photonics,2011,5,480–484
    [12] K. Q. Peng and S. T. Lee, Silicon nanowires for photovoltaic solar energyconversion [J]. Adv. Mater,2011,23,198–215.
    [13] A. I. Hochbaum and P. D. Yang, Semiconductor nanowires for energy conversion[J]. Chem. Rev,2010,110,527–546.
    [14] B. S. Richards, Enhancing the performance of silicon solar cells via theapplication of passive luminescence conversion layers [J]. Sol. Energy Mater.Sol. Cells,2006,90,2329–2337.
    [15] W. Shockley and H. J. Queisser, Detailed balance limit of efficiency of p-njunction solar cells [J]. J. Appl. Phys,1961,32,510–519.
    [16] C. Strumpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C.del Canizo and I. Tobias, Modifying the solar spectrum to enhance silicon solarcell efficiency—An overview of available materials [J]. Sol. Energy Mater. Sol.Cells,2007,91,238–249
    [17] B. S. Richards, Luminescent layers for enhanced silicon solar cell performance:Down-conversion [J]. Sol. Energy Mater. Sol. Cells,2006,90,1189–1207.
    [18] A. Shalav, B. S. Richards and M. A. Green, Luminescent layers for enhancedsilicon solar cell performance: Up-conversion [J]. Sol. Energy Mater. Sol. Cells,2007,91,829–842.
    [19] S. V. Eliseeva and J. C. G. Bunzli, Lanthanide luminescence for functionalmaterials and bio-sciences [J]. Chem. Soc. Rev,2010,39,189–227.
    [20] D. Chen, Y. Wang and M. Hong, Lanthanide nanomaterials with photonmanagement characteristics for photovoltaic application [J]. Nano Energy,2012,1,73–90.
    [21] T. Trupke, M. A. Green and P. Wurfel, Improving solar cell efficiencies byup-conversion of sub-band-gap light [J]. J. Appl. Phys,2002,92,4117–4122.
    [22] Q. Y. Zhang and X. Y. Huang, Recent progress in quantum cutting phosphors [J].Prog. Mater. Sci,2010,55,353–427.
    [23] T. Trupke, M. A. Green and P. Wurfel, Improving solar cell efficiencies bydown-conversion of high-energy photons [J]. J. Appl. Phys,2002,92,1668–1674.
    [24] C. Feldmann, T. Justel, C. R. Ronda and P. J. Schmidt, Inorganic LuminescentMaterials:100Years of Research and Application [J]. Adv. Funct. Mater,2003,13,511–516.
    [25] B. Valeur and M. N. Berberan-Santos, A Brief History of Fluorescence andPhosphorescence before the Emergence of Quantum Theory [J]. J. Chem. Educ,2011,88,731–738.
    [26] S. Kuck, I. Sokolska, M. Henke, T. Scheffler and E. Osiac, Emission andexcitation characteristics and internal quantum efficiencies of vacuum-ultravioletexcited Pr3+-doped fluoride compounds [J]. Phys. Rev. B: Condens. Matter,2005,71,165112.
    [27] L. S. Rohwer and J. E. Martin, Measuring the absolute quantum efficiency ofluminescent materials [J]. J. Lumin,2005,115,77–90.
    [28] K. Binnemans, Lanthanide-Based Luminescent Hybrid Materials [J]. Chem. Rev,2009,109,4283–4374.
    [29] J. C. G. Bunzli, Benefiting from the Unique Properties of Lanthanide Ions [J].Acc. Chem. Res,2006,39,53–61
    [30] J. C. G. Bunzli and C. Piguet, Taking advantage of luminescent lanthanide ions[J]. Chem. Soc. Rev,2005,34,1048–1077
    [31] T. Justel, H. Nikol and C. Ronda, New Developments in the Field ofLuminescent Materials for Lighting and Displays [J]. Angew. Chem., Int. Ed,1998,37,3085–3103.
    [32] H. Goesmann and C. Feldmann, H. Goesmann and C. Feldmann, NanoparticulateFunctional Materials [J]. Angew. Chem., Int. Ed,2010,49,1362–1395.
    [33] G. H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals, Wiley,New York,1968.
    [34] G. K. Liu, in Spectroscopic Properties of Rare Earths in Optical Materials, ed. G.K. Liu and B. Jacquier, Springer Verlag, Berlin,2005, pp.1–94.
    [35] M. F. H. Schuurmans and J. M. F. Vandijk, On radiative and nonradiative decaytimes in the weak coupling limit [J]. Physica B+C (Amsterdam),1984,123,131–155.
    [36] J. M. F. Vandijk and M. F. H. Schuurmans, On the nonradiative and radiativedecay rates and a modified exponential energy gap law for4f–4f transitions inrare‐e arth ions[J]. J. Chem. Phys,1983,78,5317–5323.
    [37] R. T. Wegh, H. Donker, K. D. Oskam and A. Meijerink, Visible Quantum Cuttingin LiGdF4:Eu3+Through Downconversion [J]. Science,1999,283,663–666.
    [38] J. L. Sommerdijk, A. Bril and A. W. de Jager, Luminescence of Pr3+-Activatedfluorides [J]. J. Lumin,1974,9,288–296.
    [39] A. M. Srivastava and W. W. Beers, Luminescence of Pr3+in SrAl12O19:Observation of two photon luminescence in oxide lattice [J]. J. Lumin,1997,71,285–290.
    [40] D. L. Dexter, A Theory of Sensitized Luminescence in Solids [J]. J. Chem. Phys,1953,21,836–850.
    [41] T. Miyakawa and D. L. Dexter, Phonon Sidebands, Multiphonon Relaxation ofExcited States, and Phonon-Assisted Energy Transfer between Ions in Solids [J].Phys. Rev. B: Solid State,1970,1,2961–2969.
    [42] N. Yamada, S. Shionoya and T. Kushida, Phonon-Assisted Energy Transferbetween Trivalent Rare Earth Ions [J]. J. Phys. Soc. Jpn,1972,32,1577–1586.
    [43] F. Wang, R. R. Deng, J. Wang, Q. X. Wang, Y. Han, H. M. Zhu, X. Y. Chen and X.G. Liu, Tuning upconversion through energy migration in core–shell nanoparticles[J]. Nat. Mater,2011,10,968–973.
    [44] F. Wang, Y. Han, C. S. Lim, Y. H. Lu, J. Wang, J. Xu, H. Y. Chen, C. Zhang, M.H. Hong and X. G. Liu, Simultaneous phase and size control of upconversionnanocrystals through lanthanide doping [J]. Nature,2010,463,1061–1065.
    [45] C. Zhang, H. P. Zhou, L. Y. Liao, W. Feng, W. Sun, Z. X. Li, C. H. Xu, C. J. Fang,L. D. Sun, Y. W. Zhang and C. H. Yan, Luminescence Modulation of OrderedUpconversion Nanopatterns by a Photochromic Diarylethene: Rewritable OpticalStorage with Nondestructive Readout [J]. Adv. Mater,2010,22,633–637.
    [46] P. Gibart, F. Auzel, J. C. Guillaume and K. Zahraman, Below Band-Gap IRResponse of Substrate-Free GaAs Solar Cells Using Two-Photon Up-Conversion[J]. Jpn. J. Appl. Phys, Part1,1996,35,4401–4402.
    [47] A. Shalav, B. S. Richards, T. Trupke, K. W. Kramer and H. U. Gudel, Applicationof NaYF4:Er3+up-converting phosphors for enhanced near-infrared silicon solarcell response [J]. Appl. Phys. Lett,2005,86,013505
    [48] S. Fischer, J. C. Goldschmidt, P. Loper, G. H. Bauer, R. Bruggemann, K. Kramer,D. Biner, M. Hermle and S. W. Glunz, Enhancement of silicon solar cellefficiency by upconversion: Optical and electrical characterization [J]. J. Appl.Phys,2010,108,044912.
    [49] F. Lahoz, Ho3+-doped nanophase glass ceramics for efficiency enhancement insilicon solar cells [J]. Opt. Lett,2008,33,2982–2984.
    [50] F. Lahoz, C. Perez-Rodriguez, S. E. Hernandez, I. R. Martin, V. Lavin and U. R.Rodriguez-Mendoza, Upconversion mechanisms in rare-earth doped glasses toimprove the efficiency of silicon solar cells [J]. Sol. Energy Mater. Sol. Cells,2011,95,1671–1677.
    [51] D. Q. Chen, L. Lei, A. P. Yang, Z. X. Wang and Y. S. Wang, Ultra-broadbandnear-infrared excitable upconversion core/shell nanocrystals [J]. Chem. Commun,2012,48,5898–5900.
    [52] S. Sivakumar, F. C. J. M. van Veggel and M. Raudsepp, Bright White Lightthrough Up-Conversion of a Single NIR Source from Sol Gel-Derived ThinFilm Made with Ln3+-Doped LaF3Nanoparticles [J]. J. Am. Chem. Soc,2005,127,12464.
    [53] S. Sivakumar, J-C. Boyer, E. Bovero and F. C. J. M. van Veggel, Up-conversionof980nm light into white light from sol-gel derived thin film made with newcombinations of LaF3:Ln3+nanoparticles [J]. J. Mater. Chem,2009,19,2392-2399.
    [54] B. Dong, H. W. Song, H. Q. Yu, H. Zhang, R. Qin, X. Bai, G. H. Pan, S. Z. Lu, F.Wang, L. B. Fan, and Q. L. Dai, Upconversion properties of Ln3+dopedNaYF4/Polymer composite fibers prepared by elecspinning [J]. J. Phys. Chem. C,2008,112,1435-1440.
    [55] K. Z. Zheng, Y. Liu, Z. Y. Liu, Z. Chen, W. P. Qin, Color control and whiteupconversion luminescence of LaOF: Ln3+(Ln=Yb, Er, Tm) nanocrystalsprepared by the sol-gel Pechini method [J]. Dalton Trans,2013,42,5159-5166.
    [56] J. W. Wang, and P. A. Tanner, Upconversion for white light generation by a singlecompound [J]. J. Am. Chem. Soc,2010,132,947-949.
    [57] Y. S. Zhu, W. Xu, C. Y. Li, H. Z. Zhang, B. Dong, L. Xu, S. Xu, and H. W. Song,Broad white light and infrared emission bands in YVO4: Yb3+, Ln3+(Ln3+=Er3+,Tm3+, or Ho3+)[J]. Appl. Phy. Express,2012,5,092701.
    [58] S. Xu, Y. S. Zhu, W. Xu, B. Dong, X. Bai, L. Xu, and H. W. Song, Observation ofultrabroad infrared emission bands in Er2O3, Pr2O3, Nd2O3and Sm2O3polycrystals [J]. Appl. Phy. Express,2012,5,102701.
    [59] X. Y. Huang, S. Y. Han, W. Huang, X. G. Liu, Enhancing solar cell efficiency: thesearch for luminescent materials as spectral converters [J]. Chem. Soc. Rev,2013,42,173-201.
    [60] P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. van der Eerden andA. Meijerink, Quantum cutting by cooperative energy transfer inYbxY1xPO4:Tb3+[J]. Phys. Rev. B: Condens. Matter,2005,71,014119.
    [61] J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid and A. Meijerink,Energy transfer mechanism for downconversion in the (Pr3+, Yb3+) couple [J].Phys. Rev. B: Condens. Matter,2010,81,155112.
    [62] D. Chen, Y. Wang, Y. Yu, P. Huang and F. Weng, Quantum cuttingdownconversion by cooperative energy transfer from Ce3+to Yb3+in borateglasses [J]. J. Appl. Phys,2008,104,116105.
    [63] J. Chen, H. Zhang, F. Li and H. Guo, High efficient near-infrared quantumcutting in Ce3+,Yb3+co-doped LuBO3phosphors [J]. Mater. Chem. Phys,2011,128,191–194.
    [64] X. Liu, Y. Teng, Y. Zhuang, J. Xie, Y. Qiao, G. Dong, D. Chen and J. Qiu,Broadband conversion of visible light to near-infrared emission by Ce3+,Yb3+-codoped yttrium aluminum garnet [J]. Opt. Lett,2009,34,3565–3567.
    [65] N. Rakov and G. S. Maciel, Near-infrared quantum cutting in Ce3+, Er3+, andYb3+doped yttrium silicate powders prepared by combustion synthesis [J]. J.Appl. Phys,2011,110,083519.
    [66] J. Ueda and S. Tanabe, Visible to near infrared conversion in Ce3+–Yb3+Co-doped YAG ceramics [J]. J. Appl. Phys,2009,106,043101.
    [67] X. B. Chen, J. G. Wu, X. L. Xu, Y. Z. Zhang, N. Sawanobori, C. L. Zhang, Q. H.Pan and G. J. Salamo, Three-photon infrared quantum cutting from single speciesof rare-earth Er3+ions in Er0.3Gd0.7VO4crystalline [J]. Opt. Lett,2009,34,887–889.
    [68] J. Zhou, Y. Teng, X. Liu, S. Ye, Z. Ma and J. Qiu, Broadband spectralmodification from visible light to near-infrared radiation using Ce3+–Er3+codoped yttrium aluminium garnet [J]. Phys. Chem. Chem. Phys,2010,12,13759–13762.
    [69] J. Zhou, Y. Teng, X. Liu, S. Ye, X. Xu, Z. Ma and J. Qiu, Intense infraredemission of Er3+in Ca8Mg(SiO4)4Cl2phosphor from energy transfer of Eu2+by
    broadband down-conversion [J]. Opt. Express,2010,18,21663–21
    [1] Q. Y. Zhang and X. Y. Huang, Recent progress in quantum cutting phosphors [J].Prog. Mater Sci,2010,55,353-427.
    [2] B. S. Richards, Luminescent layers for enhanced silicon solar cell performance:Down-conversion [J]. Sol. Energy Mater. Sol. Cells,2006,90,1189-1207.
    [3] T. Trupke and M. A. Green, Improving solar cell efficiencies by down-conversionof high-energy photons [J]. J. Appl. Phys,2002,92,1668.
    [4] B. M. van der Ende, L. Aarts, and A. Meijerink, Near‐Infrared Quantum Cuttingfor Photovoltaics [J]. Adv. Mater,2009,21,3073-3077.
    [5] J. J. Zhou, Y. X. Zhuang, S. Ye, Y. Teng, G. Lin, B. Zhu, J. H. Xie, J. R. Qiu,Broadband downconversion based infrared quantum cutting by cooperativeenergy transfer from Eu2+to Yb3+in glasses [J]. Appl. Phy. Lett,2009,95,141101-3.
    [6] P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van derEerden, and A. Meijerink, Quantum cutting by cooperative energy transfer inYbxY1xPO4:Tb3+[J]. Phy. Rev. B,2005,71,014119.
    [7] Y. Teng, J. J. Zhou, X. F. Liu, S. Ye and J. R. Qiu, Efficient broadbandnear-infrared quantum cutting for solar cells [J]. Opt. Express,2010,18,9671.
    [8] D. Q. Chen, Y. L. Yu, H. Lin, P. Huang, Z. F. Shan, and Y. S. Wang,Ultraviolet-blue to near-infrared downconversion of Nd3+-Yb3+couple [J].Optical Letters,2010,35,220-222.
    [9] S. Ye, B. Zhu, J. Luo, J. X. Chen, G. Laksminarayana and J. R. Qiu, Enhancedcooperative quantum cutting in Tm3+-Yb3+codoped glass ceramics containingLaF3nanocrystals [J]. Opt. Lett,2008,16,8989-8994.
    [10] H. Lin, D. Q. Chen, Y. L. Yu, A. P. Yang, and Y.S. Wang, Near-infrared quantumcutting in Ho3+/Yb3+codoped nanostructured glass ceramic [J]. Opt. Lett,2011,36,876-878.
    [11] D. Chen, Y. Wang, Y. Yu, P. Hang, and F. Weng, Quantum cuttingdownconversion by cooperative energy transfer from Ce3+to Yb3+in borateglasses [J]. J. Appl. Phys,2008,104,116105.
    [12] J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Kramer, H. U. Gudel, and A.Meijerink, Efficient visible to infrared quantum cutting through downconversionwith the Er3+–Yb3+couple in Cs3Y2Br9[J]. Appl. Phys. Lett,2010,96,151106.
    [13] R. F. Qin, H. W. Song, G. H. Pan, X. Bai, B. Dong, S. H. Xie, L. N. Liu, Q. L.Dai, X. S. Qu, X. G. Ren, H. F. Zhao, Polyol-Mediated Synthesis of HexagonalLaF3Nanoplates Using NaNO3as a Mineralizer [J]. Crystal Growth&Design,2009,9,1750-1756.
    [14] X. F. Wang, X. H. Yan, C. X. Kan, Thermal loading induced near-infraredbroadband upconversion emission of Sm3+-doped β-NaYbF4nano-phosphors [J].Journal of Luminescence,2011,131,2325-2329.
    [15]T. Som, B. Karmakar, Infrared-to-red upconversion luminescence insamarium-doped antimony glasses [J]. Journal of Luminescence,2011,128,1989-1996.
    [16] X. B. Chen, J. G. Wu, X. L. Xu, Y. Z. Zhang, N. Sawanobori, C. L. Zhang, Q. H.Pan and G. J. Salamo, Near-infrared quantum cutting in transparentnanostructured glass ceramics [J]. Opt. Lett,2009,33,1884-1886.
    [1] Y. Yang, Y. Sun, T. Y. Cao, J. J. Peng, Y. Liu, Y. Q. Wu, W. Feng, Y. J. Zhang, F. Y.Li, Hydrothermal synthesis of NaLuF4:153Sm,Yb,Tm nanoparticles and theirapplication in dual-modality upconversion luminescence and SPECT bioimaging[J]. Biomaterials,2013,34,774-783.
    [2] C. R. Ronda, Phosphors for lamps and displays: an application view [J]. J. AlloysCompd,1995,225,534-538.
    [3] M. Olivier, J. L. Doualan, P. Camy, H. Lhermite, P. Pirasteh, J. N. Coulon, A.Braud, J. L. Adam, and V. Nazabal, Optical amplication of Pr3+-doped ZBLAchannel waveguides for visible laser emission [J]. Opt. Express,2012,20,25064.
    [4] W. Lenth and R. M. Macfarlane, Opt. Photon. News,1992,3,8.
    [5] M. F. Joubert, S. Guy, B. Jacquier, Model of photon-avalanche effect [J]. Phys.Rev. B,1993,48,10031-10037.
    [6] R. Scheps, Upconversion laser processes [J]. Prog. Quantum Electron,1996,20,271-358.
    [7] W. Lenth and R. M. Macfarlane, Excitation mechanism for upconversion lasers [J].J. Lumin,1990,45,346-350.
    [8] L. L. Liang, Y. M. Liu, C. H. Bu, K. M. Guo, W. W. Sun, N. Huang, T. Peng, B.Sebo, M. M. Pan, W. Liu, S. S. Guo and X. Z. Zhao, Highly uniform,bifunctional core/double-shell-structured-NaLuF4: Er3+, Yb3+@SiO2@TiO2hexagonal sub-microprisms for high-performance dye sensitisized solar cells,Adv. Mater,2013,25,2174-2180.
    [9] B. M. Van der Ende, L. Aarts, A. Meijerink, Near-Infrared Quantum Cutting forPhotovoltaics [J]. Adv. Mater,2009,21,3073-3077.
    [10] X. P. Chen, X. Y. Huang, and Q. Y. Zhang, Concentration-dependentnear-infrared quantum cutting in NaYF4: Pr3+, Yb3+phosphor [J]. J. Appl. Phys,2009,106,063518.
    [11] Y. S. Xu, X. H. Zhang, S. X. Dai, B. Fan, H. L. Ma, J. Adam, J. Ren, and G. R.Chen, Efficient Near-Infrared Down-Conversion in Pr3+–Yb3+Codoped Glassesand Glass Ceramics Containing LaF3Nanocrystals [J]. J. Phys. Chem. C,2011,115,13056-13062.
    [12] Q. Liu, Y. Sun, T. S. Yang, W. Feng, C. G. Li, and F. Y. Li, Sub-10nm HexagonalLanthanide-Doped NaLuF4Upconversion Nanocrystals for Sensitive Bioimagingin Vivo [J]. J. Am. Chem. Soc,2011,133,17122-17125.
    [13] F. Shi, J. S. Wang, X. S. Zhai, D. Zhao and W. P. Qin, Facile synthesis ofβ-NaLuF4: Yb/Tm hexagonal nanoplates with intense ultraviolet upconversionluminescence [J]. CrystEngComm,2011,13,3782-3787.
    [14] Y. P. Li, J. H. Zhang, Y. S. Luo, X. Zhang, Z. D. Hao and X. J. Wang, Colorcontrol and white light generation of upconversion luminescence by operatingdopant concentrations and pump densities in Yb3+, Er3+and Tm3+tri-dopedLu2O3nanocrystals [J]. J. Mater. Chem,2011,21,2895-2900.
    [15] F. Wang and X. G. Liu, Upconversion Multicolor Fine-Tuning: Visible toNear-Infrared Emission from Lanthanide-Doped NaYF4Nanoparticles [J]. J. Am.Chem. Soc,2008,130,5642-5643.
    [16] L. Aarts, S. Jaeqx, B. M. van der Ende, and A. Meijerink, Downconversion forthe Er3+, Yb3+couple in KPb2Cl5—A low-phonon frequency host [J]. J. Lumin,2011,131,608.
    [17] J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Kr mer, H. U. Güdel, and A.Meijerink, Efficient visible to infrared quantum cutting through downconversionwith the Er3+–Yb3+couple in Cs3Y2Br9[J]. Appl. Phys. Lett,2010,96,151106.
    [18] E. Nakazawa, S. Shionoya, and W. M. Yen: Phosphor Handbook [M].1999.
    [1] E. Yablonovitch, Inhibited spontaneous emission in solid-state physics andelectronics [J]. Phy. Rev. Lett,1987,58,2059-2062.
    [2] S. John, Strong localizaiton of photons in certain disordered dielectricsuperlattices [J]. Phys. Rev. Lett,1987,58,2486-2489.
    [3] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo,P. D. Yang, Room-Temperature Ultraviolet Nanowire Nanolasers [J]. Science,2001,292,1897-1899.
    [4] X. D. Wang, J. H. Song, J. Liu, Z. L.Wang, Direct-Current Nanogenerator Drivenby Ultrasonic Waves [J]. Science,2007,316,102-105.
    [5] S. John, K. J. Busch, Phtonic bandgap formation and tunalility in certainself-orgnizing system [J]. Lightwave Technol,1999,17,1931.
    [6] Y. A. Vlasov, V. N. Astratov, O. Z. Karimov, A. A. Kaplyanskii, V. N. Bogomolov,A. V. Prolofiev, Existence of a photonic pseudogap for visible light in syntheticopals [J]. Phys. Rev. B,1997,55,13357-13360.
    [7] Y. Zhu, W. Xu, H. Zhang, W. Wang, L. Tong, S. Xu, Z. Sun and H. Song, Highlymodified spontaneous emissions in YVO4:Eu3+inverse opal and refractive indexsensing application [J]. Appl. Phys. Lett,2012,100,081104.
    [8] Y. Zhu, W. Xu, H. Zhang, W. Wang, S. Xu, and H. Song, Inhibited Long-ScaleEnergy Transfer in Dysprosium Doped Yttrium Vanadate Inverse Opal [J]. J.Phys. Chem. C,2012,116,2297-2302.
    [9] X. Qu, B. Dong, G. Pan, X. Bai, Q. Dai, H. Zhang, R. Qin, H. Song, Influence ofphotonic stop band effect on photoluminescence of Y2O3:Eu3+inverse opal films[J]. Chem. Phys. Lett,2011,509,33-36.
    [10] Y. Zhu, Z. Sun, Z. Yin, H. Song, W. Xu, Y. Wang, L. Zhang and H.Zhang, Self-assembly, highly modified spontaneous emission and energy transferproperties of LaPO4:Ce3+,Tb3+inverse opals [J]. Dalton Trans,2013,42,8049-8057.
    [11] T. Y. Cao, Y. Yang, Y. Gao, J. Zhou, Z. Q. Li, F. Y. Li, High-qualitywater-soluble and surface-functionalized upconversion nanocrystals asluminescent probes for bioimaging [J]. Biomaterials,2011,32,2959-2968.
    [12] D. K. Chatterjee, A. J. Rufaihah, Y. Zhang, Upconversion fluorescence imagingof cells and small animals using lanthanide doped nanocrystals [J]. Biomaterials,2008,29,937-943.
    [13] J. Chen, C. R. Guo, M. Wang, L. P. Wang, C. B. Mao, S. K. Xu, Controllablesysthesis of NaYF4: Yb, Er upconversion and their application to in vivo imagingof caenorhabditis elegans [J]. J. Mater. Chem,2011,21,2632-2638.
    [14] D. K. Chatterjee, M. K. Gnanasammandhan, Y. Zhang, Small upconvertingfluorescent nanoparticles for biomedical application [J]. Small,2010,6,2781-2795.
    [15] H. X. Mai, Y. W. Zhang, L. D. Sun, C. H. Yan, Size-and Phase-ControlledSynthesis of Monodisperse NaYF4: Yb, Er Nanocrystals from a Unique DelayedNucleation Pathway Monitored with Upconversion Spectroscopy [J]. J. Phys.Chem. C,2007,111,13730-13739.
    [16] Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, C. H. Yan, Colormodification action of an upconversion photonic crytal [J]. Chem. Commun,2009,6616-6618.
    [17] F. Zhang, Y. H. Deng, Y. F. Shi, R. Y. Zhang, D. Y. Zhao, Photolulminescentmodification in upconverison rare-earth fluoride nanocrystal array constructedphotonic crystals [J]. J. Mater. Chem,2010,20,3895-3900.
    [18] K. K. Deb, R. G. Buser, C. A. Morrison, R. P. Leavitt, Crystal fields andintensities of triply ionized rare-earth ions in cubic lanthanum oxyfluoride: anefficient4F3/2-4I9/2LaOF: Nd laser [J]. J. Opt. Soc. Am,1981,71,1463-1466.
    [19] G. S. Yi, Y. F. Peng, Z. Q. Gao, Strong red-emitting near-infrared-to-visibleupconversion fluorescent nanoparticles [J]. Chem. Mater,2011,23,2729-2734.
    [20] Q. H. Xie, Y. Wang, B. Pan, H. M. Wang, W. Y. Su, X. X. Wang, A novelphotocatalyst LaOF: facile fabrication and photocatalytic hydrogen production[J]. Catal. Commun,2012,27,21-25.
    [21] T. Balaji, S. Buddhudu, Photoluminescence spectra of Eu3+-doped certain powderphosphors [J]. Spectrosc. Lett,1993,26,113-127.
    [22] S. Fujihara, Kato, T. Kimura, Sol-gel synthesis and luminescent properties ofoxyfluoride LaOF: Eu3+thin films [J]. J. Mater. Sci. Lett,2001,20,687-689.
    [23] D. Barreca, A. Gasparotto, C. Maragno, E. Tondello, E. Bontempi, L. E. Depro,C. Sada, CVD of lanthanum oxyfluoride-based films from a lanthanum-diketonate diglyme precursor [J]. Chem. Vap. Deposition,2005,11,426-432.
    [24] K. Z. Zheng, Y. Liu, Z. Y. Liu, Z. Chen, W. P. Qin, Color control and whiteupconversion luminescence of LaOF: Ln3+(Yb, Er, Tm) nanocrystals preparedby sol-gel pechini method [J]. Dalton Trans,2013,42,5159-5166.
    [25] Y. P. Du, Y. W. Zhang, L. D. Sun, C. H. Yan, Luminescent monodispersenanocrystals of lanthanide oxyfluorides synthesized from trifluoroacetateprecursors in high-boiling solvents [J]. J. Phys. Chem. C,2008,112,405-415.
    [26] J. E. Roberts, Lanthanum and Neodymium Salts of Trifluoroacetic Acid [J]. J.Am. Chem. Soc,1961,83,1087-1088.
    [27] Y. Zhang, X. Kang, D. Geng, M. Shang, Y. Wu, X. Li, H. Lian, Z. Cheng and J.Lin, Highly uniform and monodisperse GdOF:Ln3+(Ln=Eu, Tb, Tm, Dy,Ho,Sm) microsphereshydrothermal synthesis and tunable-luminescence properties[J]. Dalton Trans,2013,42,14140-14148.
    [28] G. Chai, G. Dong, J. Qiu, Q. Zhang, Z, Yang, Phase Transformation and Intense2.7μm Emission from Er3+Doped YF3/YOF Submicron-crystals [J]. ScientificReports,2013,3,1598.
    [29] Y. Du, Y. Zhang, L. Sun, and C. Yan, Luminescent Monodisperse Nanocrystalsof Lanthanide Oxyfluorides Synthesized from Trifluoroacetate Precursors inHigh-Boiling Solvents [J]. J. Phys. Chem. C,2008,112,405-415.
    [30] S. G. Romanov, T. Maka, C. M. S. Torres, M. Muller, R. Zentel, D. Cassagne, J.Manzanares-Martinez, C. Jouanin, Diffraction of light form thin-filmpolymethylmethacrylate opaline photonic crystals [J]. Phys. Rev. E,2001,63,056603.
    [31] H. L. Ning, A. Mihi, J. B. Ceddes, M. Miyake, P. V. Braun, Radiative lifemodification of LaF3: Nd nanoparticles embedded in3D silicon photonic crystals[J]. Adv. Mater,2012,24, OP153-OP158.
    [32] S. Xu, W. Xu, B. Dong, X. Bai, and H. Song, Downconversion from visible tonear infrared through multi-wavelength excitation in Er3+/Yb3+co-doped NaYF4nanocrystals [J]. J. Appl. Phys,2011,110,113113.
    [33] M. Aloshyna, S. Sivakumar, M. Venkataramanan, A. G. Brolo, F. C. J. M. vanVeggel, Significant suppression of spontaneous emission in SiO2photoniccrystals made with Tb3+-doped LaF3nanoparticles [J]. J. Phys. Chem. C,2007,111,4047-4051.
    [34] X. H. Wang, R. Z. Wang, B. Y. Gu, G. Z. Yang, Decay distribution of spontaneousemission from an assembly of atoms in photonic crystals with pseudogaps [J].Phys. Rev. Lett,2002,88,093902-093902.
    [35] C. K. Duan, M. F. Reid, Macroscopic models for the radiative relaxation lifetimeof luminescent centers embedded in surrounding media [J]. Spectroscopy. Lett,2007,40,237-246.
    [36] M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, M. P. Hehlen, Powerdependence of upconversion luminescence in lanthanide and transition-metal-ionsystems [J]. Phys. Rev. B,2000,61,3337-3346.
    [37] M. A. Chamarro, R. Cases, Infrare to visible upconversion of Er3+ions in Yb3+doped fluorohafnate glasses [J]. J. Lumin,1990,46,59-65.
    [38] X. Bai, H. W. Song, G. H. Pan, Y. Q. Lei, T. Wang, X. G. Ren, S. Z. Lu, B. Dong,Q. L. Dai, L. B. Fan, Size-dependent upconversion luminescence inEr3+-Yb3+-codoped nanocrystalline yttria: saturation and thermal effects [J]. J.Phys. Chem. C,2007,111,13611-13617.
    [39] Y. Q. Lei, H. W. Song, L. M. Yang, L. X. Yu, Z. X. Liu, G. H. Pan, X. Bai, L. B.Fan, Upconversion luminescence, intensity saturation effect, and thermal effectin Gd2O3: Er3+, Yb3+nanowires [J]. J. Chem. Phys,2005,123,174710.
    [1] F. Wang, Y. Han, C. S. Lim, Y. H. Lu, J. Wang, J. Xu, H. Y. Chen, C. Zhang, M. H.Hong and X. G. Liu, Simultaneous phase and size control of upconversionnanocrystals through lanthanide doping [J]. Nature,2010,463,1061-1065.
    [2] F. Wang, D. Banerjee, Y. S. Liu, X. Y. Chen and X. G. Liu, Upconversionnanoparticles in biological labeling, imaging, and therapy [J]. Analyst,2010,135,1839-1854.
    [3] J. W. Wang and P. A. Tanner, Upconversion for White Light Generation by aSingle Compound [J]. J. Am. Chem. Soc,2010,132,947-949.
    [4] Q. Y. Zhang, T. Li and Z. H. Jiang,980nm laser-diode-excited intense blueupconversion in Tm3+/Yb3+-codoped gallate–bismuth–lead glasses [J]. Appl.Phys. Lett,2005,87,171911-3.
    [5] Y. P. Du, Y. W. Zhang, L. D. Sun and C. H. Yan, Luminescent MonodisperseNanocrystals of Lanthanide Oxyfluorides Synthesized from TrifluoroacetatePrecursors in High-Boiling Solvents [J]. J. Phys. Chem. C,2008,112,405-415.
    [6] D. Q. Chen, Y. S. Wang, K. L. Zheng, T. L. Guo, Y. L. Yu and P. Huang, Brightupconversion white light emission in transparent glass ceramicembedding Tm3+/Er3+/Yb3+: β-YF3nanocrystals [J]. Appl. Phys. Lett,2007,91,251903.
    [7] B. M. van der Ende, L. Aarts and A. Meijerink, Lanthanide ions as spectralconverters for solar cells [J]. Phys. Chem. Chem. Phys,2009,11,11081-11095.
    [8] F. L′ahoz, I. R. Martín, J. M. Calvilla-Quintero, Ultraviolet and white photonavalanche upconversion in Ho3+-doped nanophase glass ceramics [J]. Appl. Phys.Lett,2005,86,051106.
    [9] D. Chen, Y. Wang, Y. K. Zheng, T. Guo, Y. Yu, P. Huang, Bright upconversionwhite light emission in transparent glass ceramic embedding Tm3+/Er3+/Yb3+:β-YF3nanocrystals [J]. Appl. Phys. Lett,2007,91,251903.
    [10] D. Chen, Y. Wang, Y. Yu, P. Huang, F. Weng, Novel rare earth ions-dopedoxyfluoride nano-composite with efficient upconversion white-light emission [J].J. Solid. State. Chem,2008,181,2763-2767.
    [11] G. Y. Chen, Y. Liu, Y. G. Zhang, G. Somesfalean, Z. G. Zhang, Q. Sun, F. P. Wang,Bright white upconversion luminescence inrare-earth-ion-doped Y2O3nanocrystals [J]. Appl. Phys. Lett,2007,91,133103.
    [12] G. Glaspell, J. Anderson, J.R. Wilkins, M.S. El-Shall, Vapor Phase Synthesis ofUpconverting Y2O3Nanocrystals Doped with Yb3+, Er3+, Ho3+, and Tm3+toGenerate Red, Green, Blue, and White Light [J]. J. Phys. Chem. C,2008,112,11527-11531.
    [13] R. K. Verma, S. B. Rai, Continuum emission in Nd3+/Yb3+co-dopedCa12Al14O33phosphor: Charge transfer state luminescence versus induced opticalheating [J]. Chem. Phys. Lett,2013,559,71–75.
    [14] S. Sivakumar, F. C. J. M van Veggel and M. Raudsepp, Bright White Lightthrough Up-Conversion of a Single NIR Source from Sol Gel-Derived ThinFilm Made with Ln3+-Doped LaF3Nanoparticles [J]. J. Am. Chem. Soc,2005,127,12464-12465.
    [15] I. Etchart et al., Efficient white light emission by upconversion in Yb3+-Er3+-and Tm3+-dopedY2BaZnO5[J]. Chem. Commun,2011,47,6263-6265.
    [16] J. Wang, J. H. Hao, P. A. Tanner, Luminous and tunable white-light upconversionfor YAG (Yb3Al5O12) and (Yb,Y)2O3nanopowders [J]. Opt. Lett,2010,35,3922-3924.
    [17] A. K. Singh, S. Singh, D. Kumar, D.K. Rai, S.B. Rai, K. Kumar, Light-into-heatconversion in La2O3: Er3+-Yb3+phosphor: an incandescent emission [J]. Opt.Lett,2012,37,776-778.
    [18] Z. B. Li, Y. F. Li, L. Nie, X. C. Fu, Sm2O3掺杂CeO2纳米材料的电子顺磁共振研究[J].中国粉体技术,2010,16,49-51.
    [19] V. Singh, V. K u m a r R a i, S. Watanabe, T. K. Gundu Rao, L. Badie, I.Ledoux-Rak, Y. D. Jho, Synthesis, characterization, optical absorption,luminescence and defect centres in Er3+and Yb3+co-doped MgAl2O4Phosphors[J]. Appl. Phys. B,2012,108,437-446.
    [20] R. Komban, J. P. Klare, B. Voss, J. Nordmann, H. Steinhoff, and M. Haase, AnElectron Paramagnetic Resonance Spectroscopic Investigation on the GrowthMechanism of NaYF4: Gd Nanocrystals [J]. Angew. Chem. Int. Ed,2012,51,6506-6510.
    [21] F. Auzel and Y. Chen, Photon avalanche luminescence of Er3+ions inLiYF4crystal [J]. J. L umin,1995,65,45-56.
    [22] Y. S. Zhu, W. Xu, H. Z. Zhang, S. Xu, Y. F. Wang, Q. L. Dai, B. Dong, L. Xu,and H. W. Song, Inhibited local thermal effect in upconversion luminescence ofYVO4: Yb3+, Er3+inverse opals [J]. Opt. Express,2012,20,29673-29678.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700