用户名: 密码: 验证码:
新型被动锁模激光器和拉曼激光器中的自锁模现象的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在激光器诞生之后的50多年中,激光技术得到了迅猛的发展。发光功率、峰值功率、光束质量、脉冲宽度、体积及成本等各项指标不断得到改善。其中,全固态激光器具有效率高、性能稳定、体积小等特点,已经成为了激光技术研究中的主流,在空间通讯、器件加工、医疗、光学成像等诸多领域有了广泛的应用。
     人们一般把脉冲宽度在皮秒到飞秒量级的脉冲,称为超短脉冲。超短脉冲具有脉宽窄、峰值功率高、光谱宽等特点。如今,超短脉冲也已经广泛应用于人们日常生活和工业生产中。锁模技术是获得超短脉冲的重要手段。锁模技术主要可以分为主动锁模和被动锁模,后者使用可饱和吸收体作为锁模元件,可以获得更短的脉冲宽度。在过去的20年中,随着半导体激光器的发展和新型光学可饱和吸收体出现及成熟,被动锁模技术有了很大的发展,获得了极短脉冲宽度(小于10fs)、极高的峰值功率(经放大可达PW)和超高的脉冲重复率(超过100GHz)。目前,在被动锁模激光器中主要使用的可饱和吸收体包括:半导体可饱和吸收镜(SESAM)、单层碳纳米管(SWCNT)和石墨烯(Graphene)。相比于半导体可饱和吸收镜,单层碳纳米管和石墨烯材料具有制备过程简单、工作光谱范围广等优点。
     双钨酸盐晶体(KRE(WO4)2, RE=Gd, Lu和Y)拥有优良的物理、化学性质,是一种优良的激光基质材料。通过在晶体中掺杂Nd、Yb、Tm等稀土离子,已经实现了高效激光运转。同时,此类晶体属于单斜晶系,由于低对称性导致其吸收、发射光谱较宽,有利于获得超短脉冲。无序晶体在一定程度上综合了光学玻璃和有序晶体的特性。相对于光学玻璃,无序晶体的热导率高,受激发射界面大。同时,由于无序晶体中的离子在一定范围内的无序分布,使其拥有了类似玻璃的无序结构,可以实现宽发射光谱。钙锂铌镓石榴石(CLNGG)是一种典型的无序晶体。
     本论文的研究工作主要集中新型被动锁模激光器的研究上。实验中采用SESAM和SWCNT作为可饱和吸收体,实现了多个波段的被动锁模激光器。在1μm波段,我们分别使用Nd:KLu(WO4)2和Yb:CLNGG作为激光晶体;在1.5μm波段,使用Cr:YAG作为激光晶体;在2μm波段,使用Tm,Ho:KLu(WO4)2作为激光晶体。采用不同参数的SESAM和SWCNT作为可饱和吸收体,分析了不同的可饱和吸收体的参数对锁模效果的影响。实验研究了被动锁模激光器的特性并用现有理论加以解释。同时,研究了被动调Q拉曼激光器中的自锁模现象,分析了自锁模现象和可饱和吸收体的小信号透过率、泵浦功率以及谐振腔长度之间的关系。
     本论文的主要研究内容如下:
     1.研究了LD泵浦的Nd:KLu(WO4)2连续激光特性和被动锁模激光特性。当吸收泵浦功率为4.4W时,输出1070.2nm连续光功率为3.3W,对应的转换效率为75%。使用SESAM作为可饱和吸收体,采用Z型腔,实现了连续锁模运转。最大输出功率为1.4W,脉冲重复率为102MHz,对应的单脉冲能量为6.8nJ。脉冲宽度为11.5ps,对应的峰值功率为0.6kW。在实验过程中,观察到在高泵浦功率的条件下,连续锁模脉冲出现脉冲分裂现象。
     2.研究了Yb:CLNGG被动锁模激光器的特性。使用SWCNT作为可饱和吸收体。当输出镜的透过率为0.4%时,获得最短脉冲宽度为90.2fs;当输出镜的透过率为3.0%时,获得最大平均输出功率为90.5mW,脉冲宽度为137.3fs。在高泵浦功率的条件下,锁模脉冲的光谱中出现了连续分量,成为限制输出功率增长的因素。使用SESAM作为可饱和吸收体。当输出镜的透过率为1.0%时,获得脉冲宽度为55.6fs的超短脉冲,平均功率为60.1mW。当输出镜的透过率为3.0%时,获得了最大的平均功率为150.5mW,脉冲宽度为115.6fs。
     3.研究了Cr:YAG被动锁模激光器的特性。使用SWCNT作为可饱和吸收体。获得了49.6fs的超短脉冲,中心波长为1509.4nm,光谱宽度50.8nm。系统研究了锁模激光器的特性,找到了最佳泵浦功率。使用频率分辨光学开关法(FROG)测量了谐振腔中的色散,为下一步优化谐振腔设计做好了准备。
     4.研究了Tm,Ho:KLu(WO4)2被动锁模激光器的特性。使用SWCNT作为可饱和吸收体,获得了2.4ps的超短脉冲,中心波长为2058.9nm,光谱宽度为1.7nm,对应的时间带宽积为0.3。使用透过率为3.0%的输出镜,获得了最大平均输出功率110.7mW。使用SESAM作为可饱和吸收体,获得了7.2ps的超短脉冲。实验中尝试了多种参数不同的SWCNT和SESAM,并通过改变棱镜对的间距改变谐振腔中的色散补偿,但始终无法获得飞秒脉冲。
     5.研究了全固体态拉曼激光器中的自锁模现象。以Nd:YAG晶体作为激光增益介质,以SrWO4晶体作为拉曼工作介质,以Cr:YAG作为被动调Q元件,实现了内腔式被动调Q拉曼激光器。并研究了自锁模现象和谐振腔长度,泵浦功率,Cr:YAG的小信号透过率之间的关系。实验发现,当谐振腔的长度大于50cm时,自锁模现象明显且稳定。自锁模现象和泵浦功率、小信号透过率之间没有明显关系。在全泵浦范围内都可以观察到调制深度为100%的自锁模现象。
     本研究论文的主要创新点如下:
     1.研究了LD泵浦Nd:KLu(WO4)2被动锁模激光特性。使用SESAM作为可饱和吸收体,获得了11.4ps的超短脉冲,平均输出功率为1.4W。这是首次有关LD泵浦Nd:KLu(WO4)2被动锁模激光器的报道。证明了Nd掺杂的双钨酸盐晶体可以用来获得高功率皮秒脉冲。
     2.首次研究了以Yb:CLNGG作为增益介质,以SWCNT为可饱和吸收体的被动锁模激光特性。当输出镜的透过率为0.4%时,获得最短脉冲宽度为90.2fs,这是目前使用透射式SWCNT在1μm波段所获得最短脉冲。
     3.首次研究了以Yb:CLNGG作为增益介质,以SESAM为可饱和吸收体的被动锁模激光特性。获得了55.6fs的超短脉冲,平均输出功率为60.1mW。这是目前为止,在Yb掺杂的各向同性的晶体中,获得的最短的超短脉冲。
     4.首次研究了Tm,Ho:KLu(WO4)2被动锁模激光器的特性。使用SWCNT作为可饱和吸收体,获得了2.4ps的超短脉冲。使用SESAM作为可饱和吸收体,获得了7.2ps的超短脉冲。这是首次有关Tm,Ho:KLu(WO4)2晶体被动锁模的报道。
     5.研究了被动调Q拉曼激光器中的自锁模现象。实验证明,被动调Q拉曼激光器中的自锁模现象和泵浦功率、小信号透过率没有明显的关系。
Laser technology had experienced a great development since the first successful laser was reported. The parameters of laser have perfected constantly, such as average output power, beam quality, pulse duration, and cost. Compared to other laser systems, all-solid-state lasers have the advantages of high efficiency, high stability, compact structure, and long lifetime. Due to these advantages, these kinds of lasers have been widely used in the fields of communication, material processing, medical, light display and so on.
     Generally, pulses with pulse durations of picoseconds and femtoseconds can be called as ultrashort pulses. The ultrashort pulses have the advantages of ultrashotr pulse duartion, high peak power, and broad spectrum and so on. Mode-locking technology is an efficient way to generate ultrashort pulses. Mode-locking technology can be divided into active mode-locking and passive mode-locking and the latter one can genetate much shorter pulse using saturable absorbers. In the recent20years, semiconductor lasers for optical pumping and optical saturable absorbers have dramatically improved these mode-locking lasers which have extremely short pulse durations (shorter than10fs), extremely high peak power (with amplifer, PW) and extremely high pulse repetition rates (greater than100GHz). Today, saturable absorbers used in passively mode-locked laser include Semiconductor saturable absorber mirror (SESAM), single-walled carbon nanometer tube (SWCNT), and Graphene. Compared to SESAM, SWCNT and Graphene have the advantages of broadband absorption, short recovery time, and easy fabrication.
     Double tungastates (KRE(WO4)2,RE=Gd, Lu and Y) crystals have been proposed to be ideal laser crystals with excellent properties of physics and chemistry. The high efficient laser operations have been obtained using rare earth ions doped KRE(WO4)2crystals. At the same time, KRE(WO4)2crystals belong to monoclinic system, space group C2/c. Due to their low symmetry, this kind of crystals have broader emission spectra, which are beneficial for mode-lcoking. Disordered crystals attract more and more attention as hosts for rare-earth ions in mode-locked lasers, because inhomogeneous broadening provides broader spectral emission than common crystals while compared to the even more broadband laser glasses, they exhibit higher thermal conductivity. Calcium-lithium-niobium-gallium garnet (CLNGG) is one of the typical disordered crystals.
     In this thesis, the work is focusd on novel passively mode-locked lasers. During experiments, we achieved some passively mode-locked lasers operating at different wavnlengths, using SESAM and SWCNT as saturable absorbers. Around1μm, Nd:K.Lu(WO4)2crystal and Yb:CLNGG crystal were used as the laser gaim medium; around1.5μm, a Cr:YAG crystal was used as the laser gain medium; around2μm, a Tm,Ho:(WO4)2crystal was used as the laser gain medium. Different SWCNTs and SESAMs with different paramaters were used to obtain mode-locking, and analyze the influence of the parameters of the saturable absorbers on mode-locking performance. We studied the characteristics of the passively mode-locked lasers and explained theses phenomena. We also studied the self mode-locking phenomenon in passively Q-swtiched Raman lasers.
     The main contents of this thesis are as follows:
     1. The characteristics of diode-pumped CW and passively mode-locked Nd:KLu(WO4)2lasers were studied.3.3W of1070.2nm CW laser was obtained with an absorbed pump power of4.4W. A Z-type cavity was used to archieve the passively mode-locked laser using SESAM as the saturable absorber. The maximum output power was1.4W, corresponding to a single pulse energy of6.8nJ. The pulse duration was11.5ps, corresponding to a peak power of0.6kW. During experiment, we obtained the phenomenon of pulse splitting at high pump power.
     2. The characteristics of a diode-pumped passively mode-locked Yb:CLNGG laser were studied. When the SWCNT was used as the saturable absorber, the minmum pulse duration of90.2fs was obtained, using an output coupler with a transmission of0.4%. When the transmission of the output coupler was3.0%, a maximum output power of90.5mW was obtained with a pulse duration of137.3fs. Appearance of CW component in the spectrum was the limit to obtain higher output power. When a SESAM was used as the saturable absorber, the shortest pulse duration of55.6fs was obtained, using an output coupler with a transmission of1.0%. When the transmission of the output coupler was3.0%, the maximum output power of150.5mW was obtained with a pulse duration of115.6fs.
     3. The characteristics of a passively mode-locked Cr:YAG, using SWCNT as the saturable absorber, were studied. A pulse duration as short as49.6fs was obtained at1509.4nm. We studied the different performances of passively mode-locked lasers at different pump powers and found the optimum pump power for mode-lokcing. We used Frequency-Resolved Optical Gating (FROG) technology to measure the dispersion in the cavity.
     4. The characteristics of a Ti:sapphire laser pumped passively mode-locked Tm,Ho:KLu(WO4)2were studied. When SWCNT was used as the saturable absorber, a pulse duration as short as2.4ps was obtained. The spectrum centred at2058.9nm with a width of1.7nm, corresponding to a time-bandwidth product of0.3. When the transmission of the output couple was3.0%, the maximum output power of110.7mW was obtained. A pulse duration of7.2ps was obtained using SESAM as the satuarble absorber. During the experiment, we tested different saturable absorbers with different parameters and changed the dispersion in order to get fs pulses, unfortunately, we cound not get fs pulses.
     5. The self mode-locking phenomenon in all-solid-state Raman lasers was demonstrated. A intracavity passively Q-switched Nd:YAG/SrWO4/Cr:YAG Raman laser was used to study the phenomenon of self mode-locking. The self mode-locking phenomena with different cavity lengths, different small signal transmissions and different pump powers were studied. When the cavity length was longer than50cm, stable self mode-locking of Raman laser can be obtained. Self mode-locking phenomenon with100%modulation depth can be obtained with different pump powers and different small signal transmissions.
     The main innovations of this thesis are as follows:
     1. The characteristics of diode-pumped CW and passively mode-locked Nd:KLu(WO4)2lasers were studied. A pulse duration as short as11.4ps was obtained with a SESAM as the saturable absorber. This is the first report about passively mode-locked Nd:KLu(WO4)2laser. Our experiment demonstrated this kind of crystal is a candidate to get high power mode-locked laser with ps pulse duration.
     2. Passively mode-locked Yb:CLNGG laser, using SWCNT as the saturable absorber, was demonstrated for the first time. A pulse duration as short as90.2fs was obtained with a0.4%output coupler. This is the shortest pulses to our knowledge for a diode-pumped1-μm laser using transmissive SWCNT.
     3. A passively mode-locked Yb:CLNGG laser, using SESAM as the saturable absorber, was demonstrated for the first time. A pulse duration as short as55.6fs was obtaind with output power of60mW. This is the shortest pulses to our knowledge for Yb doped isotropic crystals.
     4. The characteristics of a Thsapphire laser pumped passively mode-lcocked Tm,Ho:KLu(WO4)2laser were demonstrated for the first time. Pulse durations as short as2.4ps and7.2ps were obtained, using SWCNT and SESAM as saturable absorbers respectively.
     5. The mode-locking phenomenon in passively Q-swtitched Raman laser was studied for the first time. Our experiment demonstrated that there was no obvious influence of small signal transmission and pump power on self mode-locking phenomenon.
引文
[1]T. H. Mainman, "Stimulated optical emission in Ruby," Nature, vol.187, pp. 493-494,1960.
    [2]J. H Sung, S. K. Lee, T. J. Yu, T. M. Jeong, and J. M. Lee, "0.1 Hz 1.0 PW Ti:sapphire laser," Opt. Lett., vol.35, pp.3021-3023,2010.
    [3]M. Aoyama, K. Yamakawa, Y. Akahane, J. Ma, N. Inoue, H. Ueda, and H. Kiriyama, "0.85-PW,33-fs Ti:sapphire laser," Opt. Lett., vol.28, pp. 1594-1596,2003.
    [4]P. Antoine, A. L'huillier, and M. Lewenstein, "Attosecond pulse trains using high-order harmonics," Phys. Rev. Lett.-Moving Phys. Forward, vol.77, pp. 1234-1237,1996.
    [5]M. Nisoli, S. De Silvestri, O. Svelto, R. Szipocs, K. Ferencz, Ch. Spielmann, S. Sartania, and F. Krausz, "Compression of high-energy laser pulses below 5 fs," Opt. Lett., vol.22, pp.522-524,1997.
    [6]M. Nisoli, S. De Silvestri, and O.Svelto, "Generation of high energy 10 fs pulses by a new pulse compression technique," Appl. Phys. Lett., vol.68, pp. 2793-2795,1996.
    [7]P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Auge, Ph. Balcou, H. G. Muller,and P. Agostini, "Observation of a Train of Attosecond Pulses from High Harmonic Generation," Science, vol.292, pp.1689-1692,2001.
    [8]T. J. Carrig, G. J. Wagner, A. Sennaroglu, J. Y. Jeong, and C. R. Pollock, "Mode-locked Cr2+:ZnSe laser," Opt. Lett., vol.25, pp.168-170,2000.
    [9]H. Roskos, T. Robl, and A. Seilmeier, "Pulse shortening to 25 ps in a cw mode-locked Nd:YAG laser by introducing an intracavity etalon," Appl. Phys. B, vol 40, pp.59-65,1986.
    [10]Y. K. Chen, M. C. Wu, T. Tanbun-Ek, R. A. Logan, and M. A. Chin, "Subpicosecond monolithic colliding-pulse modelocked multiple quantum well lasers," Appl. Phys. Lett., vol.58, pp.1253-1255,1991.
    [11]P. Bado, M. Bouvier, and J. S. Coe, "Nd:YLF mode-locked oscillator and regenerative amplifier," Opt. Lett., vol.12, pp.319-321,1987.
    [12]K. J. Weingarten, D. C. Shannon, R. W. Wallace, and U. Keller, "Two gigahertz repetition rate, diode-pumped, mode-locked, Nd:yttrium lithium fluoride (YLF) laser," Opt. Lett., vol.15, pp.962-964,1990.
    [13]K. D. Li, J. A. Sheridan, and D. M. Bloom, "Picosecond pulse generation in Nd:BEL with a high-frequency acousto-optic mode locker," Opt. Lett., vol.16, pp.1505-1507,1991.
    [14]D. K. Kopf, F. X. Kartner, K. J. Weingarten, and U. Keller, "Pulse shortening in a Nd:glass laser by gain reshaping and soliton formation," Opt. Lett., vol.19, pp.2146-2148,1994.
    [15]G. Cerullo, S. De Silvestri, P. Laporta, S. Longhi, V. Magni, S. Taccheo, and O. Svelto, "Continuous-wave mode locking of a bulk erbium-ytterbium glass laser," Opt. Lett., vol.19, pp.271-274,1994.
    [16]P. F. Curley, and A. I. Ferguson, "Actively mode-locked Ti:sapphire laser producing transform-limited pulses of 150-fs duration," Opt. Lett., vol.16, pp. 1016-1018,1991.
    [17]G. H. C. New, "Mode locking of quasi-continuous lasers," Opt. Commun., vol. 6, pp.188-192,1972.
    [18]G. H. C. New, "Pulse evolution in mode-locked quasi-continuous lasers," IEEE J. Quan. Electron., vol.10, pp.115-124,1974.
    [19]H. A. Haus, J. G. Fujimoto, and E. P. Ippen, "Analytic theory of additive pulse and Kerr lens mode locking," IEEE J. Quan. Electron., vol.28, pp.2086-2096, 1992.
    [20]H. A. Haus, "Theory of mode locking with a fast saturable absorber," J. Appl. Phys., vol.46, pp.3049-3058,1975.
    [21]R. Paschotta, and U. Keller, "Passive mode locking with slow saturable absorbers," Appl. Phys. B, vol.73, pp.653-662,2001.
    [22]F. X. Kartner, I. D. Jung, and U. Keller, "Soliton modelocking with saturable absorbers," special issue on ultrafast electronics, photonics and optoelectronics; IEEE J. Sel. Topics Quan. Electron., vol.2, pp.540-556,1996.
    [23]F. X. Kartner, and U. Keller, "Stabilization of soliton-like pulses with a slow saturable absorber," Opt. Lett., vol.20, pp.16-18,1995.
    [24]E. B. Treacy, "Optical pulse compression with diffraction gratings," IEEE J. Quan. Electron., vol.5, pp.454-458,1969.
    [25]U. Keller, "Recent developments in compact ultrafast lasers," Nature, vol.424, pp.831-838,2003.
    [26]J. F. Ziegler, J. P. Biersack, and U. Littmark, "The Stopping and Range of Ions in Solids," New York:Pergamon vol.1,1989.
    [27]F. W. Smith, A. R. Calawa, C. L. Chen, M. J. Manfra, and L. J. Mahoney, "New MBE buffer used to eliminated backgating in GaAs MESFET's," IEEE Electron Device Lett., vol.9, pp.77-80,1998.
    [28]A. F. Gibson, M. F. Kimmitt, and B. Norris, "Generation of bandwidth-limited pulses from a TEA-CO2 laser using p-type germanium,'" Appl. Phys. Lett., vol. 24, pp.306-307,1974.
    [29]E. P. Ippen, D. J. Eichenberger, and R. W. Dixon, "Picosecond pulse generation by passive modelocking of diode lasers," Appl. Phys. Lett., vol.37, pp. 267-269,1980.
    [30]M. N. Islam, E. R. Sunderman, C. E. Soccolich, I. Bar-Joseph, N. Sauer, T. Y., Chang, and B.I. Miller, "Color center lasers passively mode locked by quantum wells," IEEE J. Quan. Electron., vol.25, pp.2454-2463,1989.
    [31]U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, "Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE J. Sel. Topics Quan. Electron., vol.2, pp. 435-453,1996.
    [32]U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, "Solid state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber," Opt. Lett., vol. 17, pp.505-507,1992.
    [33]U. Keller, W. H. Knox, and H. Roskos, "Coupled-cavity resonant passive modelocked Ti:Sapphire Laser," Opt. Lett., vol.15, pp.1377-1379,1990.
    [34]I. D. Jung, L. R. Brovelli, M. Kamp, U. Keller, and M. Moser, "Scaling of the antiresonant Fabry-Perot saturable absorber design toward a thin saturable absorber," Opt. Lett, vol.20, pp.1559-1561,1995.
    [35]L. R. Brovelli, I. D. Jung, D. Kopf, M. Kamp, M. Moser, F. X. Kartner, and U. Keller, "Self-starting soliton modelocked Ti:sapphire laser using a thin semiconductor saturable absorber," Electron. Lett., vol.31, pp.287-289,1995
    [36]C. Honninger, G. Zhang, U. Keller, and A. Giesen, "Femtosecond Yb:YAG laser using semiconductor saturable absorbers," Opt. Lett., vol.20, pp. 2402-2404,1995.
    [37]S. Tsuda, W. H. Knox, E. A. d. Souza, W. Y. Jan, and J. E. Cunningham, "Low-loss intracavity AIAs/AIGaAs saturable Bragg reflector for femtosecond mode locking in solid-state lasers." Opt. Lett., vol.20. pp.1406-1408,1995.
    [38]D. Kopf, G. Zhang, R. Fluck, M. Moser, and U. Keller, "All-inone dispersion-compensating saturable absorber mirror for compact femtosecond laser sources," Opt. Lett., vol.21, pp.486-488,1996.
    [39]M. Ramaswamy, A. S. Gouveia-Neto, D. K. Negus, J. A. Izatt, and J. G. Fujimoto, "2.3-ps pulses from a Kerr-lens mode-locked lamp-pumped Nd:YLF laser with a microdot mirror," Opt. Lett., vol.18, pp.1825-1827,1993.
    [40]D. Kopf, K. J. Weingarten, L. R. Brovelli, M. Kamp, and U. Keller, "Diode-pumped 100-fs passively mode-locked Cr:LiSAF laser with an antiresonant Fabry-Perot saturable absorber," Opt. Lett., vol.19, pp. 2143-2145,1994.
    [41]K. J. Weingarten, U. Keller, T. H. Chiu, and J. F. Ferguson, "Passively mode-locked diode pumped solid-state lasers using an antiresonant Fabry-Perot saturable absorber," Opt. Lett., vol.18, pp.640-642,1993.
    [42]L. R. Brovelli, U. Keller, and T. H. Chiu, "Design and operation of antiresonant Fabry-Perot saturable semiconductor absorbers for mode-locked solid-state lasers," J. Opt. Soc. Am. B, vol.12, pp.311-322,1995.
    [43]U. Keller, "Ultrafast all-solid-state laser technology," Appl. Phys. B, vol.58, pp. 347-363,1994.
    [44]S. Tsuda, W. H. Knox, E. A. Souza, W. Y. Jan, and J. E. Cunningham, "Low-loss intracavity AlAs/AlGaAs saturable Bragg reflector for femtosecond mode locking in solidstate lasers," Opt. Lett., vol.20, pp.1406-1408,1995.
    [45]C. Honninger, G. Zhang, U. Keller, and A. Giesen, "Femtosecond Yb:YAG laser using semiconductor saturable absorbers," Opt. Lett., vol.20, pp. 2402-2404,1995.
    [46]D. Kopf, K. J. Weingarten, L. R. Brovelli, M. Kamp, and U. Keller, "Sub-50-fs diodepumped mode-locked Cr:LiSAF with an A-FPSA," Conference on Lasers and Electro Optics (CLEO), paper CWM2,1995.
    [47]S. Tsuda, S., W. H. Knox, and S. T. Cundiff, "High efficiency diode pumping of a saturable Bragg reflector-mode-locked Cr:LiSAF femtosecond laser," Appl. Phys. Lett., vol.69, pp.1538-1540,1996.
    [48]D. Kopf, G. Zhang, R. Fluck, M. Moser, and U. Keller, "All-in-one dispersion compensating saturable absorber mirror for compact femtosecond laser sources," Opt. Lett., vol.21, pp.486-448,1996.
    [49]D. Kopf, A. Prasad, G. Zhang, M. Moser, and U. Keller, "Broadly tunable femtosecond Cr:LiSAF laser," Opt. Lett., vol.22, pp.621-623,1997.
    [50]D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, "High-average-power diode-pumped femtosecond Cr:LiSAF lasers," Appl. Phys. B, vol.65, pp.235-243,1997.
    [51]F. H. Loesel, C. Horvath, F. Grasbon, M. Jost, and M. H. Niemz, "Self-starting femtosecond operation and transient dynamics of a diode-pumped Cr:LiSGaF laser with a semiconductor saturable absorber mirror,"Appl. Phys. B, vol.65, pp.783-787,1997.
    [52]Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, and T. Nakagawa, "Femtosecond Cr:forsterite laser with modelocking initiated by a quantum well saturable absorber," IEEE J. Quan. Electron., vol.33, pp.1975-1981,1997.
    [53]Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, and T. Nakagawa, "Self-starting mode-locked femtosecond forsterite laser with a semiconductor saturable absorber mirror," Opt. Lett., vol.22, pp.1006-1008,1997.
    [54]J. Aus der Au, D. Kopf, F. Morier-Genoud, M., Moser, and U. Keller, "60-fs pulses from a diode-pumped Nd:glass laser," Opt. Lett., vol.22, pp.307-309, 1997.
    [55]X. Liu, L. Qian, F. Wise, Z. Zhang, T. Itatani, T. Sugaya, T. Nakagawa and K. Torizuka, "Femtosecond Cr:forsterite laser diode pumped by a double-clad fiber," Opt. Lett., vol.23, pp.129-131,1998.
    [56]T. Kellner, F. Heine, G. Huber, C. Honninger, B. Braun, F. Morier-Genoud, and U. Keller, "Soliton mode-locked Nd:YAlO3 laser at 930 nm," J. Opt. Soc. Am. B, vol.15, pp.1663-1666,1998.
    [57]C. Honninger, F. Morier-Genoud, M. Moser, U. Keller, L. R. Brovelli, and C. Harder, "Efficient and tunable diode-pumped femtosecond Yb:glass lasers," Opt. Lett., vol.23, pp.126-128.1998.
    [58]G. J. Spuhler, T. Sudmeyer, R. Paschotta, M. Moser, K. J. Weingarten, and U. Keller, "Passively mode-locked high-power Nd:YAG lasers with multiple laser heads," Appl. Phys. B, vol.71, pp.19-25,2000.
    [59]G. J. Spuhler, R. Paschotta, U. Keller, M. Moser, M. J. P. Dymott, D. Kopf, J. Meyer, K. J. Weingarten, J. D. Kmetec, J. Alexander, and G. Truong, "Diode-pumped passively mode-locked Nd:YAG laser with 10-W average power in diffraction-limited beam," Opt. Lett., vol.24, pp.528-530,1999.
    [60]C. Honninger, R. Paschotta, M. Graf, F. Morier-Genoud, G Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, "Ultrafast ytterbium-doped bulk lasers and laser amplifiers,' Appl. Phys. B, vol.69, pp.3-17,1999.
    [61]A. J. Kemp, B. Stormont, B. Agate, C. T. A. Brown, U. Keller, and W. Sibbett, "Gigahertz repetition-rates from a directly diode-pumped femtosecond Cr:LiSAF laser," Electron. Lett., vol.37, pp.1457-1458,2001.
    [62]J. M. Dai, W. L. Zhang, L. Z. Zhang, L. Chai, Y. Wang, Z. G. Zhang, Q. R. Xing, C. Y. Wang, K. Torizuka, T. Nakagawa, and T. Sugaya, "A diode-pumped, self-starting, all-solid-state self-mode-locked Cr:LiSGAF laser," Opt. Laser Technol., vol.33, pp.71-73,2001.
    [63]M. J. Lederer, V. Kolev, B. Luther-Davies, H. H. Tan, and C. Jagadish, "Ion-implanted InGaAs single quantum well semiconductor saturable absorber mirrors for passive modelocking," J. Phys. D, vol.34, pp.2455-2464,2001.
    [64]J. M. Hopkins, G. J. Valentine, B. Agate, A. J. Kemp, U. Keller, and W. Sibbett, "Highly compact and efficient femtosecond Cr:LiSAF lasers," IEEE J. Quantum Electron., vol.38, pp.360-368,2002.
    [65]H. D. Sun, G. J. Valentine, R. Macaluso, S. Calvez, D. Burns, M. D. Dawson, T. Jouhti, and M. Pessa, "Low-loss 1.3μm GalnNAs saturable Bragg reflector for high-power picosecond neodymium lasers," Opt. Lett., vol.27, pp.2124-2126, 2002.
    [66]H. H. Xu, H. J. Zhang, H. H. Yu, D. Y. Tang, and C. W. Xu, "Passive mode-locking performance of mixed Nd:La0.11Y0.89VO4 crystal," Opt. Express, vol.22, pp.5350-5356,2014.
    [67]F. Druon, S. Chenais, P. Raybaut, F. Balembois, P. Georges, R. Gaume, G. Aka, B. Viana, S. Mohr, and D. Kopf, "Diode-pumped Yb:Sr3Y(BO3)3 femtosecond laser," Opt. Lett., vol.27, pp.197-199,2002.
    [68]J. L. He, C. K. Lee, J. Y. J. Huang, S. C. Wang, C. L. Pan, and K. F. Huang, "Diode-pumped passively mode-locked multiwatt Nd:GdVO4 laser with a saturable Bragg reflector," Appl. Opt., vol.42, pp.5496-5499,2003.
    [69]R. P. Prasankumar, Y. Hirakawa, A. M. Kowalevicz, F. X. Kartner, J. G. Fujimoto, and W. H. Knox, "An extended cavity femtosecond Cr:LiSAF laser pumped by low cost diode lasers," Opt. Express, vol.11, pp.1265-1269,2003.
    [70]V. Liverini, S. Schon, R. Grange, M. Haiml, S. C. Zeller, and U. Keller, "A low-loss GaInNAs SESAM mode-locking a 1.3-μm solid-state laser," Appl. Phys. Lett., vol.84, pp.4002-4004,2004.
    [71]E. Innerhofer, T. Sudmeyer, F. Brunner, R. Haring, A. Aschwanden, R. Paschotta, C. Honninger, M. Kumkar, and U. Keller, "60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser," Opt. Lett., vol.28, pp.367-369, 2003.
    [72]J. L. He, Y. X. Fan, J. Du, Y. G. Wang, S. Liu, H. T. Wang, L. H. Zhang, and Y. Hang, "4-ps passively mode-locked Nd:Gd0.5Y0.5YVO4 laser with a semiconductor saturable absorber mirror," Opt. Lett., vol.29, pp.2803-2805, 2004.
    [73]C. J. Saraceno, F. Emaury, C. Schriber, M. Hoffmann, M. Golling, T. Sudmeyer, and U. Keller, "Ultrafast thin-disk laser with 80μJ pulse energy and 242 W of average power," Opt. Lett., vol.39, pp.9-12,2014.
    [74]A. Lucca, M. Jacquemet, F. Druon, F. Balembois, P. Georges, P. Camy, J. L. Doualan, and R. Moncorge, "High-power tunable diode-pumped Yb3+:CaF2 laser," Opt. Lett.,29, pp.1879-1881,2004.
    [75]L. Guo, W. Hou, H. B. Zhang, Z. P. Sun, D. F. Cui, Z. Y. Xu, Y. G. Wang, and X. Y. Ma, "Diode-end-pumped passively mode-locked ceramic Nd:YAG Laser with a semiconductor saturable mirror," Opt. Express, vol.13, pp.4085-4089, 2005.
    [76]Y. X. Fan, J. L. He, Y. G. Wang, S. Liu, H. T. Wang, and X. Y. Ma, "2-ps passively modelocked Nd:YVO4 laser using an output-coupling-type semiconductor saturable absorber mirror," Appl. Phys. Lett., vol.86, pp. 101103,2005.
    [77]A. Rutz, R. Grange, V. Liverini, M. Haiml, S. Schon, and U. Keller, "1.5μm GalnNAs semiconductor saturable absorber for passively mode locked solid-state lasers," Electron. Lett., vol.41, pp.321-323,2005.
    [78]J. Hou, X. W. Fu, J. L. He, Y. Yang, B. T. Zhang, Z. W. Wang, K. J. Yang, Z. T. Jia, R. H. Wang, X. M. Liu, C. M. Dong, X. T. Tao, "Dual-wavelength passively mode-locked Nd:LGGG laser with SESAM," Photon. Tech. Lett., vol.26, pp.40-42,2014.
    [79]Y. Zaouter, J. Didierjean, F. Balembois, G. L. Leclin, F. Druon, P. Georges, J. Petit, P. Goldner, and B. Viana, "47-fs diode-pumped Yb3+:CaGdAlO4 laser," Opt. Lett., vol.31, pp.119-121,2006.
    [80]G. R. Holtom. "Mode-locked Yb:KGW laser longitudinally pumped by polarization coupled diode bars," Opt. Lett., vol.31, pp.2719-2721,2006.
    [81]G. Q. Xie, D. Y. Tang, H. Luo, H. J. Zhang, H. H. Yu, J. Y. Wang, X. T. Tao, M. H. Jiang, and L. J. Qian, "Dual-wavelength synchronously mode-locked Nd: CNGG laser," Opt. Lett., vol.33, pp.1872-1874,2009.
    [82]Z. H. Cong, X. Y. Zhang, Q. P. Wang, D. Y. Tang, W. D. Tan, J. Zhang, X. D. Xu, D. Z. Li, and J. Xu, "LD pumped Nd:Lu2SiO5 passively mode-locked laser with a SESAM," Laser Phys. Lett., vol.8, pp.107-110,2011.
    [83]Z. H. Cong, D. Y. Tang, W. D. Tan, J. Zhang, C. W. Xu, D. W. Luo, X. D. Xu, D. Z. Li, and J. Xu, X.Y. Zhang, and Q. P. Wang, "Dual-wavelength passively mode-locked Nd:LuYSiO5 laser with SESAM," Opt. Express, vol.19, pp. 3984-3989,2011.
    [84]Z. H. Cong, D. Y. Tang, W. D. Tan, J. Zhang, D. W. Luo, C. W. Xu, X. D. Xu, D. Z. Li, and J. Xu, X.Y. Zhang, and Q. P. Wang, "Diode-end-pumped Nd:CaYA104 mode locked laser," Opt. Commun., vol.284, pp.1967-1969, 2011.
    [85]S. Schon, M. Haiml, L. Gallmann, and U. Keller, "Fluoride semiconductor saturable absorber mirror for ultrashort pulse generation," Opt. Lett., vol.27, pp.1845-1847,2002.
    [86]S. Schon, M. Haiml, L. Gallmann, and U. Keller, "Fluoride semiconductor saturableabsorber mirror for ultrashort pulse generation," Opt. Lett., vol.27, pp. 1845-1847,2002.
    [87]S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol.354, pp. 56-58,1991.
    [88]W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, "Boosting the Nonlinear Optical Response of Carbon Nanotube Saturable Absorbers for Broadband Mode-Locking of Bulk Lasers," Adv. Funct. Mater., vol.20, pp. 1937-1943,2010.
    [89]F. Rotermund, W. B. Cho, S. Y. Choi, I. H. Baek, J. H. Yim, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, D.-I. Yeom, K. Kim and V. Petrov, "Mode-locking of solid-state lasers by single-walled carbon-nanotube based saturable absorbers," Quan. Electron., vol.42, pp.663-670,2012.
    [90]S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, "Laser mode locking using a saturable absorber incorporating carbon nanotubes," J. Lightwave Technol., vol.22, pp.51-562004.
    [91]T. R. Schibli, K. Minoshima, H. Kataura, E. Itoga, N. Minami, S. Kazaoui, K. Miyashita, M. Tokumoto, and Y. Sakakibara, "Ultrashort pulse-generation by saturable absorber mirrors based on polymer-embedded carbon nanotubes,' Opt. Express, vol.13, pp.8025-8031,2005.
    [92]W. B. Cho, J. H. Yim, S. Y.g Choi, S. Lee, U. Griebner, V. Petrov, and F. Rotermund, "Mode-locked self-starting Cr:forsterite laser using a single-walled carbon nanotube saturable absorber," Opt. Lett., vol.33, pp.2449-2451,2008.
    [93]A. Schmidt, S. W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee. F. Rotermund, D. Rytz, G. Steinmeyer, V. Petrov, and U. Griebner, "Sub-100 fs single-walled carbon nanotube saturable absorber mode-locked Yb-laser operation near 1μm" Opt. Express, vol.17, pp.20109-20116,2009.
    [94]A. Agnesi, L.Carra, F. Pirzio, G. Reali, A. Toncelli, M. Tonelli, S. Y. Choi, F. Rotermund, U. Griebner, and V. Petrov, "Diode-pumped Nd:BaY2F8 picosecond laser mode-locked with carbon nanotube saturable absorbers," J. Opt. Soc. Am. B, vol.27, pp.2739-2742,2010.
    [95]A. Agnesi, A. Greborio, F. Pirzio, G Reali, S. Y. Choi, F. Rotermund, U. Griebner, and V. Petrov, "99 fs Nd:Glass Laser Mode-Locked with Carbon Nanotube Saturable Absorber Mirror," Appl. Phys. Express, vol.3, pp.112702, 2010.
    [96]H. R. Chen, Y. G. Wang, C. Y. Tsai, K. H. Lin, T. Y. Chang, J. Tang, and W.-F. Hsieh, "High-power, passively mode-locked Nd:GdVO4 laser using single-walled carbon nanotubes as saturable absorber," Opt. Lett., vol.36, pp. 1284-1286,2011.
    [97]H. Iliev, I. Buchvarov, S. Y. Choi, K. Kim, F. Rotermund, U. Griebner, and V. Petrov, "Steady state mode-locking of a 1.34μm Nd:YVO4 laser using a single-walled carbon nanotube saturable absorber," Appl. Phy. B, vol.106, pp.1-4,2012.
    [98]W. B. Cho, A. Schmidt, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, U. Griebner, G. Steinmeyer, V. Petrov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguilo, and F. Diaz, "Passive mode-locking of a Tm-doped bulk laser near 2 μm using a carbon nanotube saturable absorber," Opt. Express, vol.17, pp. 11007-11013,2009.
    [99]I. H. Baek, S. Y. Choi, H. W. Lee, W. B. Cho, V. Petrov, A. Agnesi, V. Pasiskevicius, D.-Il Yeom, K. Kim, and F. Rotermund, "Single-walled carbon nanotube saturable absorber assisted high-power mode-locking of a Ti:sapphire laser," Opt. Express, vol.19, pp.7833-7838,2011.
    [100]H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao, and K. P. Loh, "Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser," Appl. Phys. Lett., vol.96, pp.111112,2010.
    [101]Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, "Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers," Adv. Funct. Mater., vol.19, pp.3077-3083,2009.
    [102]W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, "Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber," Appl. Phys. Lett., vol.96, pp.031106,2010.
    [103]I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I.Yeom, and F.Rotermund, "Efficient mode-locking of sub-70-fs Ti:sapphire laser by graphene saturable absorber," Appl. Phys. Express, vol.5, pp.032701,2012.
    [104]M. N. Cizmeciyan, J. W. Kim, S. Bae, B. H. Hong, F.Rotermund, and A.Sennaroglu, "Graphene mode-locked femtosecond Cr:ZnSe laser at 2500 nm," Opt. Lett., vol.38, pp.341-343,2013.
    [105]W. B. Cho, J. W. Kim, H. W. Lee, S. Bae,B. H. Hong, S. Y. Choi, I. H. Baek, K. Kim, D.-I. Yeom, and F. Rotermund, "High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25 μm," Opt. Lett., vol. 36, pp.4089-4091,2011.
    [106]J. L. Xu, X. L. Li, Y. Z. Wu, X. P. Hao, J. L. He, and K. J. Yang, "Graphene saturable absorber mirror for ultra-fast-pulse solid-state laser," Opt. Lett., vol. 36, pp.1948-1950,2011.
    [107]J. L. Xu, X. L. Li, J. L. He, X. P. Hao, Y. Yang, S. D. Liu, B. T. Zhang, and Y. Z. Wu, "Efficient graphene Q-switching and mode-locking of 1.34-u.m neodymium lasers." Opt. Lett., vol.37, pp.2652-2654,2012.
    [108]J. L. Xu, X. L. Li, J. L. He, X. P. Hao, Y. Z. Wu, Y. Yang, and K. J. Yang, "Performance of large-area few-layer graphene saturable absorber in femtosecond bulk laser," Appl. Phys. Lett., vol.99, pp.261107,2011.
    [109]J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su and J. Xu, "Graphene oxide absorber for 2μm passive mode-locking Tm:YAlO3 laser," Laser Phys. Lett., vol.9, pp.15-19,2012.
    [110]J. Ma, G Q. Xie, P. Lv, W. L. Gao. P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, "Graphene mode-locked femtosecond laser at 2μm wavelength," Opt. Lett., vol.37, pp.2085-2087,2012.
    [111]N. Tolstik, E. Sorokin, and I. T. Sorokina, "Graphene mode-locked Cr:ZnS laser with 41 fs pulse duration," Opt. Express, vol.22, pp.5564-5571,2014.
    [112]C. Honninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, "Q-switching stability limits of cw passive modelocking," J. Opt. Soc. Am. B, vol.16, pp.46-56,1999.
    [113]V. Kushawaha, A. Banerjee, and L. Major, "High-efficiency flashlamp-pumped Nd:KGW laser," Appl. Phys. B, vol.56, pp.239-242,1993.
    [114]A. A. Demidovich, A. P. Shkadarevich, M. B. Danailov, P. Apai, T. Gasmi, V. P. Gribkovskii, A. N. Kuzmin, G.I. Ryabtsev, and L.E. Batay, "Comparison of cw laser performance of Nd:KGW, Nd:YAG, Nd:BEL, and Nd:YVO4 under laser diode pumping," Appl. Phys. B, vol.67, pp.11-15,1998.
    [115]A. A. Lagatsky, N. V. Kuleshov, and V. P. Mikhailov, "Diode-pumped CW lasing of Yb:KYW and Yb:KGW," Opt. Commun. Vol.165, pp.71-75,1999.
    [116]V. Jambunathan, X. Mateos, M. C. Pujol, J. J. Carvajal, F. Diaz, M. Aguilo, U. Griebner, and V. Petrov, "Continuous-wave laser generation at-2.1μm in Ho: KRE (WO4)2(RE= Y, Gd, Lu) crystals:a comparative study," Opt. express, vol. 19, pp.25279-25289,2011.
    [117]C. J. Flood, D. R. Walker, and H. M. van Driel, "CW diode pumping and FM mode locking of a Nd:KGW laser," Appl. Phys. B, vol.60, pp.309-312,1995.
    [118]A. Major, N. Langford, T. Graf, D. Burns, and A. I. Ferguson, "Diode-pumped passively mode-locked Nd:KGd(WO4)2 laser with 1-W average output power," Opt. Lett. vol.27, pp.1478-1480,2002.
    [119]P. Klopp, V. Petrov, U. Griebner and G Erbert, "Passively mode-locked Yb:KYW laser pumped by a tapered diode laser," Opt. Express, vol.10, pp. 108-126,2002.
    [120]G. Paunescu, J. Hein, and R. Sauerbrey, "100-fs diode-pumped Yb:KGW mode-locked laser," Appl. Phys. B, vol.79, pp.555-558,2004.
    [121]U. Griebner, S. Rivier, V. Petrov, M. Zorn, G. Erbert, M. Weyers, X. Mateos. M. Aguilo, J. Massons, and F. Diaz, "Passively mode-locked Yb:KLu(WO4)2 oscillators," Opt. Express, vol.13, pp.3465-3470,2005.
    [122]A. A. Lagatsky, F. Fusari, S. Calvez, J. A. Gupta, V. E. Kisel, N. V. Kuleshov, C. T. A. Brown, M. D. Dawson, and W. Sibbett, "Passive mode locking of a Tm,Ho:KY(WO4)2 laser around 2μm," Opt. Lett., vol.34, pp.2587-2589, 2009.
    [123]A. A. Lagatsky, S. Calvez, J. A. Gupta, V. E. Kisel, N. V. Kuleshov, C. T. A. Brown, M. D. Dawson, and W. Sibbett, "Broadly tunable femtosecond mode-locking in a Tm:KYW laser near 2μm," Opt. Express, vol.19, pp. 9995-10000,2011.
    [124]A Agnesi, F Pirzio, L Tartara, E Ugolotti, H Zhang, J Wang, H Yu, and V Petrov, "378 fs pulse generation with Nd3+:SrLaGa3O7(Nd:SLG) disordered crystal,' Laser Phys. Lett., vol.10, pp.105815,2013.
    [125]Z. B. Shi, X. Fang, H. Zhang, Z. P. Wang, J. Y. Wang, H. H. Yu, Y. G. Yu, X. T. Tao, and M. H. Jiang, "Continuous-wave laser operation at 1.33μm of Nd.CNGG and Nd:CLNGG crystals," Laser Phys. Lett., vol.5, pp.177-180, 2008.
    [126]J. Ma, G. Q. Xie, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, and J. Y. Wang, "Diode-pumped mode-locked femtosecond Tm:CLNGG disordered crystal laser," Opt. Lett., vol.37, pp.1376-1378,2012.
    [127]G. Q. Xie, D. Y. Tang, W. D. Tan, H. Luo, H. J. Zhang, H. H. Yu, and J. Y. Wang, "Subpicosecond pulse generation from a Nd:CLNGG disordered crystal laser," Opt. Lett., vol.34, pp.103-105,2009.
    [128]G. Q. Xie, L. J. Qian, P. Yuan, D. Y. Tang, W. D. Tan, H. H. Yu, H. J. Zhang, and J.Y. Wang, "Generation of 534 fs pulses from a passively mode-locked Nd:CLNGG-CNGG disordered crystal hybrid laser," Laser Phys. Lett., vol.7, pp.483-486,2010.
    [129]A. Schmidt, U. Griebner, H. J. Zhang, J. Y. Wang, M. H. Jiang, J. H. Liu, and V. Petrov, "Passive mode-locking of the Yb:CNGG laser," Opt. Commun., vol. 283, pp.567-569,2010.
    [130]B. Y. Zhang, J. L. Xu, G J. Wang, J. L. He, W. J. Wang, Q. L. Zhang, D. L. Sun, J. Q. Luo, and S. T. Yin, "Diode-pumped passively mode-locked Nd:GYSGG laser," Laser Phys. Lett., vol.8, pp.787-790,2011.
    [131]G. Q. Xie, L. J. Qian, X. D. Xu, Y. Cheng, Z. W. Zhao, D. Y. Tang, J. Zhang, W. D. Tan, and J. Xu, "Diode-pumped passively mode-locked Nd:CaNb2O6 laser," Laser Phys., vol.20, pp.1331-1334,2010.
    [132]P. M. W. French, N. H. Rizvi, J. R. Taylor and A. V. Shestakov, "Continuous-wave mode-locked Cr4+:YAG laser," Opt. Lett., vol.18, pp. 39-42,1993.
    [133]P. J. Conlon, Y. P. Tong, P. M. W. French, J. R. Taylor, and A. V. Shestakov, "Sub-100 fs kerr lens modelocked Cr4+:YAG laser," Electron. Lett., vol.30, pp. 709-710,1994.
    [134]S. Spalter, M. Bohm, M. Burk, B. Mikulla, R. Fluck, 1.D. Jung, G. Zhang,U.Keller, A. Sizmann, and G.Leuchs, "Self-starting soliton-modelocked femtosecond Cr4+:YAG laser using an antiresonant Fabry-Perot saturable absorber," Appl. Phys. B, vol.65, pp.335-338,1997.
    [135]W. B. Cho, A. Schmidt, S. Y. Choi, V. Petrov, U. Griebner, G. Steinmeyer, S. Lee, D. Yeom, and F. Rotermund, "Mode locking of a Cr:YAG laser with carbon nanotubes," Opt. Lett., vol.35, pp.2669-2672,2010.
    [136]E. B. Treacy, "Optical pulse compression with diffraction gratings," IEEE J. Quan. Electron., vol.5, pp.454-458,1969.
    [137]C. V. Raman, and K. S. Krishnan, "A new type of secondary radiation,' Nature, vol.121, pp.501,1928.
    [138]S. N. Karpukhin, and A. I. Stepanov, "Generation of radiation in a resonator under conditions of stimulated Raman scattering in Ba(NO3)2, NaNO3, and CaCO3 crystals," Sov. J. Quan. Electron., vol.16, pp.1027-1031,1986.
    [139]Y. F. Chen, "Efficient 1521-nm Nd:GdVO4 Raman laser," Opt. Lett., vol. 29, pp.2632-2634,2004.
    [140]Y. F. Chen, "Compact efficient self-frequency Raman conversion in diode-pumped passively Q-switched Nd:GdVO4 laser," Appl. Phys. B, vol. 78, pp.685-687,2004.
    [141]F. F. Su, X. Y. Zhang, Q. P. Wang, P. Jia, S. T. Li, B. Liu, X. L. Zhang, Z. H. Cong, and F. Q. Wu, "Theoretical and experimental study on a diode-pumped actively Q-switched Nd:GdVO4 self-stimulated Raman laser at 1173 nm," Opt. Commun., vol.277, pp.379-384,2007.
    [142]S. T. Li, X. Y. Zhang, Q. P. Wang, Z. H. Cong, Z. J. Liu, S. Z. Fan, and X. L Zhang, "Small scale and efficient diode-pumped actively Q-switched intracavity KTP frequency-doubled Nd:YAG/GdVO4 Raman laser," J. Phys. D, vol.41, pp.055104-055107,2008.
    [143]S. H. Ding, X. Z. Zhang, Q. P. Wang, F. F. Su, P. Jia, S. T. Li, S. Z. Fan, J. Chang, S. S. Zhang, and Z. J. Liu, "Theoretical and Experimental Study on the Self-Raman Laser With Nd:YVO4 Crystal," IEEE J. Quan. Electron., vol.42, pp.927-933,2006.
    [144]X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, and Z. H. Cong, "Diode-pumped actively Q-switched c-cut Nd:YVO4 self-Raman laser," Laser Phys. Lett., vol.6, pp.26-29,2009.
    [145]F. F. Su, X.Y. Zhang, Q. P. Wang, S. H. Ding, P. Jia, S. T. Li, and S. Z. Fan, "Diode pumped actively Q-switched Nd:YVO4 self-Raman laser," J. Phys. D, vol.39, pp.2090-2093,2006.
    [146]H. B. Shen, Q. P. Wang, X. Y. Zhang, X. H. Chen, Z. H. Cong, Z. G. Wu, F. Bai, W. X. Lan, and L. Gao, "lst-Stokes and 2nd-Stokes dual-wavelength operation and mode-locking modulation in diode-side-pumped Nd:YAG/BaWO4 Raman laser," Opt. Express, vol.20, pp.17823-17832, 2012.
    [147]L Li, X. Y. Zhang, Q. P. Wang, X. H. Chen, S. Z. Fan, Z. J. Liu, Y. G. Zhang and H. J. Zhang, "Mode locking phenomenon in an actively Q-switched intracavity Raman laser," Symposium on Photonics and Optoelectionics (SOPO),2011.
    [1]U. Keller, "Recent developments in compact ultrafast lasers," Nature, vol.424, pp. 831-838,2003.
    [2]U. Keller, K. J. Weingarten. F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, "Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE J. Sel. Topics Quan. Electron., vol.2, pp.435-453,1996.
    [3]Y. X. Fan, J. L. He, Y. G. Wang, S. Liu, H. T. Wang, and X. Y. Ma, "2-ps passively modelocked Nd:YVO4 laser using an output-coupling-type semiconductor saturable absorber mirror," Appl. Phys. Lett., vol.86, pp.101103,2005.
    [4]V. Liverini, S. Schon, R. Grange, M. Haiml, S. C. Zeller, and U. Keller, "A low-loss GalnNAs SESAM mode-locking a 1.3-μm solid-state laser," Appl. Phys. Lett., vol. 84, pp.4002-4004,2004.
    [5]G. Q. Xie, D. Y. Tang, H. Luo, H. J. Zhang, H. H. Yu, J. Y. Wang, X. T. Tao, M. H. Jiang, and L. J. Qian, "Dual-wavelength synchronously mode-locked Nd:CNGG laser," Opt. Lett., vol.33, pp.1872-1874,2008.
    [6]Y. Zaouter, J. Didierjean, F. Balembois, G. L. Leclin, F. Druon, P. Georges, J. Petit, P. Goldner, and B. Viana, "47-fs diode-pumped Yb3+:CaGdA104 laser," Opt. Lett., vol.31, pp.119-121,2006.
    [7]A. Rutz, R. Grange, V. Liverini, M. Haiml, S. Schon, and U. Keller, "1.5μm GalnNAs semiconductor saturable absorber for passively mode locked solid-state lasers," Electron. Lett., vol.41, pp.321-323,2005.
    [8]Z. H. Cong, X. Y. Zhang, Q. P. Wang, D. Y. Tang, W. D. Tan, J. Zhang, X. D. Xu, D. Z. Li, and J. Xu, "LD pumped Nd:Lu2SiO5 passively mode-locked laser with a SESAM," Laser Phys. Lett., vol.8, pp.107-110,2011.
    [9]S. Rivier, X. Mateos, J. Liu, V. Petrov, U. Griebner, M. Zorn, M. Weyers, H. Zhang, J. Wang, and M. Jiang, "Passively mode-locked Yb:LuVO4 oscillator," Opt. Express, vol.14, pp.11668-11671,2006.
    [10]Z. H. Cong, D. Y. Tang, W. D. Tan, J. Zhang, D. W. Luo, C. W. Xu, X. D. Xu, D. Z. Li, and J. Xu, X.Y. Zhang, and Q. P. Wang, "Diode-end-pumped Nd:CaYA104 mode locked laser," Opt. Commun., vol.284, pp.1967-1969,2011.
    [11]Y. F. Chen, S. W. Tsai, Y. P. Lan, S. C. Wang, and K. F. Huang, "Diode-end-pumped passively mode-locked high-power Nd:YVO4 laser with a relaxed saturable Bragg reflector." Opt. Lett., vol.26, pp.199-201,2001.
    [12]V. Liverini, S. Schon, R. Grange, M. Haiml, S. C. Zeller, and U. Keller, "A low-loss GaInNAs SESAM mode-locking a 1.3-μm solid-state laser," Appl. Phys. Lett., vol. 84, pp.4002-4004,2004.
    [13]G. Q. Xie, D. Y. Tangl, H. Luo, H. H. Yu, H. J. Zhang, L. J. Qian, "High-power passive mode locking of a compact diode-pumped Nd:LuVO4 laser," Laser Phys. Lett., vol.5, pp.647-650,2008.
    [14]A. Agnesi, C. Pennacchio, G. C. Reali, and V. Kubecek, "High-power diode-pumped picosecond Nd3+:YVO4 laser," Opt. Lett., vol.22, pp.1645-1647, 2003.
    [15]B. Zhang, G. Li, M. Chen, Z. Zhang, and Y. Wang, "Passive mode locking of a diode-end-pumped Nd:GdVO4 laser with a semiconductor saturable absorber mirror," Opt. Lett., vol.28, pp.1829-1831,2003.
    [16]A. Major, N. Langford, T. Graf, D. Burns, and A. I. Ferguson, "Diode-pumped passively mode-locked Nd:KGd(WO4)2 laser with 1-W average output power," Opt. Lett., vol.27, pp.1478-1480,2002.
    [17]P. Klopp, V. Petrov, U. Griebner and G. Erbert, "Passively mode-locked Yb:KYW laser pumped by a tapered diode laser," Opt. Express, vol.10, pp.108-126,2002.
    [18]U. Griebner, S. Rivier, V. Petrov, M. Zorn, G. Erbert, M. Weyers, X. Mateos, M. Aguilo, J. Massons, and F. Diaz, "Passively mode-locked Yb:KLu(WO4)2 oscillators," Opt. Express, vol.13, pp.3465-3470,2005.
    [19]A. A. Lagatsky, S. Calvez, J. A. Gupta, V. E. Kisel, N. V. Kuleshov, C. T. A. Brown, M. D. Dawson, and W. Sibbett, "Broadly tunable femtosecond mode-locking in a Tm:KYW laser near 2μm," Opt. Express, vol.19, pp.9995-10000,2011.
    [20]J. X. Zhang, J. Y. Wang, H. J. Zhang. F. H. Xu, Z. P. Wang, Z S Shao, H. Y. Zhao, and Y. P. Wang, "Growth and diode-pumped CW lasing of Nd:KLu(WO4)2," J. Crys. Growth, vol.284, pp.108-111,2005.
    [21]H. Y. Zhao, J. Y. Wang, H. J. Zhang, J. Li, G. G. Xu, L. L. Yu, W. L. Gao, H. R. Xia, and R. I. Boughton, "Lattice vibration and optical properties of crystalline Nd:KLu(WO4)2," Chem. Phys. Lett., vol.450, pp.274-280,2008.
    [22]F. X. Kartner, J. Aus der Au, and Ursula Keller, "Mode-Locking with Slow and Fast Saturable Absorbers-What's the Difference?," IEEE Journal of Selected Topics in Quan. Electron., vol.4, pp.159-168,1998.
    [1]U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, "Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE J. Sel. Topics Quan. Electron., vol.2, pp.435-453,1996.
    [2]F. Druon, F. Balembois, P. Georges, A. Brun, A. Courjaud, C. H onninger, F. Salin, A. Aron, F. Mougel, G. Aka, and D. Vivien, "Generation of 90-fs pulses from a modelocked diode-pumped Yb:Ca4GdO(BO3)3 laser," Opt. Lett., vol.25, pp. 423-425,2000.
    [3]H. Liu, J. Nees, and G. Mourou, "Diode-pumped Kerr-lens mode-locked Yb:KY(WO4)2 laser," Opt. Lett., vol.26, pp.1723-1725,2001.
    [4]F. Druon, S. Chenais, P. Raybaut, F. Balembois, P. Georges, R. Gaume, G. Aka, B. Viana, S. Mohr, and D. Kopf, "Diode-pumped Yb:Sr3Y(BO3)3 femtosecond laser; Opt.Lett., vol.27, pp.197-199,2002.
    [5]M. J. Lederer, M. Hildebrandt, V. Z. Kolev, B. Luther-Davies, B. Taylor. J. Dawes, P. Dekker, J. Piper, H. H. Tan, and C. Jagadish, "Passive mode locking of a self-frequencydoubling Yb:YAl3(BO3)4 laser," Opt. Lett., vol.27, pp.436-438, 2002.
    [6]G. Paunescu, J. Hein, and R. Sauerbrey, "100-fs diode-pumped Yb:KGW mode-locked laser," Appl. Phys. B, vol.79, pp.555-558,2004.
    [7]U. Griebner, V. Petrov, K. Petermann, and V. Peters, "Passively mode-locked Yb:Lu2O3 laser," Opt. Express, vol.12, pp.3125-3130,2004.
    [8]Y. Zaouter, J. Didierjean, F. Balembois, G. L. Leclin, F. Druon, P. Georges, J. Petit, P. Goldner and B. Viana, "47-fs diode-pumped Yb3+:CaGdA104 laser," Opt. Lett., vol.31, pp.119-121,2006.
    [9]S. Rivier, A. Schmidt, V. Petrov, U. Griebner, C. Krankel, R. Peters, K. Petermann, G.Huber, G. Zorn, M. Weyers, A. Klehr, and G. Ebert, "Ultrashort pulse Yb:LaSc3(BO3)4 mode-locked oscillator," Opt. Express, vol.15, pp.15539-15544, 2007.
    [10]A. Schmidt, V. Petrov, U. Griebner, R. Peters, K. Petermann, G. Huber, C. Fiebig, K. Paschke, and G. Erbert, "Diode-pumped mode-locked Yb:LuScO3 single crystal laser with 74 fs pulse duration," Opt. Lett., vol.35, pp.511-513,2010.
    [11]A. Yoshida, A. Schmidt, V. Petrov, C. Fiebig, G. Erbert, J. H. Liu, H, J. Zhang, J. Y. Wang, and U. Griebner, "Diode-pumped mode-locked Yb:YCOB laser generating 35 fs pulses," Opt. Express, vol.36, pp.4425-4427,2011.
    [12]A. Schmidt, S. Rivier, G. Steinmeyer, J. H. Yim, W. B. Cho, S. Lee, F. Rotermund, M. C. Pujol, X. Mateos, M. Aguilo, F. Diaz, V. Petrov, and U. Griebner, "Passive mode locking of Yb:KLuW using asingle-walled carbon nanotube saturable absorber," Opt. Lett., vol.33, pp.729-731,2008.
    [13]A. Schmidt, S. Rivier, W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, D. Rytz, G. Steinmeyer, V. Petrov and U. Griebner, "Sub-100 fs single-walled carbon nanotube saturable absorber mode-locked Yb-laser operation near 1μm," Opt. Express, vol.17, pp.20109-20115,2009.
    [14]E. Ugolotti, A. Schmidt, V. Petrov, J. W. Kim, D. Yeom, F. Rotermund, S. Bae, B. H. Hong, A. Agnesi, C. Fiebig,G. Erbert, X. Mateos, M. Aguilo, F. Diaz, and U. Griebner, "Graphene mode-locked femtosecond Yb:KLuW laser," Appl. Phys. Lett., vol.101,pp.161112,2012.
    [15]A. Schmidt, U. Griebnera, H. J. Zhang, J. Y. Wang, M. H. Jiang, J. H. Liuc, and V. Petrova, "Passive mode-locking of the Yb:CNGG laser," Opt. Commun., vol.283, pp.567-569,2010.
    [16]A. Agnesi, F Pirzio, L Tartara, E Ugolotti, H Zhang, J Wang, H Yu, and V Petrov, '378 fs pulse generation with Nd3+:SrLaGa3O7(Nd:SLG) disordered crystal," Laser Phys. Lett., vol.10, pp.105815,2013.
    [17]J. Ma, G. Q. Xie, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, and J. Y. Wang, "Diode-pumped mode-locked femtosecond Tm:CLNGG disordered crystal laser," Opt. Lett., vol.37, pp.1376-1378,2012.
    [18]G. Q. Xie, D. Y. Tang, W. D. Tan, H. Luo, H. J. Zhang, H. H. Yu, and J. Y. Wang, "Subpicosecond pulse generation from a Nd:CLNGG disordered crystal laser," Opt. Lett., vol.34, pp.103-105,2009.
    [19]G. Q. Xie, L. J. Qian, P. Yuan, D. Y. Tang, W. D. Tan, H. H. Yu3, H. J. Zhang, and J.Y. Wang, "Generation of 534 fs pulses from a passively mode-locked Nd:CLNGG-CNGG disordered crystal hybrid laser," Laser Phys. Lett., vol.7, pp. 483-486.
    [20]Z. B. Shi, X. Fang, H. Zhang, Z. P. Wang, J. Y. Wang, H. H. Yu, Y. G. Yu, X. T. Tao, and M. H. Jiang, "Continuous-wave laser operation at 1.33μm of Nd:CNGG and Nd:CLNGG crystals," Laser Phys. Lett., vol.5, pp.177-180,2008.
    [21]H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G Yu, Z. B. Shi, X. Y. Zhang, and M. H. Jiang, "High-power dual-wavelength laser with disordered Nd:CNGG crystals" Opt. Lett., vol.34, pp.151-153,2009.
    [22]B. Y. Zhang, J. L. Xu, G. J. Wang, J. L. He, W. J. Wang, Q. L. Zhang, D. L. Sun, J. Q. Luo3, and S. T. Yin, "Diode-pumped passively mode-locked Nd:GYSGG laser," Laser Phys. Lett., vol.8, pp.787-790,2011.
    [23]A. Lupei, V. Lupei, L. Gheorghe, C. Gheorghe, E. Osiac and A. Petraru, "The nature of the Nd3+ centers in CNGG and CLNGG," Opt. Mater., vol.16, pp. 403-411,2001.
    [24]V. Lupei, A. Lupei, C. Gheorghe, L. Gheorghe, A. Achiml and A. Ikesue, "Crystal field disorder effects in the optical spectra of Nd3+ and Yb3+doped calcium lithium niobium gallium garnets laser crystals and ceramics," J. Appl. Phys., vol.112, pp. 063110.,2012.
    [25]V. Lupei, A. Lupei, L. Gheorghe, C. Gheorghe, and A. Achim, "Spectral characteristics of Yb3+ in calcium lithium niobium gallium garnets," Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference, pp.1-1, 2009
    [26]G. Q. Xie, D. Y. Tang, W. D. Tan, H. Luo, H. J. Zhang, H. H. Yu, and J. Y. Wang, "Subpicosecond pulse generation from a Nd.CLNGG disordered crystal laser," Opt. Lett., vol.34, pp.103-105,2009.
    [27]G. Q. Xie, L. J. Qian, P. Yuan, D. Y. Tang, W. D. Tan, H. H. Yu, H. J. Zhang, and J. Y. Wang, "Generation of 534 fs pulses from a passively mode-locked Nd:CLNGG-CNGG disordered crystal hybrid laser," Laser Phys. Lett., vol.7, pp. 483-486,2010.
    [28]A. Schmidt, U. Griebner, H. J. Zhang, J. Y. Wang, M. H. Jiang, J. H. Liu, and V. Petrov, "Passive mode-locking of the Yb:CNGG laser," Opt. Commun., vol.283, pp.567-569,2010.
    [29]C. Honninger, R. Paschotta, F. Morier-Genaud, M. Moser, and U. Keller, "Q-switching stability limits of continuous-wave passive mode locking," J. Opt. Soc. Am. B, vol.16, pp.46-56,1999.
    [1]P. M. W. French, N. H. Rizvi, J. R. Taylor and A. V. Shestakov, "Continuous-wave mode-locked Cr4+:YAG laser," Opt. Lett., vol.18, pp.39-42,1993.
    [2]A. Sennaroglu, C. R. Pollock, and H. Nathel, "Continuous-wave self-mode-locked operation of a femtosecond Cr4+:YAG laser," Opt. Lett., vol.19, pp.390-392,1994.
    [3]P. J. Conlon, Y. P. Tong, P. M. W. French, J. R. Taylor, and A. V. Shestakov, "Sub-100 fs kerr lens modelocked Cr4+:YAG laser," Electron. Lett., vol.30, pp. 709-710,1994.
    [4]B. C. Collings, J. B. Stark, S. Tsuda, W. H. Knox, J. E. Cunningham, W. Y. Jan, and R. Pathak, "Saturable Bragg reflector self-starting passive mode locking of a Cr4+:YAG laser pumped with a diode-pumped Nd:YVO4 laser," Opt. Lett., vol.21, pp.1171-1173,1996.
    [5]P. J. Conlon, Y. P. Tong, P. M. W. French, J. R. Taylor, and A. V. Shestakov, "Femtosecond pulse generation from a synchronously pumped, self-mode-locked Cr4+:YAG laser," J. Modern Opt, vol.42, pp.723-726,1995.
    [6]Y. Ishida and K. Naganuma, "Characteristics of femtosecond pulses near 1.5μm in a self-mode-locked Cr4+:YAG laser," Opt. Lett., vol.19, pp.2003-2005,1994.
    [7]P. Tong, J. M. Sutherland, P. M. W. French, J. R. Taylor, A. V. Shestakov, and B. H. T. Chai, "Self-starting Kerr-lens mode-locked femtosecond Cr4+:YAG and picosecond Pr3+:YLF solid-state lasers," Opt. Lett., vol.21, pp.644-647,1996.
    [8]S. Naumov, E. Sorokin, V. L. Kalashnikov, G. tempea, and I. T. Sorokina, "Self-starting five optical cycle pulse generation in Cr4+:YAG laser," Appl, Phys. B, vol.76, pp.1-11,2003.
    [9]Y. P. Tong, P. M. W. French, J. R. Taylor, and J.O.Fujimoto, "All-solid-state femtosecond sources in the near infrared," Opt. Commun., vol.136, pp.235-238, 1997.
    [10]D. J. Ripin, C. Chudoba, J. T. Gopinath, J. G. Fujimoto, E. P. Ippen, U. Morgner, F. X. Kartner, V. Scheuer, G. Angelow, and T. Tschudi, "Generation of 20 fs pulses by a prismless Cr4+:YAG laser," Opt. Lett., vol.27., pp.61-63,2002.
    [11]S. Naumov, E. Sorokin, and I. T. Sorokina, "Directly diode-pumped Kerr-lens mode-locked Cr4+:YAG laser," Opt. Lett., vol.29, pp.1276-1279,2004.
    [12]B. C. Collings, J. B. Stark, S. Tsuda, W. H. Knox, J. E. Cunningham, W. Y. Jan, and R. Pathak, "Saturable Bragg reflector self-starting passive mode locking of a Cr4+:YAG laser pumped with a diode-pumped Nd:YVO4 laser," Opt. Lett., vol.21, pp.1171-1173,1996.
    [13]S. Spalter, M. Bohm, M. Burk, B. Mikulla, R. Fluck, I.D. Jung, G. Zhang,U.Keller, A. Sizmann, and G.Leuchs, "Self-starting soliton-modelocked femtosecond Cr4+:YAG laser using an antiresonant Fabry-P'erot saturable absorber," Appl. Phys. B, vol.65, pp.335-338,1997.
    [14]A. J. Alcock, P. Ma, P. J. Poole, S. Chepurov, A. Czajkowski, J. E. Bernard, A. A. Madej, J. M. Fraser, I. V. Mitchell, I. T. Sorokina and E. Sorokin, "Ultrashort pulse Cr4+:YAG laser for high precision infrared frequency interval measurements," Opt. Express, vol.13, pp.8837-8843,2005.
    [15]M.J. Hayduk, S.T. Johns, M.F. Krol, C.R Pollock, and R.P. Leavitt, "Self-starting passively mode-locked tunable femtosecond Cr4+:YAG laser using a saturable absorber mirror," Opt. Commun., vol.137, pp.55-58,1997.
    [16]B. C. Collings, K. Bergman, W. H. Knox, "True fundamental solitons in a passively mode-locked short-cavity Cr4+:YAG laser," Opt. Lett., vol.22, pp.1098-1101, 1997.
    [17]Z. G. Zhang, T. Nakagawa, K. Torizuka, T.Sugaya, and K. Kobayashi, "Self-starting mode-locked Cr+:YAG laser with a low-loss broadband semiconductor saturable-absorber mirror," Opt. Lett., vol.24, pp.1768-1771,1999.
    [18]Z. Zhang, T. Nakagawa, K. Torizuka, T. Sugaya, and K. Kobayashi, "Gold-reflector-based semiconductor saturable absorber mirror for femtosecond mode-locked Cr4+:YAG lasers," Appl. Phys. B, vol.70 [Suppl.], pp. S59-S62,2000.
    [19]A. A. Lagatsky, C. G. Leburn, C. T. A. Brown, W. Sibbett, A. M. Malyarevich, V. G. Savitski, K. V. Yumashev, E. L. Raaben, and A. A. Zhilin, "Passive mode locking of a Cr4+:YAG laser by PbS quantum-dot-doped glass saturable absorber," Opt. Commun.. vol.241, pp.449-454,2004.
    [20]N. K. Metzger, C. G. Leburn, A. A. Lagatsky, C. T. A. Brown, S. Calvez, D. Burns, H. D. Sun, M. D. Dawson, M. Le Du, J. C. Harmand and W. Sibbett, "Femtosecond pulse generation around 1500nm using a GaInNAsSb SESAM," Opt. Express, vol. 16, pp.18739-18744,2008.
    [21]W. B. Cho, A. Schmidt, S. Y. Choi, V. Petrov, U. Griebner, G. Steinmeyer, S. Lee, D. Yeom, and F. Rotermund, "Mode locking of a Cr:YAG laser with carbon nanotubes," Opt. Lett., vol.35, pp.2669-2672,2010.
    [22]S. D. Di Dio Cafiso, E. Ugolotti, A. Schmidt, V. Petrov, U. Griebner, A. Agnesi, W. B. Cho, B. H. Jung, F. Rotermund, S. Bae, B. H. Hong, G. Reali, and F. Pirzio, "Sub-100-fs Cr:YAG laser mode-locked by monolayer graphene saturable absorber," Opt. Lett., vol.38, pp.1745-1747,2013.
    [23]T. Tomaru, "Mode-locking operating points of a three-element-cavity femtosecond Cr4+:YAG laser,'" Opt. Commun., vol.225, pp.163-175,2003.
    [24]T. Tomaru and H. Petek, "FemtosecondCr4+:YAG laser with an L-fold cavity operating at al.2-GHz repetition rate," Opt. Lett., vol.25, pp.584-586,2000.
    [25]T. Tomar, "Two-element-cavity femtosecond Cr4+:YAG laser operating at a 2.6-GHz repetition rate," Opt. Lett., vol.26, pp.1439-1442,2001.
    [26]T. Tomaru and H. Petek, "Effect of third-order dispersion on the phases of solitonlike Cr4+:YAG-laser pulses characterized by the second-harmonic generation frequency-resolved optical gating method," J. Opt. Soc. Am. B, vol.18, pp. 388-393,2001.
    [27]C.G. Leburn, A.A. Lagatsky, C.T.A. Brown and W. Sibbett, "Femtosecond Cr4+:YAG laser with 4 GHz pulse repetition rate," Electron. Lett., vol.40, pp. 805-807,2004.
    [1]A. A. Lagatsky, F. Fusari, S. Calvez, J. A. Gupta, V. E. Kisel, N. V. Kuleshov, C. T. A. Brown, M. D. Dawson, and W. Sibbett, "Passive mode locking of a Tm,Ho:KY(WO4)2 laser around 2μm," Opt. Lett., vol.34, pp.2587-2589,2009.
    [2]H. Bromberger, K. J. Yang, D. Heinecke, T. Dekorsy, L. H. Zheng, J. Xu, and G. J.Zhao, "Comparative investigations on continuous wave operation of a-cut and b-cut Tm,Ho:YAlO lasers at room temperature," Opt. Express, vol.19, pp. 6505-6511,2011.
    [3]T. Y. Fan, G.Huber, R. L. Byer, and P. Mitzscherlich, "Continuous-wave operation at 2.1μm of a diode-laserpumped, Tm-sensitized Ho:Y3Al5O12 laser at 300K," Opt. Lett., vol.12, pp.678-680,1987.
    [4]G. L. Bourdet and G. Lescroart, "Theoretical modeling and design of a Tm, Ho:YLiF4 microchip laser," Appl. Opt., vol.38, pp.3275-3281,1999.
    [5]B. M. Walsh, N. P. Bames, M.Petros, J. Yu, and U. N. Singh, "Spectroscopy and modeling of solid state lanthanide lasers:application to trivalent Tm3+and Ho3+in YLiF4and LuLiF4," J. Appl. Phys., vol.95, pp.3255-3271,2004.
    [6]A. Sato, K. Asai, and K. Mizutani, "Lasing characteristics and optimizations of diode-side-pumped Tm,Ho:GdVO4 laser," Opt. Lett., vol.29, pp.836-838,2004.
    [7]L. J. Li, B. Q. Yao, C. W. Song, Y. Z. Wang, and Z. G. Wang, "Continuous wave and AO Q-switch operation Tm,Ho:YAP laser pumped by a laser diode of 798nm,' Laser Phys. Lett., vol.6, pp.102-104,2009.
    [8]B. Q. Yao, L. J. Li, L. L. Zheng, Y. Z. Wang, G. J. Zhao, and J. Xu, "Diode-pumped continuous wave and Q-switched operation of a c-cut Tm,Ho:YAlO3 laser," Opt. Express vol.16, pp.5075-5081,2008.
    [9]L. J. Li, B. Q. Yao, Y. L. Ju, Y. J. Zhang, and Y. Z. Wang, "Dual diodes end-pumped Q-switch operation of a ccut 2044-nm Tm,Ho:YAlO3 laser," Laser Phys. Lett., vol. 6, pp.367-369,2009.
    [10]L. J. Li, B. Q. Yao, Z. G. Wang, X. M. Duan, G. Li, and Y. Z. Wang, "Continuous wave and AO Q-switch operation of a b-cut Tm,Ho:YAP laser with dual wavelengths pumped by a laser diode of 792nm," Laser Phys., vol.20, pp.205-208, 2010.
    [11]K. Yang, H. Bromberger, H. Ruf, H. Schafer, J. Neuhaus, T. Dekorsy, C. V.-B. Grimm, M. Helm, K. Biermann, and H. Kunzel, "Passively mode-locked Tm,Ho:YAG laser at 2μm based on saturable absorption of intersubband transitions in quantum well," Opt. Express, vol.18, pp.6537-6544,2010.
    [12]Z.Wang, B.Yao, G. Li, Y. Ju, and Y. Wang, "Single longitudinal mode lasing of Tm,Ho:YAP microchip laser at 2000.4 nm," Laser Phys., vol.20, pp.458-461, 2010.
    [13]G. Li, B.Yao, Z.Jiang, X.Duan, Z.Wang, Y. Ju, and Y.Wang, "Compact diode end-pumped c-cut Tm,Ho:YAlO3 laser," Laser Phys., vol.19, pp.2151-2154,2009.
    [14]A. A. Lagatsky, F. Fusari, S. Calvez, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, M. D. Dawson, C. T. A. Brown, and W. Sibbett, "Femtosecond pulse operation of a Tm,Ho-codoped crystalline laser near 2 microm," Opt. Lett., vol.35, pp.172-174, 2010.
    [15]A. A. Lagatsky, F. Fusari, S. V. Kurilchik, V. E. Kisel, A. S. Yasukevich, N. V. Kuleshov, A. A. Pavlyuk, C. T. A. Brown, and W. Sibbett, "Optical spectroscopy and efficient continuous-wave operation near 2μm for a Tm, Ho:KYW laser crystal," Appl. Phys. B, vol.97, pp.321-326,2009.
    [16]G. Galzerano, M. Marano, S. Longhi, E. Sani, A. Toncelli, M. Tonelli, and P. Laporta, "Sub-100-ps amplitude-modulation mode-locked Tm-Ho:BaY2F8 laser at 2.06μm," Opt. Lett., vol.28, pp.2085-2087,2003.
    [17]F. Fusari, A. A. Lagatsky, G. Jose, S. Calvez, A. Jha, M. D. Dawson, J. A. Gupta, W. Sibbett, and C. T. A. Brown, "Femtosecond mode-locked Tm3+ and Tm3+-Ho3+ doped 2μm glass lasers," Opt. Express, vol.18, pp.22090-22096,2010.
    [18]I. F. Elder, and M. J. P. Payne, "Lasing in diode-pimped Tm:YAP, Tm,Ho:YAP and Tm,Ho:YLF," Opt. Commun, vol.145, pp.329-339,1998.
    [19]H. Hemmati, "2.07-μm cw diode-laser-pumped Tm, Ho:YLiF4 room-temperature laser," Opt. Lett., vol.14, pp.435-437,1989.
    [20]S. R. Bowman, M. J. Winings, R. C. Auyeung, J. E. Tucker, S. K. Searles, and B. J. Feldman, "Laser and spectral properties of Cr, Tm, Ho:YAG at 2.1μm," Quan. Electron., vol.27, pp.2142-2149,1991.
    [21]V. Jambunathan, A. Schmidt, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguilo, F. Diaz, U. Griebner, V. Petrov, "Continuous-wave co-lasing in a monoclinic co-doped (Ho,Tm):KLu(WO4)2 crystal," Laser Phys. Lett., vol.8, pp.799-803, 2011.
    [22]V. Jambunathana, X. Mateosa, M. C. Pujol, J. J. Carvajal, U. Griebner, V. Petrov, M. Aguilo, and F. Diaza, "Diode-pumped continuous-wave laser operation of co-doped (Ho,Tm):KLu(WO4)2 monoclinic crystal," Optics & Laser Tech., vol.54, pp.326-328,2013.
    [1]J. A. Piper and H. M. Pask, "Crystalline Raman lasers," IEEE J. Sel. Top. Quantum Electron., vol.13, pp.692-704,2007.
    [2]H. M. Pask, "The design and operation of solid-state Raman lasers," Prog. Quantum Electron., vol.27, pp.3-56,2003
    [3]T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, and R. C. Powell, "Raman spectroscopy of crystals for stimulated Raman scattering," Opt. Mater., vol. 11,pp.307-314,1999.
    [4]P. Cerny, H. Jelinkova, P. G. Zverev, and T. T. Basiev, "Solid state lasers with Raman frequency conversion," Prog. Quan. Electron., vol.28, pp.113-143,2004.
    [5]A. A. Kaminskii, K. I. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, "Tetragonal vanadates YVO4 and GdVO4-new efficient χ3- materials for Raman lasers," Opt. Commun., vol.194, pp.201-206,2001.
    [6]T. T. Basiev, A.A. Sobol, Y. K. Voronko, and P. G. Zverev, "Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers," Opt. Mater., vol.15, pp.205-216,2000.
    [7]Y. F. Chen, "Efficient 1521-nm Nd:GdVO4 Raman laser," Opt. Lett., vol.29, pp. 2632-2634,2004.
    [8]J. Findeisen, H. J. Eichler, P. Peuser, A. A. Kaminskii, and J. Hulliger, "Diode-pumped Ba(NO3)2 and NaBrO3 Raman lasers," Appl. Phys. B, vol.70, pp.159-162,2000.
    [9]F. F. Su, X. Y. Zhang, Q. P. Wang, P. Jia, S. T. Li, B. Liu, X. L. Zhang, Z. H. Cong, and F. Q. Wu, "Theoretical and experimental study on a diode-pumped actively Q-switched Nd:GdVO4 self-stimulated Raman laser at 1173 nm," Opt. Commun., vol.277, pp.379-384,2007.
    [10]Y. F. Chen, "Compact efficient self-frequency Raman conversion in diode-pumped passively Q-switched Nd:GdVO4 laser." Appl. Phys. B, vol.78, pp.685-687,2004.
    [11]丛振华,张行愚,王青圃,李述涛,陈晓寒,张晓磊,“主动调Q内腔式Nd:YAG/GdVO4拉曼激光器,”中国激光,vol.36,pp.19-22,2009.
    [12]S. T. Li, X. Y. Zhang, Q. P. Wang, Z. H. Cong, Z. J. Liu, S. Z. Fan, and X. L. Zhang, "Small scale and efficient diode-pumped actively Q-switched intracavity KTP frequency-doubled "Nd:YAG/GdVO4 Raman laser," J. Phys. D, vol.41, pp. 055104-055107,2008.
    [13]Y. F. Chen, "High-power diode-pumped actively Q-switched Nd:YVO4 self-Raman laser:influence of dopant concentration." Opt. Lett., vol.29, pp. 1915-1917,2004.
    [14]Y. F. Chen, "Efficient subnanosecond diode-pumped passively Q-switched Nd:YVO4 self-stimulated Raman laser," Opt. Lett., vol.29, pp.1251-1253, 2004.
    [15]F. F. Su, X.Y. Zhang, Q. P. Wang, S. H. Ding, P. Jia, S. T. Li, and S. Z. Fan, "Diode pumped actively Q-switched Nd:YVO4 self-Raman laser," J. Phys. D, vol. 39, pp.2090-2093,2006.
    [16]S. H. Ding, X. Z. Zhang, Q. P. Wang, F. F. Su, P. Jia, S. T. Li, S. Z. Fan, J. Chang, S. S. Zhang, and Z. J. Liu, "Theoretical and Experimental Study on the Self-Raman Laser With Nd:YVO4 Crystal," IEEE J. Quantum Electron., vol.42, pp.927-933,2006.
    [17]Y. F. Lu, X. H. Zhang, S. T. Li, J. Xia, W. B. Cheng, and Z. Xiong, "All-solid-state cw sodium D-2 resonance radiation based on intracavity frequency-doubled self-Raman laser operation in double-end diffusion-bonded Nd3+:LuVO4 crystal," Opt. Lett., vol.35, pp.2964-2966,2010.
    [18]X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, and Z. H. Cong. "Diode-pumped actively Q-switched c-cut Nd:YVO4 self-Raman laser," Laser Phys. Lett., vol.6, pp.26-29,2009.
    [19]J. Findeisen, H. J. Eichler, and P. Peuser, "Self-stimulating, transversally diode pumped Nd3+:KGd(WO4)2 Raman laser," Opt. Commun., vol.181, pp.129-133, 2000.
    [20]R. P. Mildren, M. Convery, H. M. Pask, and J. A. Piper, "Efficient, all-solid-state, Raman laser in the yellow, orange and red," Opt. Express, vol.12, pp.785-790, 2004.
    [21]S. H. Ding, X. Y. Zhang, Q. P. Wang, F. F. Su, S. T. Li, S. Z. Fan, Z. J. Liu, J. Chang, S. S. Zhang, S. Wang, and Y. Liu, "Theoretical and experimental research on the multi-frequency Raman converter with KGd(WO4)2 crystal," Opt. Express, vol.13, pp.10120-10128,2005.
    [22]H. M. Pask and J. Piper, "Diode-pimped LIO3 intracavity Raman lasers," IEEE Journal of Quan. Electron., vol.11, pp.353-371,1999.
    [23]H. B. Shen, Q. P. Wang, X. Y. Zhang, X. H. Chen, Z. H. Cong, Z. G. Wu, F. Bai, W. X. Lan, and L. Gao "1st-Stokes and 2nd-Stokes dual-wavelength operation and mode-locking modulation in diode-side-pumped Nd:YAG/BaWO4 Raman laser," Opt. Express, vol.20, pp.17823-17832,2012.
    [24]L. Li, X. Y. Zhang, Q. P. Wang, X. H. Chen, S. Z. Fan, Z. J. Liu, Y. G. Zhang and H. J. Zhang, "Mode locking phenomenon in an actively Q-switched intracavity Raman laser," Symposium on Photonics and Optoelectionics (SOPO),2011.
    [25]H. Jellnkov. J. Sule, T. T. Basiev, P. G. Zveerv, and S. V. Kravtsov "Stimulaetd Rmana seattering in Nd:SrWO4," Laser Phys. Lett, vol.2, pp.4-11,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700