用户名: 密码: 验证码:
乳酸菌微包囊制备技术研究及其在酸奶连续发酵中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国当前的乳品工业中,继代式发酵剂和冷冻干燥型发酵剂的应用比较广泛,继代式发酵剂操作复杂,成品酸奶质量控制比较难;直投式发酵剂主要依赖进口,成本较高。针对这两种发酵剂存在的不足,本研究研制开发了一种新型发酵剂制备方法。这种方法制备的液芯微包囊发酵剂,不仅克服了现在使用的两类发酵剂的不足,简化了生产工艺,而且降低了生产成本。应用于酸奶的连续接种发酵中,不仅可以保证各批次酸奶成品的质量,而且较传统的间歇式酸奶生产方法可节约生产空间,缩短整个酸奶制作加工时间。因此,乳酸菌微包囊技术研究为传统酸奶发酵技术的革新提供了理论指导和技术支持,具有实际应用价值。
     主要研究结果如下:
     (1)设计并制作了一套液芯微包囊化细胞无菌制备装置,应用该装置,在无菌条件下实现了液芯微包囊化细胞制备。经过测试,该液芯微包囊化细胞无菌制备装置符合设定的工艺参数,可以满足液芯微包囊化细胞无菌制备的需求。
     (2)采用中心组合设计优化了用于高强度液芯微包囊制备条件,优化的微包囊制备条件为:黄原胶2.24g/L,氯化钙3.98%,海藻酸钠0.68g/L,壳聚糖3.19g/L成膜时间48min。
     (3)生物相容性研究结果显示:黄原胶对唾液链球菌嗜热亚种的生长基本没有影响,高浓度的氯化钙对嗜热链球菌的生长有明显的抑制作用,并且随浓度的增高,抑制作用越明显,甚至产生毒害作用;在制微包囊过程中以及在用液芯微包囊对唾液链球菌嗜热亚种培养过程中,都显示了良好的生物相容性,并且在液芯微包囊中固定化培养的条件下更有利于菌体的生长,菌体的数量提高了两个数量级。因此作为整个体系来说,该微包囊可用于乳酸菌的固定化培养。
     (4)微包囊释放性能研究结果显示:壳聚糖乙酸溶液浓度、氯化钙浓度和成膜时间对德式乳杆菌保加利亚亚种的释放性能影响都很大;当海藻酸钠浓度满足钙离子的配位需求后,其浓度对唾液链球菌嗜热亚种的释放性能影响不大。作为整个体系来说,可以通过改变液芯微包囊组分的浓度和成膜时间来控制液芯微包囊的通透性,从而改变唾液链球菌嗜热亚种的释放性能,对实现控制培养液中菌体密度具有重要的意义
     (5)采用析因设计和响应曲面设计优化了用于微包囊化德式乳杆菌保加利亚亚种高密度培养的培养基,其配方为乳清粉97.15g/L,大豆蛋白粉20g/L,酵母粉7.55g/L,碳酸钙8.03g/L,硫酸镁0.3g/L,硫酸锰0.02g/L;微包囊化唾液链球菌嗜热亚种高密度培养的培养基,其配方为乳清粉103g/L,大豆蛋白粉10g/L,酵母粉6.8g/L,碳酸钙7.2g/L,硫酸镁0.3g/L,硫酸锰0.02g/L
     (6)用中心组合设计(CCD)优化了微包囊化乳酸菌培养条件,最佳的培养条件:微包囊化德式乳杆菌保加利亚亚种培养温度为41.7℃,初始pH为6.9;微包囊化唾液链球菌嗜热亚种培养温度为44℃,初始pH为6.8。在优化条件下对微包囊化乳酸菌的高密度培养,唾液链球菌嗜热亚种囊内德式乳杆菌保加利亚亚种细胞密度达到3.18×1011cfu/g;囊内唾液链球菌嗜热亚种细胞密度达到2.63×1011cfu/g。
     (7)通过单因素和正交实验得到液芯微包囊发酵剂的最佳保护储存液,其组成为氯化钠0.9%,蔗糖3%,海藻糖5%,甘油8%,碳酸钙0.2%。按照此配方用去离子水配制储存保护液,置于121℃灭菌20min,然后将制备好的高密度微包囊发酵剂放入储存保护液中于4℃条件下保存,30天后对微包囊中菌体密度和微包囊强度进行检测,菌体密度为1.54×1011cfu/g,微包囊强度为85.95g。
     (8)用中心组合设计对应用微包囊化乳酸菌作为发酵剂的牛奶连续接种各参数进行优化,获得了牛奶连续接种的温度、pH、长径比最优参数组合分别是:41.22℃、6.86、4.99。
     (9)通过对液芯微包囊发酵剂连续接种时间对接种牛奶中菌体密度、微包囊强度、无菌柱式生物反应器中牛奶的稀释率、发酵牛奶的感官评定总分等影响的结果,结合酸奶工业生产实际需求,确定液芯微包囊发酵剂连续接种使用时间为24d
Traditional subcultural and frozen-dried yoghurt starter cultures are used widely in Chinese dairy industry nowadays. However, traditional subcultural yoghurt starters require complex preparation processes and, thus resulted in difficulties for the yoghurt quality control. Meanwhile, frozen-dried starter cultures are mainly imported and with high costs. Therefore, this study is aimed to develop a novel technique for producing starters, in order to overcome the shortcomings of traditional subcultural starters and imported starters, simplify the producing techniques, and reduce the cost. Application of this novel immobilized starter to continuous yoghourt fermentation can ensure the quality of different batches of products, save more spaces than traditional techniques, and shorten processing time.
     In this thesis, a set of microencapsulated cell aseptic preparation combined system is designed and manufactured. In this system, preparation conditions, intensity, biocompatibility and releasing property were studied systematically. High-density media and culture conditions of Streptococcus thermophilu and Lactobacillus bulgaricus were optimized, reaching1011cfu/ml. The microcapsules produced were used for continuously fermentation of yoghourt. The conditions of continuous inoculation were optimized, and the quality of yoghourt reached the national standards. The results will provide foundation for the innovation of traditional yoghourt fermentation technology.
     The main results are given as follows:
     (1) Central composite design was used to optimize the preparation conditions of high-intensity liquid-core microcapsules. The optimum conditions for the microcapsules were CaCl23.98%, xanthan gum2.24g/L, sodium alginate0.68g/L, chitosan3.19g/L and the film-forming time48min.
     (2) Biocompatibility assay indicated that xanthan gum had few effects on the growth of S. thermophilus, while CaCl2with high concentration inhibited the growth of S. thermophilus significantly. The inhibition showed a concentration-dependent matter, and may even convert to poisoning effect when concentration reached some point. But overall, good biocompatibility appeared during the preparation and culturing, and the immobilized cells in liquid-core microcapsules facilitated the growth of bacteria. The number of immobilized S. thermophilus was100times higher than that of free cultivation. Thus, microcapsules can be used for immobilized culture of LAB.
     (3) Study of the releasing property indicated that chitosan concentration, CaCl2concetration and film-forming time had great effects on permeability. When the concentration of sodium alginate met the need of complexation of calcium ionic, it had little effect on the release of Streptococcus thermophilus. For the entire system, the permeabiligy can be controlled by means of changing the composition of capsules and film-forming time, which is significant to achieve the control of bacteria density in media.
     (4) Factorial design and response surface design were used to optimize the media for the high-density culture of microencapsuled bacteria. The obtained compositions for L. bulgaricus was:whey powder97.15g/L, soybean powder20g/L, yeast powder7.55g/L, CaCO38.03g/L, MgSO40.3g/L, MnSO40.02g/L. The composition for S. thermophilus was: whey powder103g/L, soybean powder10g/L, yeast powder6.8g/L, CaCO37.2g/L, MgSO40.3g/L, MnSO40.02g/L.
     (5) Culturing conditions were optimized by central composite design. The optimal conditions were as follows:temperature41.7℃and initial pH6.9for L.bulgaricus, and temperature44℃and initial pH6.8for S. thermophilus.
     (6) Cell density of S. thermophilus and L. bulgaricus in the capsule reached3.18×1011cfu/g and2.63×1011cfu/g in the optimized media and culture conditions.
     (7) The best composition of storage liquid was obtained through single factor experiment and orthogonal experiment, which showed a composition of NaCl0.9%, sucrose3%, fucose5%, glycerol8%, and CaCO30.2%. After one month in the storage liquid at4℃, the cell density remained1.54×1011cfu/g, and the intensity of capsule85.95g。
     (8) Optimized parameters of continuous dairy inoculation were obtained using central composite design, with the temperature41.22℃, pH6.86, and ratio of length to diameter4.99。
     (9) Considering the effects of continuous inoculation time on cell density, capsule intensity, dilution rate of dairy in bioreactor, and sensory assess of yoghourt, combined with manufacturing cost and efficiency, the utilization period of liquid-core microcapsule for continuous inoculation is24days.
引文
[1]顾瑞霞,谢继志.乳酸菌与人体保健[M].北京:科学出版社,1995.
    [2]GB 19302-2003酸乳卫生标准.
    [3]张兰威,鄂志强,万海峰等.乳酸菌增菌培养基的筛选及干燥保护剂的选择[J].中国乳品工业,2000,28(2):7-9.
    [4]乔发东,吴秀芳,南庆贤等.浓缩乳酸菌发酵剂的现状[J].中国乳品工业,1998,26(1):22-23.
    [5]贾士杰,生庆海.发酵乳及新型发酵剂的研究概述[J].中国奶牛,2000(3):45-48.
    [6]Morice M, Bracquart P, Linden G. Colonial variation and free-thaw resistance of Streptococcus thermophilus[J]. J Dairy Sci,1992,75:1197-1203.
    [7]张兰威,鄂志强,万海峰等.乳酸菌增菌培养基的筛选及干燥保护剂的选择[J].中国乳品工业,2000,28(2):7-9.
    [8]吕兵,张国农,林金资.酸奶发酵剂速效干燥制备中保护剂的研究[J].中国乳品工业,1996(2):3-5.
    [9]Benson C T, Liu C, Gao D Y. Hydraulic conductivity and its activition energy, cryoprotectal agent permeability and its Ea, and reflection coefficent for golden hamster individual pancreatic islet cell membranes [J]. Cryobiology,2008,37:290-299.
    [10]Chang T M S. M, Moo-Young (Ed).Comprehensive Bioteehnology:The Principles, applications and regulations of biotechnology in industry agriculture and medicine[J]. New York:Pergamon Press,1985.
    [11]Chang T M S. Semipermeable microcapsules[M]. Science,1994,146:524-525
    [12]Chang T M S. Semi-permeable microcapsules containin catalase for enzyme Replacement in acatalasemic mice[J]. Nature,1998,218(5318):243-245.
    [13]Chang T M S.Lipid-located spherical ultrathin membranes of polymer or cross-linked protein aspossible cell membrane models. Fed.Pro[J].2009,28:461-467.
    [14]梅乐和,姚善泾.生物微液芯微包囊固定化技术的研究进展[J].现代化工,1998,1:19-21.
    [15]Lim F, Sun A M. Microencapsulated islets as bioartificial endocrine pancreas[J]. Science,1980, 210:908-910.
    [16]O'Shea G M, Sun A M. Encapsulation of rat islets of Langerhans prolongs xenograft survival in diabetic mice[J].Diabetes,1986,35(8):943-946.
    [17]Ma X, Vacekl, Sun A.Generation of alginate-Poly-l-lysine-alginate(APA)biomicrocapsules:the relationship between the membrane strength and the reaction conditions[J]. Artificial Cells Blood Substitutes & Immobilization Biotechnology,2012,22(1):43-69.
    [18]王东辉,赵裕蓉.微液芯微包囊的应用及研究进展[J].化工新型材料,1999,27(7):11-14.
    [19]虞星炬,解玉冰,马小军等.第七届全国生物化工学术会议论文集.北京:化学工业出版社,1996.11-15。
    [20]周剑忠,江汉湖,董明盛.乳酸菌细胞的液芯包囊固定化技术及应用[J].食品与发酵工业,2004,(2)82-86.
    [21]Cheong S H, Park J K, Kim B S, Chang H N. Microencapsulation of yeast cells in the calcium alginate membrane. Biotechnol Technol,2012,7:879-84.
    [22]Krasackoopt W, Bhandari B, Deeth H, Evaluation of encapsulation techniques of probiotics for yoghurt. International Dairy Journal,2003,13:3-13.
    [42]Matsunoto S, Kobayashi H, Takashima Y. Production of monodispersed capsules. J. Microencapsul.,2005,3:25.
    [24]Koch S, Schwinger C, Rainov N G, et al. Alginateen capsulation of genetically engineered mammalian cells:comparison of production devices, methods and microencapsul,2003, 20(3):303.
    [25]陈国,方柏山,彭益强.一种可控制生物微液芯微包囊尺寸的气流微囊发生器[J].高校化学工程学报,2008,22(3):466-470.
    [26]Pajie-Lijakovic I, Nedovic V, Bugarski B. Nonlinear dynamics of brewing yeast cells growth in alginate micro beads. Materials Science Forum,2006,518:519.
    [27]姚睿,张人估,王小红等.非接触式高压静电场微液芯微包囊制备方法[J].机械工程学报,2010,46(5):116-121.
    [28]朱静,谢杨威,于炜婷等.多通道微液芯微包囊制备系统规模化制备海藻酸钙微胶珠[J].化工学报,2009,60(1):204-210.
    [29]Zhou Y, Martins E, Groboillot A, Champagne C P, & Neufeld R J. Spectrophotometric quantification of lactic bacteria in alginate and control of cell release with chitosan coating[J]. Journal Applied Microbiology,2012,84(3):342-348.
    [30]Schillinger U.(1999). Isolation and identification of lactobacilli from novel-type probiotic and mild yoghurts and their stability during refrigerated storage[J]. International Journal of Food Microbiology,2010,47(1):79-87.
    [31]林子琦.利用褐藻酸钙液芯微包囊化双义杆菌之耐酸性与储存安定性[J].国立台湾大学食品科技研究硕士学位论文,2002.
    [32]Wee S, Gombotz W R. Protein release from alginate matrices[J]. Adv Drug Deliv Rev,2010, 31(1):267-285.
    [33]Moustafine R I, Kemenova V A, Mooter G V. Characteristics of interpolyelectrolyte complexes of Eudrragit E100 with sodium alginate[J]. Int J Pharm,2005,294:113-120.
    [34]Kikuchi A, Kawabuchi M, Sugihara M, et al. Pulsed dextran release from calcium-alginate gel beads[J]. J Controlled Release,1997,47(1):21-29.
    [35]Draget K I, Skjak-Braek G, Smidsrod O. Alginate based new materials[J]. Int J Biological Macromolecules,1997,21:47-55.
    [36]Bienaime C, Barbotin J N, Nava J E. How to build an adapted and bioactive cell microenvironment? A chemical interaction study of the structure of Ca-alginate matrices and their repercussion on confined cells[J]. J Biomed Mater Res A.2003,67(2):376-388.
    [37]Shoichet M S, Li R H, White M L, et al. Stability of hydrogels used in cell encapsulation:An in vitro comparison of alginate and agarose[J]. Biotechnol Bioeng,2006,50(4):374-381.
    [38]Leroux M A, Guilak F, Setton L A. Compressive and shear properties of alginate gel:effects of sodium ions and alginate concentration[J]. J Biomed Mater Res,2009,47 (1):46-53.
    [39]Del Gaudio P D, Colombo P, Colombo G, et al. Mechanisms of formation and disintegration of alginate beads obtained by prilling[J]. Int J Pharm,2005,302:1-9.
    [40]解玉冰,马小军,王毓福等,第七届全国生物化工学术会议论文集.北京:化学工业出版社,1996,154-157.
    [41]Posillico E G Biotechnology,1986,4:114-117.
    [42]郭兴华.益生菌基础与应用.北京:北京科学技术出版社,2002.
    [43]Ravula R R, & Shah N P. Viability of probiotic bacteria in fermented frozen dairy desserts. Food Australia,1998,50:136-139.
    [44]Rao A V, Shiwnarain N, & Maharaj I. Survival of microencapsulated Bifidobacterium pseudolongum in simulated gastric and intestinal juices. Canadiam Institute of Food Science and Technology Journal,2009,22:345-349.
    [45]金世琳.古老而新型的酒精性发酵乳饮料[J].饮料工业,1999,(1):16-21.
    [46]金世琳.酸奶的连续发酵.中国乳品工业[J],1997,25(1):37-41.
    [47]高培基,曲音波,钱新民等.微生物生长与发酵工程.山东大学出版社,1990,235-241.
    [48]Doleyres Y, Lacroix C. Technologies with free and immobilised cells for probiotic bifidobacteria production and protection. International Dairy Journal,2005,15(10):973-988.
    [49]张和平,孙天松.酸奶发酵剂中嗜热链球菌与保加利亚乳杆菌的生长互补及连续式酸奶的生 产.中国乳品工业,1997,25(3):18-22.
    [50]Roy D J. Leduy A. Continuous production of lactic acid from whey permeate by free and calcium alginate entrapped Lactobacilus helveticus. J. Dairy Sci.,1987,70:506-513.
    [51]Prevost H. Continuous yogurt production with lacctobacillus bulgaricus and Streptococcus thermophilus in calcium alginate. Biotechnol. Lett.,2005,7:247-252.
    [52]Prevost H, Divies C. Cream fermentations by a mixed culture of Lactococci entrapped in two-layer calcium alginate gel beads. Biotechnol. Lett.,2012,14:583-588.
    [53]刘东.酸奶的连续化生产.食品工业科技,1983,1:53.
    [54]苏伟,朱秋劲,陈廷昌等.牛乳固定化菌发酵技术初探.山东农业生物学报,2003,22(5):408-413.
    [55]施安辉.利用固定化细胞连续发酵生产酸牛乳.生物工程学报,1995,11(2):203-204.
    [56]Ampe F, Ben ON, Moizan C, Wacher C, Guyot J P. Polyphasic study of the spatial distribution of microorganisms inMexican pozol, a fermented maize dough, demonstrates the need for cultivation-independent methods to investigate traditional fermentations.Appl. Environ. Microbiol. 2009,65:5464-5473.
    [57]Omar N, Ampe F. Microbial community dynamics during production of the Mexican fermented maize dough pozol.Appl. Environ. Microbiol.2010,66:3664-3673.
    [58]Cocolin L, Manzano M, Cantoni C, Comi G, Denaturing gradient gel electrophoresis analysis of the 16S rRNA gene V1 region to monitor dynamic changes in the bacterial populationduring fermentation of Italian sausages. Appl. Environ.Microbiol.2011,67,5113-5121.
    [59]Ercolini D, Moschetti G, Blaiotta G, Coppola S, The potential of a polyphasic PCR-DGGE approach in evaluating microbial diversity of Natural Whey Cultures for water-buffalo Mozzarella cheese production:bias of'culture dependent'and D. Ercolini/Journal of "culture independent" approaches. Syst. Appl. Microbiol.2001,24:610-617.
    [60]Randazzo C L, Torriani S, Akkermans A D L. de Vos W M, Vaughan E E, Diversity, dynamics and activity of bacterial communities during production of an artisanal Siciliancheese as evaluated by 16S rRNA analysis. Appl. Environ. Microbiol.2012,68,1882-1892.
    [1]Egon B H. Commercial bacterial starter cultures for fermented foods of the future [J] Int. J. Food Mierobio,2002,(78):119-131.
    [2]Riesenberg D, Guthke R. High cell density cultivation of microorganisms[J]. Appl Mierbiol Biotechol,1999, (51):422-430.
    [3]刘子宇,李平兰,郑海涛等.微生物高密度培养的研究进展[J].中国乳业,2005,12:47-51.
    [4]汪仁官,陈荣昭译.实验设计.中国统计出版社,1998.
    [5]梅乐和,姚善泾.生物微胶囊固定化技术的研究进展[J].现代化工,1998,1:19-21.
    [6]Alander M, Matila-Sandholm T. Functional foods for EU-Health in 2000[A].4th Workshop, FAIR. CT96-1028, PROBDEMO, VTT Symposium 1989[C]. Finland:Rovaniemi,2000.
    [7]中达电通股份有限公司DVP-PLC应用技术手册第五版.
    [8]台达电子工业股份有限公司DVP-04A/D安装说明.
    [9]台达电子工业股份有限公司DOP-B07安装说明.
    [1]周剑忠,李莹,单成俊等.响应曲面法优化植物乳杆菌蔬菜汁培养基的研究[J].江苏农业科学,2008,5:216-219.
    [2]周剑忠,黄开红,董明盛等.混料设计在藏灵菇奶纯培养发酵剂配方设计中的应用[J].中国农业科学,2008,41(3):816-82.
    [3]胡良平.Windows SAS 6.12 & 8.0实用统计分析教程.北京:军事医学科学出版社.2001.
    [4]汪仁官译.实验设计与分析.北京:中国统计出版社,1998.
    [5]Prakash S, Chang T M S. Preparation andinvitroanalysisofmicro-encapsulated genetically engineeredE coliDH5 cells for urea and ammonia removal.Biotechnology and Bioengineering, 2005,46:621-626.
    [6]David A R, Charles E G, Bonita A G Improved organic acid pro-duction by calcium alginate immobilized propionibacteria-Enzyme andMicrobialTechnology,2008,22:409-414.
    [7]张惠珍,马国芳,钱洪军。不同种类壳聚糖抗菌性能的比较,河北师范大学学报,自然科学版,2009,33(1):74-77.
    [8]Park J H, Cha B J, Lee Y N. Antibacterial activity ofchitosan acetate on food-borne enteropathogenic bacteria[J]. Food Science Biotechnol,2003,12(l):100-103.
    [9]Jen C R, Hancher D J. Review:Hydrogels for cell immobilization. Biotechnology and Bioengineering,2012,50:357-364.
    [10]张立央,关怡新,姚善泾.SA/CS-CaCl2/PMCG微液芯微包囊的生物相容性研究[J].生物工程学报,2002,18(6):709-712.
    [11]Yao S J. Improved Process for Preparation of Sodium Cellulose Sufate. Chemical Engineering Journal,2010,78(2):199-204.
    [12]Sefton M V, Dawson R M, Broughton R L. Microencapsulation of mammalian cells in a water-insoluble polyaorylate by coextrusion and interfacial precipitation. Biotechnology and Bioengineering,1987,29:1135-1143.
    [13]Taqieddin E, Amiji M. Enzyme immobilization in novel alginate-chitosan core-shell microcapsules, Biomaterials[J],2004,25(10):1937-1945.
    [14]Sarmento B, Ferreira D, Veiga F, et al. Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies. Carbohydrate Polymers[J], 2006,66(1):1-7.
    [15]Sakai S, Hashimoto I, Kawakami K. Usefulness of flow focusing technology for producing subsieve-size cell enclosing capsules:Application for agarose capsules production. Biochemical Engineering Journal[J],2006, (30):218-221.
    [16]刘善奎,钟延强,王芳等.口蹄疫DNA疫苗海藻酸钠微球的制备及体外释放的研究[J].药学服务与研究[J],2004,4(2),107-110.
    [17]Dang M J, Leong W K. Natural polymers for gene delivery and tissue engineering[J]. Advanced Drug Delivery Reviews,2006,58(4):487-499.
    [18]邢楠,田丰,刘圣军.海藻酸钙-壳聚糖微液芯微包囊组成对BSA通透性能影响的研究.化学学报[J],2007,65(24):2952-2958.
    [19]吴春,陈林林,李健.菟丝子黄酮的微液芯微包囊化及释放性能研究.农业工程学报[J],2006,22(9):264-266.
    [20]程超,李伟,范恩涛.鸭跖草黄酮类物质微液芯微包囊化及其释放性能研究[J].食品品科技,2007,7:135-137.
    [21]Laurence C L, Nurdin N, Angelova N, et.al. Maintenance of primary murine hepatocyte functions in multicomponent polymer capsules in vitro cryopreservation studies[J]. Journal of Hepatology, 2001,34:11-18.
    [22]Gaserod O, Sannes A, Skjak-Brak G. Microcapsules of alginate-chitosan. Ⅱ. A study of capsule stability and permeability[J]. Biomaterials,1999,20:773-783.
    [23]刘映薇,于炜婷,刘袖洞等.海藻酸钠-壳聚糖-海藻酸钠(ACA)微液芯微包囊的蛋白质通透性研究[J].中国生物医学工程学报,2006,25(3):370-373.
    [24]Oh S, Rheem S, Sim J. Optimizing conditions for the growth of Lactobacillus casei YIT9018 in tryptone-glucose medium by using response surface methodology. Appl Environ Microbiol.1995, 61:3809-3814.
    [1]Egon B H. Commercial bacterial starter cultures for fermented foods of the future [J] Int. J. Food Mierobio,2002, (78):119-131.
    [2]Riesenberg D, Guthke R. High cell density cultivation of microorganisms[J]. Appl Mierbiol Biotechol,1999, (51):422-430.
    [3]刘子宇,李平兰,郑海涛等.微生物高密度培养的研究进展[J].中国乳业,2005,12:47-51.
    [4]张兰威,鄂志强,万海峰,等.乳酸菌增菌培养基筛选及干燥保护剂的选择.中国乳品工业,2000,28(2):7-10.
    [5]柏建玲,莫树平,郑婉玲等.乳酸菌增菌培养基的营养因子优化.食品与发酵工业2007,3(2):79-81.
    [6]Lamboley L, Lacroix C, Champagne C P, et al. Continuous mixed strain mesophilic lactic starter productionin supplemented whey permeate medium using immobilized cell technology. Biotechnol Bioeng1997(56):502-516.
    [7]Sitnsy K C, Mann M B, Steams G W, et al. Use of a modified Trypto-phanase promoter to direct high-level expression of foreign proteins in E. coli. Ann N Y Acad Sci,1996 (211):782-297.
    [1]Norton S, Lacroix C, Vuillemard J C. Reduction of yeast extract supplementation in lactic acid fermentation of whey permeate by immobilized cell technology. J. Dairy Sci.,1994,77:2494.
    [2]Champagne C P, Baillargeon C, Goulet J. Whey fermentation by immobilized cells of Propionibacterium shermanii. Appl. Bacteriol.,1989,66:175-181.
    [3]Takahashi M, H, Oshi T, Suzuki K H. Diacetyl production by immobilized citrate-positive Lactococcus lactis subsp lactis 3022 in the fibrous Ca-alginate gel. Biotechnol. Lett.,1990, 12:569-576.
    [4]Morin N, Bernier-Cardon M, Champagne CP. Production of concentrated Lactococcus lactis subsp. cremoris suspension in calcium alginate beads. Appl. Environ. Microbiol.,1992,58:545-550.
    [5]Champagne, C.P., F.Girard, and N.Rodrigue. Production of concentrated suspensions of thermophilic lactic acid bacteria in calcium alginate beads. Int. Dairy J.,1993,3:257-265.
    [6]Prevost H, Divies C. Continuous prefermentation of milk by entrapped yogurt bacteria. Ⅱ. Data for optimization of the process. Milchwissen.,1988,43:716-719.
    [7]Prevost H, and Divies C. Continuous prefermentationof milk by entrapped yogurt bacteria. Ⅰ. Development of the process. Milchwissen.,1988,43:621-625.
    [8]Champagne,C.P. and C. Baillargeon-Cote. Cream fermentation by immobilized lactic acid bacteria. Biotechnol. Lett.,1987,9:329-340.
    [9]Champagne C P, Morin N, Couturo R, Gagnon C, et al. The potential of immobiolized cell technology to produce freezed-dried phage-protected cultured of Lactococcus lactis. Food Research International,1992,25:419-427.
    [10]Prevost H, Divies C. Fresh fermented cheese production with continuous prefermented milk by a mixed culture of mesophilic lactic streptococci entrapped in Ca-alginate. Biotechnol. Lett,1987, 9:789-791.
    [11]GB/T16347-1996.乳酸菌饮料中乳酸菌的微生物学检验.
    [12]汪仁官,陈荣昭译.实验设计.中国统计出版社,1998.
    [13]洪南,候军SAS for Windows (V8)统计分析系统教程新编.清华大学出版社,2004.
    [14]Torriani S, Gardini F, Guerzoni M E, Dellaglio F. Use of Response surface methodology to evaluate some variables affecting the growth and acidification characteristics of yoghurt cultures. International Journal of Dairy,1996,6:625-636.
    [15]Kimmel S A, Roberts R F, Ziegler G R. Optimization of exopolysaccharide production by Lactobacillus delbrueckii subsp.bulgaricus RR grown in a semi-defined medium. Applied and Environmental Microbiology,1998,64(2):659-664.
    [1]Champagne C P, Lacroix C, Sodini-Gallot I. Immobilized cell technologies for the dairy industry[J]. Crit Rev Biotechnol,1994,14:109-134.
    [2]Morin N, Bernier-Cardon M, Champagne CP. Production of concentrated Lactococcus lactis subsp. cremoris suspension in calcium alginate beads[J]. Appl Environ Microbiol 1992,58:545-503.
    [3]Audet P, St-Gelais D, Roy D. Production of mixed cultures of nonisogenic Lactococcus lactis ssp. cremoris using immobilized cells[J].Milch wissenschaft 1995,50:18-22.
    [4]Maitrot H, Paquin C, Lacroix C,et al. Production of concentrated freeze-dried cultures of Bifidobacterium longum in-carrageenan-locust bean gum gels[J]. Biotechnol Tech,1997, 7:527-531.
    [5]朱俊平.乳及乳制品质量检验[M].北京:中国计量出版社,2006.
    [6]Muyzer G E. C, De Wall AG. Uitterlinden. profiling of complex microbial populations by denaturing gradient gel electrophoresis of 16S ribosomal DNA fragments. Applied and Environmental Microbiology.1993,59:695-700.
    [7]马勇等.高膳食纤维对酸牛乳品质的影响[J].食品工业科技,2010,31(7):146-149.
    [8]Prevost H, Divies C. Fresh fermented cheese production with continuous prefermented milk by a mixed culture of mesophilic lactic streptococci entrapped in Ca-alginate. Biotechnol. Lett.,1987, 9:789-791.
    [9]Prevost H, Divies C. Continuous prefermentation of milk by entrapped yogurt bacteria. Ⅱ. Data for optimization of the process. Milchwissen.,1988,43:716-719.
    [10]Prevost H, Divies C. Continuous prefermentationof milk by entrapped yogurt bacteria. Development of the process. Milchwissen.,1988,43:621-625.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700