用户名: 密码: 验证码:
甲烷无焰—富氧燃烧的反应区域及物化特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无焰燃烧技术具有燃料适应范围广,燃料利用率高,通时又能较大程度减排NOx的新型燃烧技术,特别是能够很好地和具有减排CO_2能力的富氧燃烧技术结合,为无焰燃烧技术的开发利用提供了新的途径。目前针对无焰燃烧的研究大多都集中在无焰燃烧临界转变,无焰燃烧组织方式等流体动力学方面,而其燃烧的化学动力学过程却少有人涉及。本文针对无焰燃烧技术在常规空气气氛和富氧气氛下的化学动力学特性开展了系统研究。
     首先,基于无焰燃烧对冲扩散火焰模型,详细地对比了CH_4在空气环境下和富氧环境下的无焰燃烧特性差异。首先分析和解释了常规燃烧向无焰燃烧的转变特性,及非热解区域的消失。其次解释无焰燃烧和MILD燃烧的差异,构建了空气环境和富氧环境的燃烧分区图。同时分析对比了空气环境和富氧环境下,维持无焰燃烧的临界稀释率,预热温度和当量比的关系,表述了二种环境下维持无焰燃烧的最小点火能差异。除此之外,对比分析了常规无焰燃烧环境和富氧干湿燃烧环境下的燃料氧化路径异同,并对燃料N在两种不同环境下的转化进行详细地分析与探讨
     其次,本文构建了CH_4富氧燃烧对冲火焰扩散模型。详细的探讨了CO_2和H2O的化学,热力和扩散特性在富氧燃烧环境下,对火焰温度和燃烧组分影响,同时分析了这些特性对CH_4的氧化所造成的影响。结果表明CO_2的热力特性对温度的影响最大,而其热力特性和化学特性对关键性组分CO的影响都比较大。H2O的存在虽然对燃烧温度的影响不大,但是却能极大的改变CO的氧化过程,加速其氧化。同时还构建了常规空气环境,富氧干循环环境和富氧湿循环环境下的CH_4氧化路径图。
     同时,对CH_4无焰燃烧数值模拟预测,详细地讨论了其总包化学反应机理的优化和优选。针对无焰燃烧气氛下燃料燃烧速率变缓这一特性,优选和优化了CO和H2O的化学反应动力学速率,并考虑其逆反应过程。利用典型的同轴射流无焰燃烧实验数据,在优化燃烧湍流模型的基础上,详细地评估了不同的总包反应机理并最终优选出能够适用于无焰燃烧数值模拟预测的总包反应机理,为无焰燃烧工业炉膛的数值模拟预测提供了一定的帮助和指导。
     总包反应机理因其化学反应时间尺度过小而无法适用于无焰燃烧的着火延迟,熄火等特性的研究。而大型的化学反应体系又无法在无焰燃烧数值模拟过程中被利用,为此必须发展出适合其数值模拟预测的骨架机理或进一步的简化机理。在本文中,针对适用于CH_4富氧燃烧预测的97组分,778基元反应的Glarborg机理,利用先进的DRGEPSA方法,将其简化至25组分,168基元反应的骨架机理,通过对比骨架机理和详细机理在着火延迟,火焰传播速度,发热速率和组分预测等方面的异同,表明骨架机理的预测误差在5%以内。表明该骨架机理具有较高的预测精度而且可以大大缩短计算用时间。
     最后,针对20KW无焰燃烧实验平台,通过准稳态假设方法简化GRI3.0并详细参照对比Lu和Law发展的19步简化机理,通过对FLUENT进行自编UDF,将该简化机理嵌套至EDC湍化学模型当中,通过统计组分的净生成率优化计算策略,在保证计算精度的同时节省计算用时,同时对比分析了前面优化出的WD4机理对于全场组分的预测特性。对比模拟结果和实验结果发现,简化机理和总包机理都能够较为准确的预测燃烧过程的稳态组分,同时简化机理能够预测燃烧热释放过程并与实验观察取得了一致的结果而总包机理却不能预测无焰燃烧下的着火特性。通过对简化机理的模拟预测结果分析,无焰燃烧方式存在燃烧滞后性且燃烧为容积燃烧,而H离子的浓度在无焰燃烧环境中降低可能是其燃烧速率减慢的主要原因之一,同时发现C2链的质量流率下降而C1-C2链的交互作用加强。
Flameless combustion technology is one of prospective combustion technologies. It isa new type combustion strategy for improving the efficiency of energy utilization anddecreasing the NOx emission. Especially for its great advantages of combing with theoxyfuel combustion technology, this technology also helps to deal with the climate change.Recently, many studies were focused on the characteristics for critical changes formconventional combustion to flameless combustion, the organizations of flamelesscombustion and so on. Most of these topics were belonged to the studies of category offluid dynamic for flameless combustion. However, the characteristic of chemical dynamicfor flameless combustion was barely disscused. In the present work, this topic issystematically discussed under air and oxyfuel combustion condition.
     A special opposed flame model is set up to analysis the difference of flamelesscombustion under air and oxyfuel combustion condition. Firstly, the critical changecondition from air combustion to flameless condition is analysed, i.e. the disappearance ofprolytic region. Secondly, combustion regions are divided to explain the difference offlameless combustion under these two conditions. Meanwhile, on the premise of flamelessor MILD combustion, the relationship between the fuel dilution, preheated temperature andequiverlence ratio is studied and the difference for the mixmum heat for sustaining theflameless or MILD combustion are furtherly analysed. Also, the reaction pathways for CH_4oxidation and NH3conversion are also detailedly studied.
     Meanwhile, a diffusive opposed-flow flame model is set to investigate the thermal,chemical and diffusion effect of CO_2and H2O on the flame under oxyfuel combustioncondition. The flame temperature and Emission Index of CO (EICO) are chose to show theresults. It is shown that the thermal property of CO_2greatly affected the flame temperature,both thermal and chemical properties greatly affect the EICO. Although the existence ofH2O hardly affects the flame temperature, it reduces the EICO. It means that the existenceof H2O accelerates the fuel oxidation rate. Besides, the reaction pathways of fuel under air,oxyfuel with dry recirculation and oxyfuel with wet recirculation combustion condition hasalso been detailedly analysed.
     The global combustion mechanisms were modified and optimized to be suitable forthe numerical computation prediction for flameless combustion. For flameless combustion,the oxidation rates of fuel becomes slower than that under flammable combustion condition.Aiming at this particular point, the oxidation rates of CO and H2are modified for predicting the main species adaptively. Different global combustion mechanisms are compared withthe Co-flow experimental data to optimize the best one for prediction of flamelesscombustion.
     Although the global combustion mechanism is suitable for the prediction of mainspecies, it is not used for the predictions of ignition delay and extinction of flamlesscombustion because of its small chemical reaction time scale. However, the detailedmechanism is also barely used for the CFD prediction of flameless combustion because itassumes a large amount of computation time. A skeletal mechanism or reduced mechanismis appropriate for sloving both of these problems. A newly developed methodogy calledDRGEPSA is adopted to reduce the97species and778elementary reactions whichdeveloped by Glarborg et al. A skeletal mechanism which contained25species and168elementary is got by this method. Comparisions of ignition delay, flame propagationvelocity, heat release rate and prediction of main species are conducted between thedetailed mechanism and skeletal mechanism. The result shows that the skeletal mechanismwas about95%accuracy compared with the detailed mechanism and it greatly saves theCPU computational time.
     Then, a numerical simulation for a20Kw flameless combustion is done. A reducedmechanism for QSS analysis of GRI3.0based on19reduced mechanism which developedby Lu and Law has been coupled with EDC turbulent-combustion by User DefinedFunctions (UDF). It shows that this strategy keeps the high numerical precision and saves alot of computational afford. Also, the WD4global mechanism is also been used for thissimulation. The result shows that the reduced mechanism and global mechanism are used topredict the steady state species well. However, the global mechanism fails to predict thecharacteristic of ignition for flameless combustion but the results for reduced mechanismare coincident with experimental investigation. It also shows that the ignition lag forflameless combustion existed and it is a volumetric combustion. The reduction of H is oneof main causes for slowing of flameless combustion. The interaction of C1-C2chain isenhanced and the mass flow for C2chain was weaked.
引文
[1] BP世界能源统计年鉴.2012.
    [2]秦裕琨,李争起,吴少华.旋流煤粉燃烧技术的发展.热能与动力工程.1997,12:241-244.
    [3] Syred N.A review of oscillation mechanisms and the role of the precessing vortexcore (PVC) in swirl combustion systems.Progress in Energy and CombustionScience.2006,32(2):93-161.
    [4]张惠娟,宋洪鹏,惠世恩.四角切圆空气分级燃烧技术及应用.热能与动力工程.2003,18:225-228.
    [5] Spliethoff H, Greul U, Ruediger H et al. Basic effect on Nox emissions in airstaging and reburning at a bench scale facility. Fuel.1996,75:560-568.
    [6]于龙,吕俊复,王智微等.循环流化床燃烧技术的研究展望.热能与动力工程.2004,19:336-342
    [7]钟辉,王晓严.循环流化床燃烧技术的发展.发电设备.2005,2:130-134.
    [8] Koornneef J,Junginger M,Faaij A.Development of fluidized bed combustion-Anoverview of trend,performance and cost. Progress in Energy and CombustionScience,2007,33(1):19-55.
    [9] Tsuji H, Gupta A K, Hasegawa T et al. High temperature air combustion. CRCpress. Boca Raton, New York,2003.
    [10] Gupta A K. Clean energy conversion from waste fuels using high temperature aircombustion technology. Asian J. Energy Environ.2004,5:223-266.
    [11] Dinu R, Badea A, Apostol T et al. Emissions analysis of high temperature aircombustion of wood pellets. U.P.B. Sci.Bull., Scrics.2008,70:91-102.
    [12] Wei Z B, Li X L, Xu L J et al. Optimization of operating parameters for low Noxemission in high temperature air combustion. Energy and Fuels.2012,26:2821-2829.
    [13] Wünning JA, Wünning JG. Flameless oxidation to reduce thermalno-formation[J].Progress in Energy and Combustion Science,1997,23(1):81-94
    [14] Cavaliere A, de Joannon M. Mild combustion. Progress in Energy and CombustionScience.2004,30:329-366.
    [15] David N A.Effects of fuel-injector design on ultra-lean combustion performance.DOE/NASA report, No.NASA-TM-82624,1981.
    [16] Kito S, Wakai K, Takahashi S et al. Ignition limit of lean mixture by hrdrogenflame jet ignition. JSAE REVIEW.2000,21:373-378.
    [17] Scillieri J J, Freudenberg J S, Grizzle J W. From stoichiometry to ultra lean burn ina direct injection spark ignition engine model. Proceedings of the2002AmericanControl Confrence.2002,3123-3128.
    [18] Adachi S, Lwamoto A, Hayashi S et al. Emissions in combustion of leanmethane-air and biomass-air mixtures supported by primary hot burned gas in amultistage gas turbine combustor. Proceedings of the Combustion Institute.2007,31:3131-3138.
    [19] Trimm D L. Catalytic combustion. Applied Catalysis.1983,7:249-282.
    [20] Peck J. Development of a catalytic combustion system for the MIT micro gasturbine engine. Bachelor degree for science, seoul national university.2001
    [21] Agarwal, P K. The residence phase of active particles in fluidized beds of samllerinert particles. Chemical Engineering Science.1987,42:2481-2483.
    [22] Foster J, Miller R S. Fundamentals of high pressure combustion. Chapter in highpressure processes in chemical engineering, Edited by Lackner M. ProcessEngEngineering GmbH.2010, pp.53-75.
    [23] Weinberg F J. Combustion tempeature: the future?. Nature.1971,233:239-241.
    [24] Lloyd S A, Weinberg F J. A burner for mixtures of very low heat content. Nature.1974,251:47-49.
    [25] Lloyd S A, Weinbeig F J. Limits to energy release and utilisation from chemicalfuels. Nature.1975,257:367-370
    [26] Sitzki L, Borer K, Schuster E et al. Combustion in microscale heat-recirculatingburners. The third Asia-Pacific Confernce on Combustion. Korea,2007.
    [27] He X Z, Ma P Y, Tang Z G et al. A comprehensive heat-equilibrium anslysis ofswiss-roll combustor and its thermal energy utilization system. Energy andEnvironment Technoloy, ICEET’09International Conference.2009,1:503-506.
    [28] Wang G F, Lin Q Z, Ma P Y. Heat transfer anslysis of swiss-roll combustor forventilation air methane. Asia-Pacific power and Energy Engineering Conference.2009,1-4.
    [29]何贤钊,谢红占,李永玲等.内置多孔介质Swiss-roll燃烧器的启动和贫燃特性.中国科学技术大学学报.2010,40:374-379.
    [30] Krishnamurthy N, Blasiak W, Lugnet A. Development of high temperature air andoxyfuel combustion technologies for minimized CO2and NOx emissions inindustrial heating. The Jiont International Conference on “sustainable Energy andEnviroment (SEE)”.2004, Thailand.
    [31] Weber R et al. Technical report F40/y/8. Ijmuiden,1993.
    [32] Mancini M, Weber R, Bollettini U. Predicting NOx emission of a burner operatedin flameless oxidation mode. Proceedings of the combustion Institute.2002,29:1155-1163.
    [33] Mancini M, Schw ppe P, Weber R et al. On mathematical modelling of flamelesscombustion. Combustion and Flame.2007,150:54-59.
    [34] Cavigiolo A, Gallbiati M A, Effuggi A et al. MILD combustion in alaboratory-scale apparatus. Combustion Science and Technology.2003,175:1347-1367.
    [35] Galbiati M A, Cavigiolo A, Effuggi A et al. MILD combustion for fuel-NOxreduction. Combustion Science and Technology.2004,176:1035-1054.
    [36] Derudi M, Villani A, Rota R. Mild combustion of industrial hydrogen-containingByproducts. Ind.Eng.Chem.Res.2007,46:6806-6811.
    [37] Derudi M, Villani A, Rota R. Sustainability of mild combustion ofhydrogen-containing hybrid fuels. Proceedings of the Combustion Institute.2007,31:3393-3400.
    [38] Effuggi A, Gelosa D, Derudi M et al. Mild combustion of methane-derivedmixtures: natural gas and biogas. Combustion Science and Technology.2008,180:481-493.
    [39] Orsino S, Weber R, Bolletini U. Numerical similation of combustion of natural gaswith high temperature air. Combustion Science and Technology.2001,170:1-34.
    [40] Gupta A K. Flame charteristic and challenges with high tempreature aircombustion. Proceedings of2000International Joint Power Generation Conference.Florida,2000.
    [41] Rahbar S H A. AFRC spring meeting. Kingston,1994.
    [42] De Joannon M, Cavaliere A, Faravelli T et al. Analysis of process parameters forsteady operations in methane mild combustion technology. Combustion and Flame,2005,30:2605-2612
    [43] Sabia P, De Joannon M, Fierro S et al. Hydrogen-enriched methane MILDcombustion in a well stirred reactor. Experimental Thermal and Fluid Science.2007,31:469-475.
    [44] De Joannon M, Matarazzo A, Sabia P et al. MILD combustion in homogeneouscharge diffusion iginition (HCDI) regime. Proceedings of the Combustion Institute.2007,31:3409-3416.
    [45] De Joannon M, Sabia P, Sorrentino G et al. Numerical study of mild combustion inhot diluted diffusion ignition (HDDI) regime. Proceedings of the CombustionInstitute.2009,32:3147-3154.
    [46] De Joannon M, Sorrentino G, Cavaliere A. MILD combustion in diffusioncontrolled regimes of Hot Diluted Fuel. Combustion and Flame.2012,159:1832-1839.
    [47] Sorrentino G, Scarpa D, Cavaliere A. Transient inception of MILD combustion inhot diluted diffusion ignition (HDDI) regime: A numerical study. Proceedings ofthe Combustion Institute.2012.
    [48] Li P F, Dally B B, Mi J C et al. MILD oxy-combustion of gaseous fuels in alaboratory-scale furnace. Combustion and Flame.2013,160:933-946.
    [49] Szeg G G,Dally B B, Nathan G J. Operational characteristics of a parallel jetMILD combustion burner system. Combustion and Flame.2009,156:429-438.
    [50] Szeg G G,Dally B B, Nathan G J. Scaling of NOx emissions from alaboratory-scale MILD combustion furnace. Combustion and Flame.2008,154:281-295.
    [51] Szeg G G,Dally B B, Nathan G J. Performance Characteristics of a20Kw MILDcombustion furnace.6thAsia-Pacific Conference on Combustion. Japan,2007.
    [52]李宇红,祁海鹰,苑皎等.预热温度影响甲烷高温空气燃烧特性的数值分析.工程热物理学报.2001,22:257-260
    [53]祁海鹰,李宇宏,由长福等.高温空气燃烧技术的国际动态发展.工业加热.2003,1:1-7
    [54]王力军,蔡九菊,邹宗树.高温空气燃烧回流混合模型研究.包头钢铁学院院报.2001,20:210-213
    [55]王力军,蔡九菊,邹宗树等.燃气射流对高温空气燃烧室内影响的数值研究.东北大学学报.2003,24:276-279
    [56]王爱华,蔡九菊,谢国威.高温空气燃烧炉内燃烧特性的数值研究.中国冶金.2008,18:45-48
    [57]朱彤,吴家正,冯良.高温空气低燃气浓度燃烧过程的数值模拟研究.工程热物理学报.2005,26:276-279.
    [58]朱尚龙,陈丽,朱彤.矩形空气喷口长宽比对高温空气燃烧NOx排放的影响.工业炉.2005,27:4-8
    [59]王关晴,程乐鸣,骆仲泱等.高温空气燃烧技术的燃烧特性的研究进展.动力工程.2007,27:81-89.
    [60] Krishnamurthy N,Blasiak W, Lugent A. Development of high temperature air andoxy-fuel combustion technology for minimized CO2and NOx emissions inIndustrial Heating. The Jiont International Conference on“Sustainable Energy andEnvironment (SEE)”2004, Thailand.
    [61] Krishnamurthy N,Paul P J, Blasiak W. Studies on low-intensity oxy-fuel burner.Proceedings of the Combustion Institute.2009,32:3139-3146
    [62] Yang W H, Blasiak. Mathematical modeling of NO emissions fromhigh-temperature air combustion with nitrous oxide mechanism. Fuel ProcessingTechnology.2005,86:943-957.
    [63] Yang W H, Blasiak. Flame entrainments induced by a turbulent reacting jet usinghigh temperature and oxygen deficient oxidizers. Energy and Fuels.2005,19:1473-1483.
    [64] Yang W H, Blasiak W. Numerical study of fuel temperature influence on single gasjet combustion in highly preheated and oxygen deficient air. Energy.2005,30:385-398.
    [65] Wall T, Liu YH, Spero C et al. An overview on oxyfuel coal combustion-state ofthe art research and technology development. Chemical Engineering Research andDesign.2009,87:1003-1016.
    [66] Mancarella S, Sully A, Derudi M et al. Chemical and thermal effects of CO2addition in fuel-rich premixed ethylene flames. Chemical Engineering Transactions.2007,11:1-6.
    [67] Yin C, Rosendahl L A, K r S K. Chemistry and radiation in oxy-fuel combustion:A computational fluid dynamics modeling study. Fuel.2011,2519-2529.
    [68] Bhadraiah K, Raghavan V. A numerical study of the effect of radial confinement onthe characteristics of laminar co-flow methane-oxygen diffusion flames.Proceedings of the Institution of Mechanical Engineers, Part C: Journal ofMechanical Engineering Science.2011,225:1213-1228.
    [69] Park J, Hwang D J, Choi J G et al. Chemical effects of CO2addition to oxidizerand fuel streams on flame structure in H2-O2counterflow diffusion flames.International Journal of Energy Research.2003,27:1205-1220.
    [70] Park J, Park J S, Kim H P et al. No emission behavior in oxy-fuel combustionrecirculated with carbon dioxide. Energy&Fuels.2007,21:121-129.
    [71] Guo H, Galizzi C, Escudié D. Effects of CO2/N2/Ar addition on liftoff of a laminarCH4/air diffusion flame. Proceeding of Combustion Institute Canadian SectionSpring Technical Meeting.2009, May11-13.
    [72]冯耀勋,赵黛青,贾明生等.富氧空气/甲烷对流扩散火焰的实验研究.湛江海洋大学学报.2006,26:71-75
    [73]赵黛青,杨浩林,鲁冠军等.甲烷/富氧扩散火焰燃烧区域的分层特性研究.工程热物理学报.2006,27:131-134
    [74]杨浩林,赵黛青,鲁冠军. CO2稀释燃料对富氧扩散燃烧中NOx生成的抑制作用.热能动力工程.2006,21:43-47.
    [75]胡周海,冯良,杨琳等.富氧燃烧及其热力学特性.工业炉.2009,31:9-14
    [76]高强,文进,邓臻禄.富氧燃烧温度场特性的研究.2011年全国玻璃科学技术年会.2001
    [77]李洪宇,王华.低氧燃烧与富氧燃烧的性能比较分析.工业加热.2003,5:9-12
    [78]彭世尼,黄蓉,黄山等.过剩空气系数与富氧燃烧对理论燃烧温度影响的数值计算.能源技术.2007,28:17-18
    [79]贾鹏程.气体燃料高温富氧燃烧特性的研究.北京交通大学.硕士论文。2012
    [80] Hottel H C, Williams G C. Kinetics studies in stirred reactors: combustion ofcarbon monoxide and propane. Tenth Symposium (International) on Combustion.1965,111-121.
    [81] Howard J B, Williams G C, Fine D H. Kinetics of carbon monoxide oxidation inpostflame gases. Pollutant Formation and Destruction in Flames.1972,975-986.
    [82] Lyon R K, Hardy J E, Von Holt W. Oxidation kinetics of wet CO in traceconcentration. Combustion and Flame.1985,61:79-86.
    [83] Yetter R A, Dryer F L. Complications of one step kinetics for moist CO oxidation.Twenty-first (International) on Combustion.1986,749-760.
    [84] Marinov N M, Westbrook C K, Pitz W J. Detailed and global chemical kineticsmodel for hydrogen.8thInternational Symposium on Transport Properties,1995San Francisco.
    [85] Chung S H, Williams F A. Asymptotic structure and extinction of CO-H2diffusionflames with reduced kinetic mechanisms. Combustion and Flame.82:389-410.
    [86] Dryer F L, Glassman I. High-temperature oxidation of CO and CH4. PollutantFormation and Destruction in Flames.1973,987-1003.
    [87] Westbrook C K, Dryer F L. Simplified reaction mechanisms for oxidation ofhydrocarbon. Combustion Science and Technology.1981,27:31-44.
    [88] Jones W P, Lindstedt R P. Global Reaction Schemes for Hydrogen Combustion.Combustion and Flame.1988,73:233-249
    [89] Babushok V I, Dakdancha A N. Global kinetics parameters for high temperaturegas phase reactions. UDC541.127
    [90] Black D.L., Smith C.E. The application of CFD as a practical design tool forflameless combustors. Flameless Combustion Workshop, Lund, Sweden,June19-21,2005.
    [91] Parent A, Galletti C, Tognotti L. Effect of combustion model and kineticsmechanism on the MILD combustion ia an industrial burner fed with hydrogenenriched fuels. International Journal of Hydrogen Energy.2008,33:7553-7564.
    [92] Barlow R S, Frank J H. Proc.Comust.Inst.1998,27:1087-1095
    [93] Barlow R S, Frank J H, Karpetis A N et al. Piloted methane/air jet flames: scalarstructure and transport effects. Combustion and Flame.2005,143:433-449
    [94] Schneider Ch, Dreizler A, Janicka J. Flow field measurements of stable and locallyextinguishing hydrocarbon fuelled jet flames. Combustion and Flame.2003,185:190.
    [95] Kim J P, Schnell U, Scheffknecht G. comparison of different global reactionmechanisms for MILD combustion of natural gas. Combustion science andtechnology,2008,180(4):565-592
    [96] Andersen J, Jensen P A, Meyer K E et al. Experimental and numericalinvestigation of gas phase freeboard combustion. Part1: Main combustion process.Energy and Fuels.2009,23:5773-5782
    [97] Andersen J, Rusmussen C L, Giselsson T et al. Global combustion mechanisms foruse in CFD modeling under oxy-fuel conditions. Energy and Fuels.2009,23:1379-1389.
    [98] Frassoldati A, Cuoci T, Faravelli E et al. Simplified kinetic schemes for oxy-fuelcombustion.1stInternational Conference on Sustainable Fossil Fuels for FutureEnergy-S4FE2009.
    [99] Bibrzycki J, Poinsot T. Reduced chemical kinetic mechanisms for methanecombustion in O2/N2and O2/CO2atmosphere.
    [100]沈清.天然气在无焰燃烧下的燃烧化学反应特性分析.安徽化工.2009,35:34-61
    [101]董刚,黄鹰,陈义良.不同化学反应机理对甲烷射流湍流扩散火焰计算结果影响的研究.燃料化学学报.2000,28:49-54
    [102]董刚,王海峰,陈义良.甲烷/空气湍流射流扩散火焰的化学动力学模拟.燃烧科学与技术.2003,9:491-496.
    [103]刘赵淼,郝海舟,金艳梅等.化学反应速率模型对高温空气燃烧特性的影响.北京工业大学学报.2007,33:413-418
    [104]张海军,陈永辰,郭雪岩.燃烧模型对甲烷/空气预混数值模拟的影响.上海理工大学学报.2009,31:483-488.
    [105] http://www.me.berkeley.edu/gri_mech/version30/text30.htmlthe MILD combustion regime. Combustion Theory and Modelling.2010,14:747-774
    [107] Frassoldati A, Sharma P, Cuoci A et al. Kinetic and fluid dynamics modeling ofmethane/hydrogen jet flames in diluted coflow. Applied Thermal Engineering.2010,30:376-383
    [108] http://www.me.berkeley.edu/drm/
    [109] Rasmussen M S S, Glarborg P, stberg M et al. A study of benzene formation in alaminar flow reactor. Proceedings of the Combustion Institute.2002,29:1329-1336
    [110] Skreiberg, Kilpinen P, Glarborg P. Ammonia chemistry below1400K under fuelrich conditions in a flow reactor.2004, Combustion and Flame.136:501-518
    [111] Mendiara T, Glarborg P. Ammonia chemistry in oxy-fuel combustion of methane.Combustion and Flame.2009,156:1937-1949.
    [112] Glarborg P, Bentzen B L L. Chemical effects of a high CO2concentration inoxy-fuel combustion of methane. Energy and Fuels.2008,22:291-296.
    [113] Rasmussen M S S, Glarborg P, stberg M et al. Formation of polycyclic aromatichydrocarbons and soot in fuel rich oxidation of methane in a laminar flow reactor.Combustion and Flame.2004,136:91-128.
    [114] Glarborg P, Alzueta M U, Johansen K D et al. Kinetic modeling ofhydrocarbon/nitric oxide interactions in a flow reactor. Combustion and Flame.115:1-27
    [115] Mendiara T, Glarborg P. Reburn chemistry in oxy-fuel combustion of methane.Energy and Fuels.2009,23:3565-3572.
    [116] Dagaut P, Glarborg P, Alzueta M. The oxidation of hydrogen cyanide and relatedchemistry. Progress in Energy and Combustion Science.2008,34:1-46.
    [117] Rabitz H, Kramer M, Dacol D. Sensitivity analysis in chemical kinetics,Annu.Rev.Phys.Chem.1983,34:419-461.
    [118] Turányi T. Sensitivity nanlysis of complex kinetic system. Tools and application.J.Math.Chem.1990,5:203-248.
    [119] Turányi T. Reduction of large reaction mechanisms. New J.Chem.1990,14:795-803.
    [120] Vajda S, Valko P, Turányi T. Principal component analysis of kinetic models.Int.J.Chem.Kinet.1985,17:55-81
    [121] Vajda S, Turányi T. Principal component analysis for reducing theEdelson-Field-Noyes model of the Belousov-Zhabotinsky reaction. J.Phys.Chem.1986,90:1664-1670.
    [122] Wang H, Frenklach M. Detailed reduction of reaction mechanisms for flamemodeling. Combustion and Flame.1991,87:365-370.
    [123] Valorani M, Creta F, Goussis D A et al. An automatic procedure for thesimplification of chemical kinetic mechanisms baesd on CSP. Combustion andFlame.2006,146:29-51.
    [124] Valorani M, Creta F, Donato F et al. Skeletal mechanism generation and analysisfor n-heptane with CSP. Proc.Combust.Inst.2007,31:483-490.
    [125] Prager J, Najm H N, Valorani M et al. Goussis skeletal mechanism generation withCSP and validation for premixed n-heptane flames. Proc.Combust. Inst.2009,32:509-517.
    [126] L v s T, Nilsson D, Mauss F. Automatic reduction procedure for chemicalmechanisms applied to premixed methane/air flame. Proc.Combust.Inst.2000,28:1809-1815.
    [127] L v s T, Amnéus P, Mauss F et al. Comparison of automatic reduction proceduresfor ignition chemistry. Proc.Combust.Inst.2002,29:1387-1393.
    [128] L v s T. Automatic generation of skeletal mechanisms for ignition combustionbased on level of importance analysis. Combustion and Flame.2009,156:1348-1358.
    [129] Sun W T, Chen Z, Gou X L, Ju Y G. A path flux analysis method for the reductionof detailed chemical kinetic mechanisms. Combustion and Flame.2010,157:1298-1307.
    [130] Maas U. Efficient calculation of intrinsic low dimensional manifolds for thesimplification of chemical kinetics. Comput.Visual.Sci.1997,1:69-81
    [131] Lu L, Lantz S R, Ren Z. Computaional efficient implementation of combustionchemistry in parallel PDF calculation.2007, Cornell University Report FDA07-02
    [132] Singer M A, Pope S B, Najm H N. Modeling unsteady reacting flow withoperator-splitting and ISAT. Combustion and Flame.2006147,150-162.
    [133] Singer M A, Pope S B, Najm H N. Operator-splitting with ISAT to model reactingflow with detailed chemistry. Combustion Theory and Modelling.2004,10(2),199-217.
    [134] Pope S B. Computationally efficient implementation of combustion chemistryusing in situ adaptive tabulation. Combustion Theory and Modelling.1997,1,44-63.
    [135] Christo F C,Dally B B. Application of transport approach for modeling MILDCombustion.15thAustralasian Fluid Mechanics Conference. Sydney, Australia.
    [136] Kim S H, Huh K Y, Dally B B. Conditional moment closure modeling of turbulentnon-premixed combustion in diluted hot coflow. Proceedings of the CombustionInstitute.2005,30:751-757.
    [137] Vicquelin B, Fiorina B,Gicquel O et al. Large eddy simulation of MILDcombustion. LES Cost.2007,1-4.
    [138] Ihme M,See Y C. LES flamelet modeling of a three-stream MILD combustor:analysis of flame sensitivity to scalar inflow conditions. Proceedings of theCombustion Institute.2010
    [139] FLUENT6.3User’s Guide,2006. Fluent,Inc., Lebanon,NH
    [140] ANSYS CFX Documentation,2009. ANSYS, Inc.
    [141] Falcitelli M, Pasini S, Tognotti L. Modelling practical combustion systems andpredicting NOx emissions with an integrated CFD based approach. Computers andChemical Engineering.2002,26:1171-1183.
    [142] Galletti C, Parenete A, Tognotti L. Numerical and experimental investigation of amild combustion burner. Combustion and Flame.2007,151:649-664.
    [143] Medwell P R, Kalt P A M, Dally B B. Reaction zone weakening effects under hotand diluted oxidant stream. Combustion Science and Technology.2009,181:937-953.
    [144] Murer S,Pesenti B, Lynaert P. Simulation of Flameless combustion of natural gasin a laboratory scale furnace. Turkish J.Eng.Env.Sci.2006,30:135-143.
    [145] Christo F C,Dally B B. Modeling turbulent reacting jets issuing into a hot anddiluted coflow. Combustion and Flame.2005,142:117-129.
    [146] Mi J C, Li P F, Dally B B et al. Importance of initial momentum rate and air-fuelpremixing on moderate or intense low oxygen dilution (MILD) combustion in arecuperative furnace. Energy and Fuel.2009,23:5349-5356.
    [147] Schaffel N, Mancini M, Szlek A et al. Mathmatical modeling of MILD combustionof pulverized coal. Combustion and Flame.2009,156:1771-1784.
    [148] Drake M C,Blint R J. Thermal NOx in strtched laminar opposed-flow flame withCO/H2/N2flames. Combustion and Flame.1989,76:151-167.
    [149] Yang W H, Blasiak W. Numerical simulation of properties of a LPG flame withhigh-temperature air. International Journal of Thermal Science.2005,44:973-985.
    [150] Ellul C, Pourkashanian M, Williams A. Numerical investigations of blast furnacegas and coke oven gas in laminar counter flow preheated air diffusion flames.
    [151]丁翠娇,柳朝晖,王林等.蓄热式燃烧器优化设计数值模拟.工业炉.2010,32:1-5
    [152]刘坤,李先春,韩仁智.高温蓄热式加热炉内的数值模拟.鞍钢技术.2004,5:26-29
    [153]朱彤,张毅勐,刘敏飞等.低热值煤气高温空气燃烧数值模拟.同济大学学报.2002,30:932-937.
    [154]赵黛青,夏亮,何立波.低热值燃料稳定燃烧的研究现状与进展.世界科技研究与发展.2005,27:33-39.
    [155] Drake M C,Blint R J. Relative importance of nitric oxide formation mechanismsin laminar opposed-flow diffusion flames. Combustion and Flame.1991,83:185
    [156] Lu Q G, Zhu J G, Niu T Y et al. Pulverized coal combustion and NOx emissions inhigh temperature air from circulating fluidized bed. Fuel Processing Technology.2008,1186-1192.
    [157] Zhu J G, Lu Q G, Niu T Y et al. NO emission on pulverized coal combustion inhigh temperature air from circulating fluidized bed-An experimental study. FuelProcessing Technology.2009,90:664-670.
    [158]杨浩林.甲烷/富氧扩散火焰的燃烧特性和NOx排放的研究.中国科学技术大学博士学位论文。2006
    [159]袁恰祥.高温空气煤粉燃烧与氮氧化物排放.中国工程热物理研究所博士后研究工作报告.2006
    [160]刘丽霞.高温低氧燃烧过程及生成氮氧化物浓度场的数值模拟.内蒙古科技大学硕士学位论文.
    [161]朱彤,朱尚龙,曹甄俊等.高温空气燃烧NOx排放特性的试验研究.工程热物理学报.2006,27:894-896.
    [162]李晓萍,朱彤,吴家正.高温空气燃烧中燃气/空气速度比对NOx生成的影响.工业加热.2004,33:1-8
    [163]苍大强,关运泽,毛一心等.高温空气燃烧技术的超低NOx研究.燃烧科学与技术.2003,9:190-193
    [164]张福宝,罗永浩,段佳.高温空气燃烧若干因素对NOx生成量的影响.热能与动力工程.2006,21:115-118
    [165]张海,秦臻,毛健雄.通过煤粉浓缩预热低NOx燃烧器实现高温空气燃烧技术的研究.动力工程.2008,28:36-39.
    [166] Von Karman, T. über Laminare und Turbulente Reibung. Z. Angew. Math.Mech..,1,233─252,(transl: On laminar and turbulent friction. NACA Tech. Mem.1092(1946)).1921.
    [167] Zhao R, Liu H, Zhong X J. Modeling of NOx conversion during combustion underhigh CO2concentration using detailed chemical kinetics. Fuel Process. Technol.2011,92,939-945.
    [168] Li B, He Y, Li Z S et al. Measurements of NO concentration in NH3-dopedCH4+air flames using saturated laser-induced fluorescence and probe sampling.Combustion and Flame.2013,160:40-46
    [169] Tian Z Y, Li Y Y, Zhang L D et al. An experimental and kinetic modeling study ofpremixed NH3/CH4/O2/Ar flames at low pressure. Combustion and Flame.2009,156:1413-1426.
    [170] Weller A E, Rising B W, Boiarski A A et al. Experimental evaluation of firingpulverized coal in a CO2/O2atmosphere. Argonne National Laboratory.1985,ANL/CNSV-TM-168.
    [171] Wang C S, Berry G F, Chang K C et al. Combustion of pulverized coal using wastecarbon dioxide and oxygen. Combust. Flame.1988,72(3),301-310.
    [172] Abele A R, Kindt G S, Glark W D et al. An experimental program to test thefeasibility of obtaining normal performance from combustion using oxygen andrecycled gas instead of air. Argonne National Laboratory.1987,ANL/CNSV-TM-204, DE89-002383.
    [173] Mine T, Marumoto T, Kiyama K et al. Development of an advanced oxy-fuelcombustion technology with flue gas recirculation system, new types of burner andcharacteristics of mill performance. The2ndoxyfuel combustion conference.Queensland, Australia,2011.
    [174] Hwang D J, Park J, Oh C B et al. Numerical study on NO formation in CH4-O2-N2diffusion flame diluted with CO2. Int.J.Energ.Res.2005,29(2),107-120.
    [175] Nishioka M, Nakawaga S, Ishikawa Y et al. NO emission characteristics ofmethane-air double flame. Combust. Flame.1994,98,127-138.
    [176] Pengfei Li, Jianchun Mi, Bassam B. Dally, et al. Premixed MILD Combustion of aSingle Jet Burner in a Laboratory-scale Furnace. Energy&Fuels.2011,25(7),2782–2793.
    [177] Jianchun Mi, Pengfei Li, Chuguang Zheng. Impact of Injection Conditions onFlame Characteristics from a Parallel Multi-Jet Burner. Energy,2011,36(11),6583–6595.
    [178] Dally B B, Karpetis A N, Barlow R S. Structure of turbulent non-premixed jetflames in a diluted hot coflow. Proceedings of the Combustion Institute.2002,29:1147-1154
    [179] Gran I R, Magnussen B F. A numerical study of a bluff-body stabilized diffusionflame. Part1:Influence of turbulence modeling and boundary conditions.Combustion Science and Technology.1996,119:171-190.
    [180] Gran I R, Magnussen B F. A numerical study of a bluff-body stabilized diffusionflame. Part2:Influence of turbulence modeling and finite rate chemistry.Combustion science and technology.1996,119:191-217.
    [181] Gran I R, Melaan M C, Magnussen B F. Numerical simulation of local extinctioneffect in turbulent combustor flows of methane and air. Proceedings of theCombustion Institute.1994,25:1283-1291.
    [182] Rose J W, Cooper J R. Technical data on fuel. Scottish academic press, Edinburgh.1977
    [183]徐明厚.燃烧理论与应用.华中科技大学研究生课程体系教材,2004.
    [184] Marinov N M, Westbrook C K, Pitz W J. Detailed and global chemical kineticsmodel for hydrogen. In Chan, S H (Ed.), Transport Phenomena in Combustion,Taylor&Francis.1996, Washington DC, pp.118-129.
    [185] Kuo K K. Principles of Combustion. John Wiley&Sons.1986, New York.
    [186] Mouna L. Implementation of Law’s19species methane reduced mechanism inFLUENT. UTSR Workshop, Clemson, South Carolina.2008.
    [187] Kjadman L, Brink A, Hupa M. Micro mixing time in the eddy dissipation concept.Combustion Science and Technology.2000,154:207-227.
    [188] Bilger R W, Starner S H, Kee R J. On reduced mechanisms for methane-aircombustion in non-premixed flames. Combustion and Flame.1990,80:135-149.
    [189] Sung C J, Law C K,Chen J Y. An augmented reduced mechanism for methaneoxidation with comprehensive global parametric validation. Twenty-SeventhSymposium (International) on Combustiom, The Combustion Institute.1998,295-304
    [190] Aglave R. CFD simulation of combustion using automatically reduced reactionmechanisms: a case for diesel engine. Dissertation for P.H.D degree. Carola,University of Heidelberg.
    [191] Abdellatif B, Mohammed A, Houssine A et al. CH4/NOx reduced mechanismsused for modeling premixed combustion. Energy and Power Energineering.2012,4:264-273.
    [192] Montgomery C J, Swensen D A, Harding T V et al. A computational problemsolving enviroment for creating and testing reduced chemical kinetic mechanisms.Advances in Engineering Software.2002,33:59-70.
    [193] Montgomery C J, Cremer M A, Chen J Y et al. Reduced chemical kineticmechanisms for hydrocarbon fuels. Journal of Propulsion and Power.2002,18:192-198.
    [194] Cremer M A, Montgomery C J, Wang D H et al. Development and implementationof reduced chemistry for CFD modeling seletive noncatalytic reduction.Proceedings of the Combustion Institute.2000,28:2427-2434.
    [195] Lu T, Law C K. On the applicability of directed relation graphs to the reduction ofreaction mechanisms. Combustion and Flame.2006,146:472-483.
    [196] Lu T, Law C K. A directed relation graph method for mechanism reduction.Proc.Combust.Inst.2005,30:1333-1341.
    [197] Lu T, Law C K. Liner time reduction of large kinetic mechanisms with directedrelation graph:n-heptane and iso-octane. Combustion and Flame.2006,144:24-36.
    [198] Niemeyer K E, Sung C J, Raju M. Skeletal mechanism generation for surrogatefuels using directed relation graph with error propagation and sensitivity analysis.Combustion and Flame.2010,157:1760-1770.
    [199] Niemeyer K E. Skeletal mechanism generation for surrogate fuels. Thesis formaster degree. Case Westren Reserve University.2010
    [200] Maktal J. Implementation of reduced mechanisms in complex chemically reactingflows. Thesis for master degree. Case Western Reserve University.2010.
    [201] Zheng X L, Lu T, Law C K. Experimental counterflow ignition temprature andreaction mechanisms of1,3-butadiene. Proceedings of the Combustion Institute.2007,31:367-375.
    [202] Kee R J, Rupley F M, Miller J A. A sandia report No. SAND89-8009B; SandiaNational Laboratories: Albuquerque, NM,1989.
    [203] Kee R J, Dixon-Lewis G, Warnatz J et al. A sandia report No. SAND86-8246;Sandia National Laboratories: Albuquerque, NM,1994.
    [204] Lutz, E.; Kee, R. J.; Joseph, F, G. et al. A sandia report No. SAND96-8423; SandiaNational Laboratories: Livermore, CA,1997.
    [205] Lu T F, Law C K. A criterion based on computational singular perturbation for theidentification of quasi steady state species: A reduced mechanism for methaneoxidation with NO chemistry. Combustion and Flame.2008,154:761-774.
    [206] Lamnaouer M. Implementation of Law’s19species methane reduced mechanismin FLUENT. USTR Workshop, Clemson, South Carolina,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700