用户名: 密码: 验证码:
轿车轮胎操纵稳定性匹配研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
怎样根据整车性能的需要生产各种合适的轮胎和怎样为设计车型选配合适的轮胎分别是轮胎制造商和整车设计厂商非常关心的问题。但是,现阶段对于轮胎生产和轮胎的匹配是分开的,轮胎生产厂商评价和生产轮胎只是针对轮胎本身,没有和整车性能紧密联系;而整车设计单位在设计车辆时也只能被动的选择轮胎,不能在设计之初,就根据车型定位和轮胎特性选配合适的轮胎。所以,在这种情况下,本文需要解决两个问题,即:指导轮胎厂商根据整车性能需要生产各种合适的轮胎;整车设计厂商根据车型定位和轮胎特性匹配合适的轮胎(本文主要针对C级轿车)。
     轮胎操纵稳定性的评价是轮胎和整车性能的匹配首先遇到的问题,显然要完成上述任务,首先要能够建立一套针对轮胎的有效的整车操纵稳定性评价体系。本文要建立的是一套针对车型定位和轮胎特性的操稳评价方法。在建立评价体系后,我们还需要研究轮胎特性对操稳影响的一般规律。研究的目的一方面是让轮胎厂清楚什么样的轮胎特性符合车辆操稳性能的要求;另一方面,为整车设计厂家提供选配轮胎的参考,知道哪种轮胎特性符合自己的车型定位。第三方面就是进一步发现并提取对轮胎特性较敏感的操稳客观评价指标,从而优化上面提出的评价方法。在此基础上,完成轮胎操稳匹配的研究,本文主要由以下内容组成:
     一.通过主客观相关性分析,初步建立轮胎操稳客观评价体系;然后对操纵稳定性客观试验及其评价指标进行了动力学分析;最后结合两部分内容,并且根据车型设计定位方式,对操稳各指标进行了分类,用客观指标根据车型定位来描述驾驶员主观感受的好坏。
     二.对整车进行Carsim建模,用Carsim和UniTire Model联合仿真,验模正确后,进行轮胎特性对轿车操稳影响的仿真及理论研究,其中包括改变前轴轮胎力学特性对整车操稳的影响,改变后轴轮胎力学特性对整车操稳的影响,同时改变前后轴轮胎力学特性对整车操稳的影响,并且在最后将轮胎力学特性对整车操稳的影响进行了归纳。
     三.归纳了各轮胎力学参数对操稳客观指标影响的灵敏度,进一步优化并建立了针对轮胎特性的操稳评价方法,进而得到了轮胎各项力学特性和车型定位的关系图,从而实现了根据车型定位匹配轮胎的目的。
     四.对目标车辆的轮胎操纵稳定性匹配进行了说明,为目标车辆匹配了适合其车型定位的轮胎,并通过相应的对比分析实现了对轮胎匹配理论研究的验证。
     在本文的研究过程中,作者采用了正交优化、回归分析以及SVM等方法,并且提出了根据车型定位进行轮胎操纵稳定性评价的方法,研究了轮胎特性对整车操稳的影响,最后初步完成了轮胎操纵稳定性匹配的研究。
How do us produce appropriate tires according to the performance of vehicles and how do us match the appropriate tires by the design type of vehicles is the tire manufacturers and the vehicles designers very concerned question respectively. But, the producting of tires and the matching of tires is Separation on the present stage, the tire producters assess and product tires only aim at the tire itself, they have not related closely with the performance of vehicles. Moreover, the vehicles designers choice tires passively when they design the vehicles, they can not be able to match appropriate tires at the beginning of the designing by the basis type localization of vehicles and the characteristic of tires. Therefore, this article needs to solve two problems:to instruct the tire manufacturers produce appropriate tires according to the performance of vehicles; The vehicle designers match appropriate tires according to the localization of vehicles and the characteristic of tires (this article mainly aims at C level passenger vehicle).
     Math on the tires and vehicles meets the first question is the assessment of the tire handling and stability. Complete the above task, we should be able to establish a effective assessment system of the tire handling and stability firstly. We will establish an assessment system of vehicle handling and stability by the localization of vehicles and the characteristic of tires. After we establish the assessment system, then we need to reseach how the tire characteristic influence vehicle handling and stability. The goal of the research has three reasons:first,let the tire manufacturers Clarify what characteristic of the tires is conform to the vehicles; On the other hand, Provide reference for the vehicle designers how to match tires, and know that which kind characteristic of the tires does conform to the localization of the vehicles. The third aspect is further to discover and withdraw the sensitive objective assessment standard to the characteristic of the tire, on this basis, complete matching of the tire handling stability, this paper consists of the following elements:
     Ⅰ. Correlation between subjective and objective analysis by the initial establishment of objective evaluation system of the tire handling stability; and then on the handling and stability test and evaluation of objective indicators of the kinetic analysis; Finally, two parts, and positioning under the vehicle design, stability of operation. The indicators were classified according to vehicle positioning using objective indicators to describe the subjective feelings of good or bad driver.
     II. Model of the vehicle to Carsim with carsim and UniTire Model co-simulation, model testing correctly, the tire characteristics of the cars handling stability of the simulation and theoretical research, including changes in the mechanical properties of the front axle tires of the vehicle controllability and stability change the mechanical properties of the rear axle tires of the vehicle handling stability, while changing the mechanical properties of the rear axle tires of the vehicle controllability and stability, and mechanical properties of the tire in the final operating stability of the vehicle were summarized.
     III. Summarizes the mechanical parameters of the tires on the controllability and stability of the sensitivity of objective indicators, further optimization and the establishment of controllability and stability properties for tire evaluation methods, and further to the mechanical properties of tire and vehicle positioning diagrams, enabling the under car Type the purpose of positioning the tire match.
     IV. On the target vehicle's tires match the handling and stability are described, for the target vehicle matching the vehicle positioning for its tires, and realized through the comparative analysis of the corresponding tire match for the verification theory.
     In the course of this study, the authors used the orthogonal optimization methods such as regression analysis and SVM, and the proposed positioning of the tire under the handling and stability evaluation method to study the characteristics of the tire on the vehicle controllability and stability of the impact, and finally completed a preliminary match of the tire handling and stability.
引文
[1]郭孔辉.汽车操纵动力学[M].长春:吉林科学技术社,1991.96-182.
    [2]庄继德.汽车轮胎学[M].北京:北京理工大学出版社,1996.1-25.
    [3]卢荡.轮胎动载侧偏特性建模及对汽车操纵稳定性影响[D].长春:吉林大学,2003.
    [4]米奇克M.汽车动力学(C卷).北京:人民交通出版社,1997
    [5]丁海涛.轮胎附着极限下汽车稳定性控制的仿真研究[D].长春:吉林大学,2003.
    [6]赖姆帕尔耶尔森.汽车底盘基础,北京:科学普及出版社,1992.
    [7]Cooper G E. et al, The Use of Pilot Rating in the Assessment of Aircraft Handling Qualities, NASA TND-5153,1969.
    [8]Wet David H and Dimarco Richard J, Conelation an Ebaluation of Driver/Vehicle Directional Handling Date,SAE paper 78001.
    [9]Bergman Walter, Relationships of Certain Vehicle Handling Parameters to Subjective Ratings of Ease of Vehicle Control,Ford Motor CO,Technical Report,197.
    [10]HARADA Hiroshi,Stability Criteria and Assessment of Steering Maneuver in "Driver-Vehicle" System,JSME International Journal, Series C,1994 37(1).
    [11]Xiao-pei Lu, Dang Lu,Konghui Guo, Fling Tseng, Camber Effect on Tire Force and Moment Properties,Proc. JSAE International Symposium on Advanced Vehicle Control,Hiroshima,2002, P920-682.
    [12]Peng X D, Xie Y B,Guo K H, A New Method for Determining Tire Traction on Ice,SAE001640,200.
    [13]Lee Willard-Michelin, "Self-Supporting Tire Performance Criteria and Testing", SAE paper 980257,199.
    [14]K. H. Guo,Dang Lu,L Ren,A Unified non-steady non-linear tyre model under complex wheel motion inputs including extreme operating conditions, JSAE REVIEW,2001,Vol22, Iss 4, pp396-40.
    [15]Konghui Guo, Shuang Wang, Haitao Ding,Xiaohui Zhou. Research on the ElasticCoupling Characteristic of an Unsymmetrical Rubber Bushing of Rear Suspension. CMESM 2006:74-78.
    [16]Yoshiroh Tateishi et al.The Effects of the Tire Camber Angle on Vehicle Controlability and Stability[C]. SAE Paper No 860245,1986.
    [17]Joseph Nemeth. Front Wheel Suspension for Buses and Coaches[C]. SAE Paper No.872266,1987.
    [18]Thomas D Gillespie. Fundamental of Vehicle Dynamics[M]. Society of Automotive Engineer Inc,2002.
    [19]姬水旺.支持向量机训练算法综述[J].微机发展,2004.
    [20]Joonhong Park,Dennis A Guenther, Gary J.Heydinger. Kinematic Suspension Modelapplicable to Dynamic Full Vehicle Simulation[C]. SAE Paper,2003-01-0859.
    [21]Stefano J Cassara, David C Anderson and J Magnus Olofsson.A Multi-Level Approachfor the Validation of a Tractor-Semitrailer Ride and Handling Model[C]. SAE Paper,2004-01-2694.
    [22]Prashaut S Rao, David Roccaforte, Ron Campbell. Developing an ADAMS Model of Anautomobile Using Test Data[C]. SAE Paper,2002-01-1567.
    [23]Lotus Engineering. K&C PCFs USER GUIDE,2004.
    [24]4 wheel station SPMM MANUAL. Anthony Best Dynamics Ltd,2004.
    [25]Jeff Warfford and Norman Frey. A Facility for the Measurement of Heavy Truck Chassis and Suspension Kinematics and Compliances [C]. SAE Paper No.2004-01-2609.
    [26]MTS Kinematic And Compliance Deflection Measurement System Provides. MTS company,2007.11.
    [27]Lanchester F W. Some Problems Peculiar to the Design of an Automobile[J]. Proceedings of theInstitution of Automobile Engineers,1908, vol.2:187-257.
    [28]Lanchester F W. Automobile Steering Gear Problems and Mechanism[J]. Proceedings of theInstitution of Automobile Engineers,1928, vol.22:726-741.
    [29]Michael W Sayers. Vehicle Models for RTS Applications[J]. Vehicle System Dynamics,1999 Vol (32):421-438.
    [30]Potts GR. Application of Holography to the Study of Tire Vibrations[J]. Tire Science and Technology, TSTCA,1973,1(3).
    [31]Potts GR. Tire Vibration Studies:the State of the Art [J]. Tire Science and Technology, TSTCA,1975,3(3).
    [32]Potts GR, Bell CA, Roy TK. Tire Vibrations [J].Tire Science and Technology, TSTCA,1977,5(4).
    [33]Kung LE, Soedel W. Natural Frequencies and Mode Shapes of an Automotive Tire withInterpretation and Classification Using 3-D Computer Graphics[J]. Journal of Sound and Vibration,1985,102(3).
    [34]吴海东.不平路面中频激励轮胎动态特性研究[D].长春:吉林大学,2007.
    [35]金凌鸽.统一轮胎模型与动力学软件的连接[D].长春:吉林大学,2006.
    [36]管迪华,吴卫东.轮胎动特性试验模态分析[J].汽车工程,1995,(6).
    [37]米奇克M.汽车动力学[M].(c卷).北京:人民交通出版社,1997.10-30.
    [38]张海鹏.载重汽车车轮定位检测方法的研究[D].长春:吉林大学,2009.
    [39]郭孔辉.用于汽车全工况动力学分析的非稳态轮胎六分力模型[R].长春:吉林工业大学,1997.
    [40]李俊浩.基于刷子模型的不平路面轮胎高频动态特性研究[D].长春:吉林大学,2006.
    [41]王蠡.K&C悬架试验台设计及操纵稳定性分析[D].长春吉林大学,2007.
    [42]管欣.汽车整车集成与性能匹配的虚拟样机技术[C].汽车底盘集成匹配设计高级研修班讲义.2007.
    [43]郭孔辉,丁海涛,宗长富.人-车闭环操纵性评价与优化的研究进展[J].机械工程学报,2003(10):27-35.
    [44]郭孔辉.驾驶员-汽车闭环系统主动安全性的综合评价指标和优化设计[J].汽车技术,1993(4).
    [45]郭孔辉.汽车操纵性能的闭环动力学仿真评价与控制[R].福特一中国研究与发展基金资助项目研究报告,1997.
    [46]郭孔辉.用于汽车全工况动力学分析的非稳态轮胎六分力模型[R].[汽车动态模拟国家重点实验室内部报告].长春:吉林工业大学,1997.
    [47]郭孔辉.轮胎侧偏特性的一般理论模型[J].汽车工程,1990,12(3).
    [48]郭孔辉,刘青.稳态条件下用于车辆动力学分析的轮胎模型[J].汽车工程,98022,1998,20(3).
    [49]宗长富,郭孔辉.汽车操纵稳定性的主观评价[J].汽车工程,2000年第五期,P290-292.
    [50]宗长富,郭孔辉.汽车操纵稳定性的客观定量评价指标[J].吉林工业大学自然科学学报,2000,30(1).
    [51]宗长富,郭孔辉.汽车操纵稳定性的研究与评价[J].汽车技术,2000年第六期,P6-11.
    [52]宗长富.开发型驾驶模拟器逼真度改进与汽车操纵稳定性综台评价研究va[D].长春,吉林工业大学,1998.
    [53]GB 6323-94.汽车操纵稳定性试验方法.
    [54]掘内申一郎.驾驶员模型及在操纵性评价中的应用[J].自动车技术,199145(3)
    [55]E.J.豪格.机械系统的计算机辅助运动学和动力学[M].(第一卷基本方法).北京:高等教育出版社,1995.142-161.
    [56]孙胜利.时变垂直载荷及时变滑移率下轮胎纵滑特性研究[D].长春:吉林大学,2005.
    [57]任雷.复杂工况下的轮胎非稳态力学特性模型[D].长春:吉林工业大学,2000.
    [58]Bradley J and Allen R F,The behavior of rubber-tyred wheels, Automotive Engineer,1931,21.
    [59]曹宇.轮胎操纵稳定性客观评价体系的初步研究[D].长春:吉林大学,2008.
    [60]郭宽友.汽车操纵稳定性的影响因素及评价方法研究[J].重庆工学院学报,2007.
    [61]石川浩二郎.轮胎特性与汽车操纵稳定性[J].轻型汽车技术,1995(6)总106.
    [62]赵又群.汽车操纵性评价指标的研究[J].汽车工程,2001001.
    [63]陈振日.对汽车操纵稳定性现行评价指标的分析与建议[J].汽车技术,2006.
    [64]那晓翔.乘用车操纵稳定性客观对标体系研究[D].长春:吉林大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700