用户名: 密码: 验证码:
纳米结构钒氧化物和钒青铜的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钒的氧化物和钒青铜(Vanadium Bronze)在催化、传感器、光电开关、锂电池、超导、生物无机材料等诸多领域有着广泛的用途或潜在的应用前景。五氧化二钒(V_2O_5)、二氧化钒(VO_2)和含钠钒青铜是相对研究较多的材料,同其体相结构材料相比,纳米结构材料在能量的转化和存储等方面展现更优异的性能。到目前为止,已经发展多种方法制备V_2O_5、VO_2、含单一阳离子的钒酸盐和钒青铜材料的一维和二维纳米结构,相比之下,三维纳米结构的钒氧化物和钒青铜材料的研究报道不多。因此,探讨新的合成方法制备新晶相结构、新形貌的钒氧化物和钒青铜三维纳米结构材料具有重要的意义。
     本文主要研究以水热和溶剂热合成方法制备钒氧化物和钒青铜三维纳米结构,利用扫描电子显微镜(SEM)、透射电镜(TEM)、红外光谱(FT-IR)、X-射线衍射(XRD)、氮气吸附、紫外漫反射光谱、热重-差热分析(TG-DTA)和X-射线光电子能谱等表对所制备的材料进行表征,并对材料进行了紫外光照射降解若丹明B(RhB)和锂电池正极材料的充放电性能测试。主要内容有以下三部分:
     1)发展了一种新方法合成具有Paramontroseite矿物结构的VO_2,并以之为前驱体制备了不同表面形貌的V_2O_5空心球。合成体系以偏钒酸铵作为钒源,草酸作为还原剂,四氢呋喃作为溶剂通过溶剂热方法制备产物。通过控制溶剂热反应时间和反应原料配比控制产物形貌。反应6小时得到直径在3微米左右的核壳结构的Paramontroseite VO_2微球。而反应24小时得到直径在1~6微米间的由纳米片辐射组装的Paramontroseite VO_2微球。通过焙烧,分别得到不同表面形貌的V_2O_5空心球和微球。空心球的形成可能由于热解过程中释放内含物有机物而形成的。不同形貌的V_2O_5在紫外光照射下催化降解若丹明B染料(RhB),发现光催化活性与空心球表面形貌有关,片混乱堆积的五氧化二钒空心球展现最高的活性,可能由于在混乱堆积的片间发生多重反射和散射增强了紫外光吸收。
     2)通过前驱体分解法原位制备V_2O_5纳米结构。在水热条件下,二甲基亚砜(DMSO)和偏钒酸铵反应生成玫瑰花状的NH_4V_3(OH)_6(SO_4)_2晶体,颗粒的平均尺寸大约在20微米。焙烧后,原位形成的单晶纳米颗粒作为构筑块,形成玫瑰花状的V_2O_5纳米结构。该纳米结构V_2O_5作为锂电池的正极材料展现较高的初始放电容量(449.5 mAhg~(-1))。通过选择酸的种类,用乳酸和硝酸可分别形成球状的NH_4V_3(OH)_6(SO_4)_2)和玫瑰花状的VO_2,其原因可能由于酸的不同络合能力和硝酸根的强氧化性影响了对偏钒酸铵的还原。
     3)以水热方法制备了铵/钠双阳离子插层的钒青铜三维纳米结构。利用草酸作为还原剂,偏钒酸铵和硝酸钠为原料,通过简单的水热方法制备了单晶纳米片组成的三维花状钒青铜纳米结构。通过电平衡,Na~+和NH_4~+插层形成形成(NH_4)_(0.83)Na_(0.43)V_4O_(10)·0.26H_2O结构,延长水热处理时间,可转化为稳定的新晶相结构(NH_4)_(0.26)Na_(0.14)V_2O_5,形貌为单晶纳米片组成的花状纳米结构。双阳离子(钠离子和铵根离子)是诱导形成新结晶结构钒青铜的因素,而单一的钠离子和铵根离子存在的条件下,可分别得到VO_2和(NH_4)_2V_8O_(20)·3H_2O。合成中加入Li~+能够形成同晶相结构的(NH_4)_(0.44)Li_(0.01)V_2O_5,加入K~+可诱导形成类似晶相结构的(NH_4)_(0.17)K_(0.47)V_2O_5。
     分别以锂、钠、钾铵钒青铜(NH_4)_(0.26)Na_(0.14)V_2O_5,(NH_4)_(0.83)Na_(0.43)V_4O_(10)·0.26H_2O,(NH_4)_(0.44)Li_(0.01)V_2O_5和(NH_4)_(0.17)K_(0.47)V_2O_(5.0)作为锂电池的正极材料,进行充放电性能测试。(NH_4)_(0.26)Na_(0.14)V_2O_5在2.0~3.4V展现较高的放电比容量和良好的循环稳定性,初始放电容量为196 mAhg~(-1)。第30次的放电容量可达到200 mAhg~(-1)。(NH_4)_(0.83)Na_(0.43)V_4O_(10)·0.26H_2O也展现良好的循环稳定性。2.0~3.4 V条件下,初始放电容量达到165.5 mAhg~(-1),循环49次后放电容量达到157.4 mAhg~(-1),容量衰减4.9%。在1.5~3.4 V条件下,初始放电容量可达到225.5 mAhg~(-1),循环50次后为220.8 mAhg~(-1)。这种双阳离子插层方法可拓展制备碱土金属钒青铜纳米结构。
Vanadium oxides and bronzes have wide application or potential in catalysis, superconductor,lithium batteries,actuators,sensors,catalysis,switch and bio-inorganic materials.V_2O_5,VO_2 and sodium vanadium bronze were widely investigated.Compared to their bulk counterpart,nano-structured vanadium oxides have significantly improved their performances in devices for energy storage and sensing.Until now,many methods have been developed to prepare low dimensional nano-structures of VO_2,V_2O_5,vanadate and vanadium bronzes(containing single type of cations),while little attention was paid to the preparation of tri-dimensional vanadium oxides and vanadium bronzes nano-architectures.Therefore,it is necessary and significant to explore new method to prepare crystalline vanadium oxides with novel morphology and tri-dimensional vanadium bronzes nano-architectures.
     In this dissertation,3D vanadium oxides and vanadium bronzes nano-architectures have been prepared by simple hydrothermal or solvothermal method.Various methods,including Scanning Electron Microscope(SEM), Transmission Electron Microscope(TEM),Fourier Transform Infrared spectroscopy (FT-IR)、X-Ray Powder Diffraction(XRD),N_2 adsorption-desorption,UV-Vis diffuse reflection spectroscopy,Thermo Gravimetric-Differential Thermal Analysis (TG-DTA) and X-ray Photoelectron Spectroscopy(XPS),were used to characterize the prepared materials.The as-synthesized V_2O_5 was tested as photocatalyst to degrade Rhodamine B(RhB) under the irradiation of UV light.The discharge-charge properties of the vanadium bronzes as cathode materials in lithium batteries were tested.The main content of the thesis is composed of the following three parts:
     1) A new method was developed to synthesize Paramontroseite VO_2.The synthesis was performed by a solvo-thermal route with NH_4VO_3 as vanadium source, oxalic acid as reducing agent and THF as solvent.The morphologies of the products can be adjusted via variation of the solvothermal time,as well as the proportion of the reactants.Core/shell structured Paramontroseite VO_2 microspheres were obtained after 6 h of reaction.While Paramontroseite VO_2 microspheres consisted of radially oriented platelets were obtained after 24 h of reaction.With the Paramontroseite VO_2 microspheres as precursors,after calcinations,hollow V_2O_5 microspheres were obtained with different morphologies,respectively.The formation of hollow spheres maybe due to release of organic inclusion in the process of calcinations.V_2O_5 spheres with different morphologies were used to degrade Rhodamine B under the radialization of UV light.The results showed that the photocatalytic activity was related to the surface morphology of V_2O_5 microspheres.Hollow V_2O_5 microspheres consisting of randomly packed platelets exhibited the highest photocatalytic activity, and it might be attributed to enhanced UV light absorbance via multiple reflection and diffraction due to the randomly packed platelets on the surface of the V_2O_5 microspheres.
     2) A method was proposed to prepare V_2O_5 nano-structure via in situ decomposition of the precursors.Under the hydrothermal condition,rose-like crystalline particles of NH_4V_3(OH)_6(SO_4)_2 with the average size of 20μm were synthesized via the reaction between dimethyl sulfoxide(DMSO) and NH_4VO_3.After calcination,rose-like V_2O_5 micro-architectures were formed by the in situ generated single-crystalline V_2O_5 nanoparticles as building blocks.When used as the cathode material in lithium battery,the rose-like V_2O_5 nano-architecture exhibited high initial discharge capacity of 449.5 mAhg~(-1).Sphere-like NH_4V_3(OH)_6(SO_4)_2 and rose-like VO_2 could be prepared via addition of lactic and nitric acid,respectively.The main difference may be attributed to different complex ability and strong oxidation of NO_3~-under acidic conditions,which affected the reducing of ammonium vanadate.
     3) Tri-dimensional ammonium/sodium dual-cation intercalated vanadium bronze nano-architectures were prepared by hydrothermal method.Tri-dimensional flower-like vanadium bronze nano-architectures consisted of single crystalline nano-platelet was prepared with the reducing agent oxalic acid,NH_4V_4O_(10) and NaNO_3 via hydrothermal reaction.Na~+ and NH_4~+ was intercalated via electrical balance,resulting in the formation of metastable(NH_4)_(0.83)Na_(0.43)V_4O_(10)·xH_2O.It was converted to stable new crystalline structured(NH_4)_(0.26)Na_(0.14)V_2O_5 after prolonging the reaction time.The morphologies were flower-like nano-architectures consisted of single crystalline nano-platelets.The presence of two kinds of different cations is proposed to give rise to the novel crystalline vanadium bronze,as VO_2 and (NH_4)_2V_8O_(20)·3H_2O was obtained in the presence of single NH_4~+ or Na~+,respectively. The introduction of Li~+ could result in the formation of same crystalline (NH_4)_(0.44)Li_(0.01)V_2O_5.The introduction of K~+ could induce to form similar crystalline (NH_4)_(0.17)K_(0.47)V_2O_5.
     The lithium,sodium and potassium ammonium vanadium bronzes,such as (NH_4)_(0.26)Na_(0.14)V_2O_5,(NH_4)_(0.83)Na_(0.43)V_4O_(10)·0.26H_2O,(NH_4)_(0.44)Li_(0.01)V_2O_5 and (NH_4)_(0.17)K_(0.47)V_2O_(5.0) were tested in lithium battery as cathode materials. (NH_4)_(0.26)Na_(0.14)V_2O_5 exhibited high capacity and excellent cycle stability between 2.0~3.4 V.The initial discharge capacity was 196 mAhg~(-1),while the 30~(th) discharge capacity was as high as 202 mAhg~(-1).(NH_4)_(0.83)Na_(0.43)V_4O_(10)·0.26H_2O also exhibited good cycle stability.The initial discharge capacity was 165.5 mAhg~(-1) in the range of 2.0~3.4V.The discharge capacity was 157.4 mAhg~(-1) after 49~(th) cycle,corresponding to 95.1%of the electrode capacity of initial cycle.The initial and final(50~(th)) discharge capacity for(NH_4)_(0.83)Na_(0.43)V_4O_(10)·0.26H_2O was 225.5 and 220.8 mAhg~(-1), corresponding to about 95.1%of the initial electrode capacity.
     This facile bi-cation intercalation method can be extended to prepare alkaline earth vanadium bronzes nano-architectures.
引文
[1] Winter M, Jiirgen O B, Spahr M E, et al, Insertion electrode materials for rechargeable lithium batteries, Adv Mater, 1998, 10: 725-763
    
    [2] Ramana C V, Smith R J, Hussain O M, Surface analysis of pulsed laser-deposited V_2O_5 thin films and their lithium intercalated products studied by Raman spectroscopy, Surf. Interface Anal, 2005,37:406-411
    [3] Weckhuysen B M, Daphne E K, Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis, Catal Today, 2003, 7: 25-46
    [4] Allimi B S, Aindow M, Alpay S P, Thickness dependence of electronic phase transitions in epitaxial V_2O_3 films on (0001) LiTaO_3, Appl Phys Lett, 2008, 93: 112109-1-3
    [5] Su D S, Schlogl R, Thermal decomposition of divanadium pentoxide V_2O_5: Towards a nanocrystalline V_2O_3 phase, Catal lett, 2002, 83: 115-119
    [6] Zheng C M, Zhang X M, He S, Preparation and characterization of spherical V_2O_3 nanopowder, J Solid State Chem, 2003, 170: 221-226
    [7] Pinna N, Antonietti M, Niederberger M,A novel nonaqueous route to V_2O_3 and Nb_2O_5 nanocrystals colloids and surfaces A: physicochem eng aspects, 2004,250: 211-213
    [8] Sediri F, Gharbi N, Hydrothermal synthesis and characterization of V_2O_3, Mat Sci Eng B, 2005, 123, 136-138
    [9] Zhang K F, Sun X Z, Lou G W, et al, A new method for preparing V_2O_3 nanopowder, Mater Lett, 2005, 59:2729-2731
    [10] Yang Z H , Cai P J, Chen LY, et al, A facile route to VN and V_2O_3 nanocrystals from single precursor NH_4VO_3, J Alloy Compd, 2006, 420 229-232
    
    [11] Oka Y, Yao T, Yamamoto N, Powder X-ray crystal-structure of VO_2(A), J Solid State Chem,1990,86: 116-124.
    
    [12] Leroux C, Nihoul G, Van Tendeloo G, From VO_2(B) to VO_2(R): Theoretical structures of VO_2 polymorphs and in situ electron microscopy, Phys Rev B, 1998, 57: 5111-5121
    [13] Gui Z, Fan R, Chen X H, et al,A new metastable phase of needle-like nanocrystalline VO_2·H_2O, J Solid State Chem, 2001, 157: 250-254
    [14] Wei M D, Sugihara H, Honma I, A new metastable phase of crystallized V_2O_4 center dot 0.25 H_2O nanowires: Synthesis and electrochemical, Adv Mater, 2005, 17: 2964-2969
    [15] Trombe J C, Szajwaj O, Salles P, Synthesis of new mixed valence compounds MV~(5+)V_2~(4+)O (M = NH_4, K): Crystal structure of NH_4V_3O_7 and electrical properties of KV_3O_7, J Solid State Chem, 2007, 180: 2102-2109
    [16] Howard T, Hughes J M, Crystal chemistry of the natural vanadium bronzes, Am Mineral, 1990, 75, 508-521
    [17] Wadsley A D, Crystal chemistry of non-stoichiometric pentavalent vanadium oxides: Crystal structure of Li_xV_3O_8,Acta Crystallogaphica,1957,10:261-267
    [18]Andersson S,The crystal structure of a new silver vanadium oxide bronze,Ag_(0.32)V_2O_5.Acta Chemica Scandinavica,1965,19:1371-1375
    [19]Enjalbert R,Galy J,A refinement of the structure of V_2O_5,Acta Crystallographica C 1986,42:1467-1469
    [20]Wadsley A D,T he crystal structure of Na_(2-x)V_6O_(15),Acta Crystallographica,1955,8:695-701
    [21]Mumme W G,Watts J A,The crystal stmcture of reduced cesium vanadate,CsV_2O_5,J Solid State Chem,3:1971,319-322
    [22]Konnert J A,Evans H T,J Crystal structure and crystal chemistry of melanovanadite,a natural vanadium bronze,Am Mineral,1987,72:637-644
    [23]Galy J,Hardy A,Structure cristalline bronze de vanadium lithium LiV_2O_5,Acta Crystallographic,1965,19:432-435
    [24]Enjalbert R,Galy J,A refinement of the structure of V_2O_5,Acta Crystallographica C 1986,42:1467-1469
    [25]Wadsley A D,The crystal structure of Na_(2-x)V_6O_(15),Acta Crystallographica,1955,8:695-701
    [26]Oka Y,Tamada O,Yao T,Synthesis and crystal structure of o-Zn_(0.25) V_2O_5·H_2O with a Novel Type of V_2O_5 Layer,J.Solid State Chem.1996,126:65-73
    [27]Oka Y,Yao T,Yamamoto N,Hydrothermal synthesis and crystal structure of a new barium vanadium bronze Ba_(1+x)V_8O_(21) with a tunnel structure,J Solid State Chem,2000,150:330-335
    [28]Morcrette M,Rozier P,Dupont L,et al,A reversible copper extrusion-insertion electrode for rechargeable Li batteries,Nature Mater,2003,2:755-761
    [29]Huang F,Fu Z W,Qin Q z,A novel Li_2Ag_(0.5)V_2O_5 composite film cathode for all-solid-state lithium batteries,Electrochem Commun,2003,5:262-266
    [30]Millet P,Gasqueres C,Galy J,A new vanadium(molybdenum) mixed bronze family with a tunnel structure:the phases A_x(Mo,V)_8O_(21)(A=K,Rb,Cs),J Solid State Chem,2002,163,210-217
    [31]Liu P,Zhang J G,J.Tumer A,Potassium manganese-vanadium oxide cathodes prepared by hydrothermal synthesis,J Power Sources,2001,92:204-211
    [32]Kawakita J,Shimizu R,Katayama Y,et al,Preparation and lithium insertion behaviour of Sr~Ⅱ substituted δ-Sry Ag_(0.75-2y)V_2O_5,Solid State Ionics 1999,123:181-188
    [33]Matias P M,Pessoa J C,Duarte M T,Tetrapotassium disodium decavana-date(Ⅴ)decahydrate,Acta Cryst,2000,C56:e75-e76
    [34]Maciejewska G,Nosek M,Glowiak T,et al.Catalytical decomposition of L-glutamic acid and L-glutamine with vanadium species,Electronic spectra of ammonium-sodium oligovanadates isolated from the system[NaVO_3(VOSO_4)-Glu(Gln)].crystal structure of Na_3(NH_4)_3(V_(10)O_(28))·12H_2O,Polyhedron,2003,22:1415-1423
    [35]Charlie C,Torardi C,Miao R,New battery cathode materials:synthesis characterization and electrochemical performance of Mi_(1-x)V_3O_(8-y)F_z·nH_3O (M = NH_4, K), Chem Mater, 2002, 14: 4430-4433
    [36] Cavalleri A, Toth C, Siders C W, et al, Femtosecond structural dynamics in VO_2 during an ultrafast solid-solid phase transition, Phys Rev Lett, 2001, 87: 237401-1-4
    [37] Irizawa A, Higashiya A, Tsunekawa M, et al, Metal-insulator transition in V_6O_(13) probed by photoemission and optical studies, J Electron Spectrosc, 2005, 144-147: 345-347
    [38] Schwingenschlogl U, Eyert V, Eckern U, The metal-insulator transition of the Magneli phase V_4O_7: implications for V_2O_3, Europhys Lett, 83, 1-7
    
    [39] Lim H S, Kwak D H, Lee D Y, et al. UV-Driven reversible switching of a roselike vanadium oxide film between superhydrophobicity and superhydrophilicity, J Am Chem Soc,2007, 129: 4128-4129
    [40] Liu J, Wang X, Peng Q, et al, Vanadium pentoxide nanobelts: highly selective and stable ethanol sensor materials, Adv Mater, 2005, 17: 764-767
    [41] Liang X S, Zhong T G, Quan B F, et al, Solid-state potentiometric SO_2 sensor combining Nasicon with V_2O_5-doped TiO_2 electrode, Sensor Actuat B, 2008, 134 : 25-30
    [42] Maciak E, Opilski Z, Urbanczyk M, Pd/V_2O_5 fiber optic hydrogen gas sensor, J De Physique, 2005,129: 137-141
    [43] Yamauchi T, Ueda Y, Mori N, Pressure-induced superconductivity in β-Na_(0.33)V_2O_5 beyond charge ordering, Phys Rev Lett, 2002, 89: 057002-1-4
    [44] Dong F, Heinbuch S, Xie Y, et al, C=C Bond Cleavage on neutral VO_3(V_2O_5)_n clusters, J. Am. Chem. Soc. 2009, 131: 1057-1066
    [45] Wang Y Q, Zhang Z J, Zhu Y, et al, Nanostructured VO_2 photocatalysts for hydrogen production, ACS Nano, 2008, 2(7): 1492-1496
    [46] Martin A, Bentrup U, Wolf G U, The effect of alkali metal promotion on vanadium-containing catalysts in the vapour phase oxidation of methyl aromatics to the corresponding aldehydes, Applied Catalysis A: General, 2002, 227: 131-142
    [47] Rosowski F, Storck S, Bauer S, et al, Catalyst useful for preparing aldehydes, carboxylic acids and anhydrides, comprises silver vanadium, WO2005092496-A1
    [48] Winter M, Besenhard J O, Spahr M E, et al, Insertion electrode materials for rechargeable lithium batteries. Adv Mater, 1998, 10: 725-763
    [49] Leger C, Bach S, Pereira-Ramos J P, The sol-gel chromium-modified V_6O_(13) as a cathodic material for lithium batteries, J Solid State Electrochem, 2007, 11:71-76
    [50] 李景虹,先进电池材料,化学工业出版社, 2006, 273-274
    [51] Yang G, Wang G, Hou W, Microwave solid-state synthesis of LiV_3O_8 as cathode material for lithium batteries, J Phys Chem B, 2005, 109: 11186-11196
    [52] Kawakita J, Mori H , Miura T, et al, Formation process and structural characteristics of layered hydrogen vanadium, Solid State Ionics, 2000, 131: 229-235
    [53] Whittingham M S, Lithium batteries and cathode materials, Chem Rev, 2004, 104 (10): 4271-4302
    [54] Wei Y J, Ryub C W, Kim K B, Cu-doped V_2O_5 as a high-energy density cathode material for rechargeable lithium batteries, J Alloy Compd, 2008,459: L13-L17
    [55] Wei Y J, Ryu C W, Kim K B, Improvement in electrochemical performance of V_2O_5 by Cu doping, J Power Sources, 165 (2007) 386-392
    [56] Park H K, Manganese vanadium oxides as cathodes for lithium batteries, Solid State Ionics, 2004, 176: 307-312
    [57] Chu Y Q, Qin Q Z, Fabrication and characterization of silver-VO composite thin films as lithium-ion insertion materials, Chem Mater, 2002,14 (7): 3152-3157
    [58] Murugana A V, Kwonb C W, Campetb G, et al, Electrochemical lithium insertion into a poly(3,4-ethylenedioxythiophene)PEDOT/V_2O_5 nanocomposite, J Power Sources, 2002, 105, 1-5
    [59] Vadivel M A, Electrochemical properties of microwave irradiated synthesis of poly(3,4-ethylenedioxythiophene)/V2O5 nanocomposites as cathode materials for rechargeable lithium batteries, Electrochimica Acta, 2005, 50: 4627-4636
    [60] Hu Y S, Liu X, Müller J O, et al, Synthesis and electrode performance of nanostructured V_2O_5 by using a carbon tube-in-tube as a nanoreactor and an efficient mixed- conducting network, Angew Chem Int Ed, 2009,48: 210 -214
    [61] Bruce P G, Scrosati B, Tarascon J M, Nanomaterials for rechargeable lithium batteries, Angew Chem Int Ed, 2008,47: 2-19
    [62] Ragupathy P, Shivakumara S, Vasan H N, et al, Preparation of nanostrip V_2O_5 by the polyol method and its electrochemical characterization as cathode material for rechargeable lithium batteries, J Phys Chem C, 2008, 112 (42): 16700-16707
    [63] Cao A M, Hu J S, Liang H P, et al, Self-assembled vanadium pentoxide (V_2O_5) hollow microspheres from nanorods and their application in lithium-ion batteries, Angew Chem Int Ed, 2005,44: 4391-4395
    [64] Chou S L, Wang J Z, Sun J Z, et al, High capacity, safety, and enhanced cyclability of lithium metal battery using a V_2O_5 nanomaterial cathode and room temperature ionic liquid electrolyte, Chem Mater, 2008,20 (22): 7044-7051
    [65] Chan C K, Peng H L, Twesten R D, et al, Fast, completely reversible Li insertion in vanadium pentoxide nanoribbons, Nano Lett, 2007, 7: 490-495
    [66] Lee K, Wang Y, Cao G Z, Dependence of electrochemical properties of vanadium oxide films on their nano- and microstructures, J Phys Chem B, 2005, 109 (35): 16700-16704
    [67] Lu Y L, Wei M, Wang Z Q, et al, Structure and properties of layered manganese-vanadium oxide as a cathode material for lithium secondary batteries, Electrochem Commun, 2004, 6 : 672-677
    [68] Li H X, Jiao L F, Yuan H T, et al, High-performance Cu-doped vanadium oxide (Cu_xV_2O_5) prepared by rapid precipitation method for rechargeable batteries,Mater Lett, 2007, 61:101-104
    [69] Leger C, Bach S, Soudan P, Evaluation of the sol-gel mixed oxide Cr_(0.11)V_2O_(5.16) as a rechargeable positive electrode working in the potential range 3.8/1.5 V vs. Li, Solid State Ionics, 2005, 176 : 1365-1369
    [70] Leger C, Bach S, Pereira-Ramos J P, The sol-gel chromium-modified V_6O_(13) as a cathodic material for lithium batteries, J Solid State Electrochem, 2007, 11: 71-76
    [71] Gregoire G, Soudan P, Farcy J, et al, Electrochemical lithium insertion in the hexagonal cesium vanadium bronze Cs_(0.35)V_2O_5, J Power Sources, 1999, .81-82: 612-615
    
    [72] Millet M, Farcy J, Pereira-Ramos J P, A new hydrated sodium vanadium bronze as Li insertion compound, Solid State Ionics, 1998, 112 : 319-327
    [73] Xie A L, Ma C A, Wang L B, et al, Li_6V_(10)O_(28), A novel cathode material for Li-ion battery, Electrochimica Acta, 2007, 52: 2945-2949
    [74] Yang G, Wang G, Hou W H, Microwave solid-state synthesis of LiV_3O_8 as cathode material for lithium batteries, J Phys Chem B 2005,109: 11186-11196
    [75] Torardi C C, Miao C R, New battery cathode materials: synthesis, characterization, and electrochemical prformance of electrochemical performance of M_(1-x)V_3O_8·nH_2O (M = NH4, K), Chem Mater, 2002, 14: 4430-4433
    [76] Zhang K F, Zhang G Q, Liu X, et al, Large scale hydrothermal synthesis and electrochemistry of ammonium vanadium bronze nanobelts, J Power Sources, 2006, 157: 528-532
    [77] Wu X C, Tao Y R, Dong L, et al, Preparation of VO_2 nanowires and their electric characterization, Mater Res Bull, 2005,40: 315-321
    [78] Hagrman D, Zubieta J, Warren C J, et al, A new polymorph of VO_2 prepared by soft chemical methods, J Solid State Chem, 1998, 138: 178-182
    [79] Gui Z, Fan R, Chen X H, et al, A new metastable phase of needle-like nanocrystalline VO_2 center dot H_2O and phase transformation, J Solid State Chem, 2001, 157: 250-254
    [80] Kam K C, Cheetham A K, Thermochromic VO_2 nanorods and other vanadium oxides nanostructures, Mater Res Bull, 2006,41, 1015-1021
    [81] Liu J F, Li Q H, Wang T H, et al, Metastable vanadium dioxide nanobelts: Hydrothermal synthesis, electrical transport, and magnetic properties, Angew Chem Int Ed, 2004, 43: 5048-5052
    [82] Kannan A M, Manthiram A, Synthesis and electrochemical evaluation of high capacity nanostructured VO_2 cathodes, Solid State Ionics, 2003, 159: 265-271
    [83] Baudrin E, Sudant G, Larcher D, et al, Preparation of nanotextured VO_2[B] from vanadium oxide aerogels , Chem Mater, 2006, 18: 4396-4374
    [84] Guiton B S, Gu Q, Prieto A L, et al, Single-Crystalline vanadium dioxide nanowires with rectangular cross sections, J Am Chem Soc, 2005, 127, 498-500
    [85] Zhou F, Zhao X M, Xu H, et al, Hydrothermal synthesis of metastable VO_2 nanorods as cathode materials for lithium ion batteries, Chem Lett, 2006, 35: 1280-1281
    [86] Corr S A, Grossman M, Furman J D, et al, Controlled reduction of vanadium oxide nanoscrolls: crystal structure, morphology, and electrical properties, Chem Mater, 2008, 20 (20): 6396-6404
    [87] Kaper H, Willinger M G, Djerdj I, et al, IL-assisted synthesis of V_2O_5 nanocomposites and VO_2 nanosheets, J Mater Chem, 2008, 18: 5761-5769
    [88] Pinna N, Wild U, Urban J, et al, Divanadium pentoxide nanorods, Adv Mater, 2003, 15: 329-331
    [89] Liu J F, Wang X, Peng Q, et al, Vanadium pentoxide nanobelts: Highly selective and stable ethanol sensor materials, Adv Mater, 2005, 17: 764-767
    [90] Li B X, Xu Y, Rong G X, et al, Vanadium pentoxide nanobelts and nanorolls: From controllable synthesis to investigation of their electrochemical properties and photocatalytic activities, Nanotechnology, 2006, 17: 2560-2566
    [91] Li G C, Pang S P, Jiang L, et al, Environmentally friendly chemical route to vanadium oxide single-crystalline nanobelts as a cathode material for lithium-ion batteries, J Phys Chem B 2006,110:9383-9386
    [92] Chan C K, Peng H L, Twesten R D, et al, Fast, completely reversible Li insertion in vanadium pentoxide nanoribbons, Nano Lett, 2007, 7: 490-495
    [93] Gu G, Schmid M, Chiu P W, et al, V_2O_5 nanofibre sheet actuators, Nature Mater, 2003, 2: 316-319
    [94] Diaz-Guerra C, Piqueras J, Thermal deposition growth and luminescence properties of single-crystalline V_2O_5 elongated nanostructures, Cryst Growth Des, 2008, 8 (3): 1031-1034
    
    [95] Irais L, Vera-Robles A. C, Novel approach to vanadium oxide nanotubes by oxidation of V~(4+) species, J Phys Chem C, 2008, 112: 19930-19933
    [96] Takahashi K, Limmer S J, Wang Y, et al, Synthesis and electrochemical properties of single-crystal V_2O_5 nanorod arrays by template-based electrodeposition, J Phys Chem B 2004, 108: 9795-9800
    [97] Patrissi C J, Martin C R, Sol-gel-based template synthesis and Li-insertion rate performance of nanostructured vanadium pentoxide, J Electrochem Soc, 1999, 146: 3176-3180
    [98] Mao C J, Pan H C, Wu X C, et al, Sonochemical route for self-assembled V_2O_5 bundles with spindle-like morphology and their novel application in serum albumin sensing , J Phys Chem B,2006,110: 14709-14713
    [99] Zhou C W, Mai L Q, Liu Y L, et al, Synthesis and Field Emission Property of V_2O_5·nH_2O nanotube arrays, J Phys Chem C, 2007, 111: 8202-8205
    [100]Cao A M, Hu J S, Liang H P, et al, Self-assembled vanadium pentoxide (V_2O_5) hollow microspheres from nanorods and their application in lithium-ion batteries, Angew Chem Int Ed, 2005,44: 4391-4395
    
    [101]O'Dwyer C, Navas D, Lavayen V, et al, Nano-urchin: The formation and structure of high-density spherical clusters of vanadium oxide nanotubes, Chem Mater, 2006, 18: 3016-3022
    
    [102]Yu J G, Yu J C, Ho W K, et al, A simple and general method for the synthesis of multicomponent Na_2V_6O_(13)·3H_2O Single-Crystal nanobelts, J Am Chem Soc, 2004, 126 (11): 3422-3423
    [103]Zhou G T, Wang X C, Yu J C, Selected-Control synthesis of NaV_6O_(15) and Na_2V_6O_(16)·3H_2O single-crystalline nanowires, Crystal Growth & Design, 2005, 5 (3): 969-974
    [104]Yu J G, Yu J C, Large-scale in situ synthesis and characterization of ternary single-crystal NaV_6O_(15) nanoneedles, Mater Chem Phys, 2007, 104: 362-366
    
    [105] Wang N, Chen W, Mai L Q, et al, Selected-control hydrothermal synthesis and formation mechanism of 1D ammonium vanadate, J. Solid State Chem, 2008, 181: 652-657
    [106]Wu X C, Tao Y R, Lin D, et al, Synthesis and characterization of self-assembling (NH_4)_(0.5)V_2O_5 nanowires, J Mater Chem, 2004, 14: 901-904
    
    [107] Li G C, Chao K, Zhang C Q, et al, Synthesis of urchin-like VO_2 nanostructures composed of radially aligned nanobelts and their disassembly, Inorg Chem, 2009, 48:1168-1172
    [108]Dobley A, Ngala K, Yang S F, et al. Manganese vanadium oxide nanotubes: synthesis, characterization, and electrochemistry, Chem Mater, 2001, 13(11): 4382-4386
    [109]Inagaki M, Morishita T, Hirano M, et al, Synthesis of MnV_2O_6 under autogenous hydrothermal conditions and its anodic performance, Solid State Ionics, 2003, 156 : 275-282
    [110]Patridge C J, Jaye C, Zhang H S, et al, Synthesis, structural characterization, and electronic structure of single-crystalline Cu_xV_2O_5 nanowires, Inorg Chem, 2009,48: 3145-3152
    
    [111]Cushing B L, Kolesnichenko V, O'Connor C J, Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles, Chem Rev, 2004, 104: 3893-3946
    [112] Deng Z X, Wang C, Sun X M, et al, Structure-directing coordination template effect of ethylenediamine in formations of ZnS and ZnSe nanocrystallites via solvothermal route, Inorg Chem, 2002,41: 869-873
    [113] Zhang J, Sun L D, Yin J L, et al, Control of ZnO morphology via a simple solution route, Chem Mater, 2003, 14: 4172-4177
    [114]Yu H D, Wang D S, Han M Y, Top-down solid-phase fabrication of nanoporous cadmium oxide architectures, J Am Chem Soc, 2007, 129: 2333-2337
    [115] Jia Z Y, Tang Y W, Luo L J, Cryst Growth Des, Shape-controlled synthesis of single-crystalline CdCO_3 and corresponding porous CdO nanostructures, 2008, 8: 2116-2120
    [116]Cong H P, Yu S H, Shape Control of cobalt carbonate particles by a hydrothermal process in a mixed solvent: an efficient precursor to nanoporous cobalt oxide architectures and their sensing property, Cryst Growth Des, 2009, 9: 210-217
    [117] Zhao J Z, Tao Z L, Liang J, et al, Facile synthesis of nanoporous MnO_2 structures and their application in rechargeable Li-Ion batteries, Cryst Growth Des, 2008, 8: 2799-2805
    [118] Lou X W, Deng D, Lee J Y, Thermal formation of mesoporous single-crystal CO_3O_4 nano-needles and their lithium storage properties, J Mater Chem, 2008,18: 4397-4401
    [119] Trikalitis P N, Petkov V, Kanatzidis M G, Structure of redox intercalated (NH_4)_(0.5)V_2O_5·mH_2O xerogel using the pair distribution function technique, Chem Mater, 2003, 15: 3337-3342
    [1] Wang Y, Takahashi K, Lee K, et al, Nanostructured vanadium oxide electrodes for enhanced lithium-ion intercalation, Adv Funct Mater, 2006, 16: 1133-1144
    
    [2] Gu G., Schmid M, Chiu P W, et al, V_2O_5 nanofibre sheet actuators, Nature Mater, 2003, 2: 316-319
    [3] Liu J F, Wang X, Peng Q, et al, Vanadium pentoxide nanobelts: Highly selective and stable ethanol sensor materials, Adv Mater, 2005, 17: 764-767
    [4] Weckhuysen B M, Daphne E K, Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis, Catal Today, 2003,7: 25-46
    [5] Lim H S, Kwak D H, Lee D Y, et al. UV-Driven reversible switching of a roselike vanadium oxide film between superhydrophobicity and superhydrophilicity, J Am Chem Soc, 2007, 129:4128-4129
    [6] Wu X C, Tao Y R, Dong L, et al, Preparation of VO_2 nanowires and their electric characterization, Mater Res Bull, 2005,40: 3 15-321
    [7] Gui Z, Fan R, Chen X H, et al,A new metastable phase of needle-like nanocrystalline VO_2·H_2O, J Solid State Chem, 2001, 157: 250-254
    [8] Liu J F, Li Q H, Wang T H, et al, Metastable vanadium dioxide nanobelts: Hydrothermal synthesis, electrical transport, and magnetic properties, Angew Chem Int Ed, 2004, 43: 5048-5052
    [9] Hagrman D, Zubieta J, Warren C J, et al, A new polymorph of VO_2 prepared by soft chemical methods, J Solid State Chem, 1998, 138: 178-182
    [10] Gui Z, Fan R, Mo W Q, et al, Precursor morphology controlled formation of rutile VO_2 nanorods and their self-assembled structure, Chem Mater, 2002, 14 : 5053-5056
    
    [11] Kannan A M, Manthiram A, Synthesis and electrochemical evaluation of high capacity nanostructured VO_2 cathodes, Solid State Ionics, 2003, 159: 265-271
    
    [12] Zhou F, Zhao X M, Xu H, et al, Hydrothermal synthesis of metastable VO_2 nanorods as cathode materials for lithium ion batteries, Chem Lett, 2006, 35: 1280-1281
    [13] Kam K C, Cheetham A K, Thermochromic VO_2 nanorods and other vanadium oxides nanostructures, Mater Res Bull, 2006, 41, 1015-1021
    [14] Guiton B S, Gu Q, Prieto A L, et al, Single-Crystalline vanadium dioxide nanowires with rectangular cross sections, J Am Chem Soc, 2005, 127, 498-500
    [15] Baudrin E, Sudant G, Larcher D, et al, Preparation of nanotextured VO_2[B] from vanadium oxide aerogels , Chem Mater, 2006, 18 : 4396-4374
    [16] Wei M D, Sugihara H, Honma I, A new metastable phase of crystallized V_2O_4 center dot 0.25H_2O nanowires: Synthesis and electrochemical measurements, Adv Mater, 2005, 17: 2964-2969
    [17] Wu C. Z, Hu Z P, Wang W, et al, Synthetic paramontroseite VO_2 with good aqueous lithium-ion battery,Chem Commun, 2008, 3891-3893
    [18] Evans H T, Jr, Mrose M E, A crystal chemical study of montroseite and paramontroseite, Am Mineral, 1955,40:861-875
    [19] Lou X W, Wang Y, Yuan C L, et al, Template-free synthesis of SnO_2 hollow nanostructures with high lithium storage capacity, Adv Mater, 2006, 18: 2325-2329
    [20] Li B X, Xie Y, Jing M, et al, I112O3 hollow microspheres: Synthesis from designed In(OH)_3 precursors and applications in gas sensors and photocatalysis, Langmuir, 2006, 22: 9380-9385
    [21] Wang W W, Zhu Y J, Yang L X, ZnO-SnO_2 hollow spheres and hierarchical nanosheets: Hydrothermal preparation, formation mechanism, and photocatalytic properties, Adv Funct Mater, 2007,17: 59-64
    [22] Cheng G, Wang J M, Liu X W, et al, Self-assembly synthesis of single-crystalline tin oxide nanostructures by a poly(acrylic acid)-assisted solvothermal process, J Phys Chem B, 2006, 110: 16208-16211
    [23] Duan G T, Cai W P, Li Y, et al, Transferable ordered Ni hollow sphere arrays induced by electrodeposition on colloidal monolayer, J Phys Chem B, 2006,110: 7184-7188
    [24] Zhang J, Sun L D, Yin J L, et al, Control of ZnO morphology via a simple solution route, Chem Mater, 2003, 14: 4172-4177
    [25] Colton R J, Guzman A M, Rabalais J W, Electrochromism in some thin-film transition-metal oxides characterized by x-ray electron spectroscopy, J Appl Phys, 1978,49: 409-416
    [26] Gratzel M, Heterogenous Photochemical Electron Transfer, CRC Press, Baton Rouge, 1998,F1
    [27] Korsoi L, Dekeny I, Preparation and investigation of structural and photocatalytic properties of phosphate modified titanium dioxide, Colloids Surf A Physicochem Eng Asp, 2006, 280: 146-154
    [28] Li H X, Bian Z F, Zhu J, et al, Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity, J Am Chem Soc, 2007,129: 8406-8408
    [1] Wang Y, Cao G Z, Synthesis and enhanced intercalation properties of nanostructured vanadium oxides, Chem Mater, 2006, 18: 2787-2804
    
    [2] Pinna N, Wild U, Urban J, et al, Divanadium pentoxide nanorods, Adv Mater, 2003, 15: 329-331
    [3] Spahr M E, Bitterli P, Nesper R, et al, Redox-Active nanotubes of vanadium oxide, Angew Chem Int Ed, 1998, 37: 1263-1265
    [4] Mao C J, Pan H C, Wu X C, et al, Sonochemical route for self-assembled V_2O_5 bundles with spindle-like morphology and their novel application in serum albumin sensing, J Phys Chem B,2006, 110: 14709-14713
    [5] Li B X, Xu Y, Rong G X, Vanadium pentoxide nanobelts and nanorolls: from controllable synthesis to investigation of their electrochemical properties and photocatalytic activities , Nanotechnology, 2006, 17: 2560-2566
    [6] Li. G C, Pang S P, Jiang L, et al, Environmentally friendly chemical route to vanadium oxide single-crystalline nanobelts as a cathode material for lithium-ion batteries, J Phys Chem B, 2006,110:9383-9386
    [7] Chan C K, Peng H L, Twesten, R D, et al, Fast, completely reversible Li insertion in vanadium pentoxide nanoribbons, Nano Lett, 2007, 7: 490-495
    [8] Patrissi C J, Martin C R, Sol-gel-based template synthesis and Li-insertion rate performance of nanostructured vanadium pentoxide, J Electrochem Soc, 1999, 146: 3176-3180
    [9] Cao A M, Hu J S, Liang H P, et al, Self-assembled vanadium pentoxide (V_2O_5) hollow microspheres from nanorods and their application in lithium-ion batteries, Angew Chem Int Ed, 2005, 44: 4391-4395
    [10] Lim H S, Kwak D H, Lee D Y, et al, UV-Driven reversible switching of a roselike vanadium oxide film between superhydrophobicity and superhydrophilicity, J Am Chem Soc, 2007, 129: 4128-4129
    
    [11] O'Dwyer C, Navas D, Lavayen V, et al, Nano-urchin: the formation and structure of high-density spherical clusters of vanadium oxide nanotubes, Chem Mater, 2006, 18: 3016-3022
    
    [12] Yu H D, Wang D S, Han M Y, Top-down solid-phase fabrication of nanoporous cadmium oxide architectures, J Am Chem Soc, 2007, 129: 2333-2337
    [13] Jia Z Y, Tang Y W, Luo L J, Cryst Growth Des, Shape-controlled synthesis of single-crystalline CdCO_3 and corresponding porous CdO nanostructures, 2008, 8: 2116-2120
    [14] Cong H P, Yu S H, Shape Control of cobalt carbonate particles by a hydrothermal process in a mixed solvent: an efficient precursor to nanoporous cobalt oxide architectures and their sensing property,Cryst Growth Des,2009,9:210-217
    [15]Zhao J Z,Tao Z L,Liang J,et al,Facile synthesis of nanoporous MnO_2 structures and their application in rechargeable Li-ion batteries,Cryst Growth Des,2008,8:2799-2805
    [16]Lou X W,Deng D,Lee J Y,Thermal formation of mesoporous single-crystal Co_3O_4nano-needles and their lithium storage properties,J Mater Chem,2008,18:4397-4401
    [17]Kataoka S,Lee E,Tejedor-Tejedor M I,et al,Photocatalytic degradation of hydrogen sulfide and in situ FT-IR analysis of reaction products on surface of TiO_2,Appl Catal B:Enviromental,2005,61:159-163
    [18]Silversmit G,Depla D,Poelman H,et al,Determination of the V2p XPS binding energies for different vanadium oxidation states(V~(5+) to V~(0+)),J Electron Spectrosc Relat Phenorn,2004,135:167-175
    [19]Colton R J,Guzman A M,Rabalais J W,Electrochromism in some thin-film transition-metal oxides characterized by x-ray electron spectroscopy,J Appl Phys,1978,49:409-416
    [20]Ristic M,Music S,Orehovec Z,Thermal decomposition of synthetic ammonium jarosite,J Mol Struct,2005,744:295-300
    [21]Stoilova D,Georgive M,Marinova D,Infrared study of the vibrational behavior Of SO_4~(2-)guest ions matrix-isolated in metal(Ⅱ) chromates(Me=Ca,Sr,Ba),Vib Spectrosc,2005,39:46-49
    [22]Mohamed M M,Al-Esaimi M M,Characterization,adsorption and photocatalytic activity of vanadium-doped TiO_2 and sulfated TiO_2(rutile) catalysts:Degradation of methylene blue dye,J Mol Catal A Chem,2006,255:53-61
    [23]Arsene C,Barnes I,Becker K,et al,Formation of methane sulfinic acid in the gas-phase OH-radical initiated oxidation of dimethyl sulfoxide,Environ Sci Technol,2002,36:5155-5163
    [24]Carreon M A,Guliants V V,Local structure of nanoscopic materials:V_2O_5 nanorods and nanowires,Chem Mater,2002,14:2670-2675
    [25]Pinna N,Willinger M,Weiss K,et al,Local structure of nanoscopic materials:V_2O_5nanorods and nanowires,Nano Lett,2003,3:1131-1134
    [26]Cocciantelli J M,Doumerc J P,Pouchard M,Dependence of electrochemical properties of vanadium oxide films on their nano- and microstructures,Solid State Ionics,1995,78-143
    [27]Yamada H,Tagawa K,Komatsu M,et al,High power battery electrodes using nanoporous V_2O_5/carbon composites,J Phys Chem C 2007,111:8397-8402
    [28]陈秀仁,张怀有,田锡义,二甲基亚砜的性质和应用,辽宁化工,2000,29:31-33
    [1] Trombe J C, Szajwaj O, Salles P, Synthesis of new mixed valence compounds MV~(5+)V_2~(4+)O_7 (M = NH_4, K): Crystal structure of NH_4V_3O_7 and electrical properties of KV_3O_7, J Solid State Chem, 2007,180: 2102-2109
    
    [2] Gregoire G, Soudan P, Farcy J, Pereira-Ramos J P, Badot J C, Baffier N, Electrochemical lithium insertion in the hexagonal cesium vanadium bronze Cs_(0.35)V_2O_5, J Power Sources 1999,81:612-615
    [3] Itoh M, Yamauchi I, Tomokazu K, et al, Charge disproportionation and metal-insulator transition in the quasi-one-dimensional conductor β-Na_(0.33)V_2O_5: ~(23)Na NMR study of a single crystal, Phys Rev B 2006, 74: 054434-1-14
    [4] Martin A, Bentrup U, Wolf G U, The effect of alkali metal promotion on vanadium-containing catalysts in the vapour phase oxidation of methyl aromatics to the corresponding aldehydes, Appl Catal A-Gen, 2002,227, 131-142
    [5] Liu Y J, Cowen J A, Kaplan T A, et al, Investigation of the alkali-Metal vanadium oxide xerogel bronzes: A_xV_2O_5·nH_2O (A= K and Cs), Chem Mater, 1995, 7: 1616-1624
    [6] Laubach S, Schmidt P C, Thipen A F, et al, Theoretical and experimental determination of the electronic structure of V_2O_5, reduced V_2O_(5-X) and sodium intercalated NaV_2O_5, Phys Chem Chem Phys, 2007, 9: 2564-2576
    [7] Popovic Z V, Konstantinovic M J, Gajic R, et al, Optical properties of a-Na_xV_2O_5, Phys Rev B 2002, 65:184303-1-8
    [8] Iwanaga S, Marciniak M, Darling R B, et al, Thermopower and electrical conductivity of sodium-doped V_2O_5 thin films, J Appl Phys, 2007, 101: 123709-1-8
    [9] Hayashi T, Nakamura T, Kozuka T, et al, NMR study of the spin gap in the vanadium bronze eta-Na_(0.286)V_2O_5, J Magn Magn Mater, 2007, 310: 1224-1226
    
    [10] Millet M, Farcy J, Pereira-Ramos J P, et al, A new hydrated sodium vanadium bronze as Li insertion compound, Solid State Sci, 1998, 112, 319-327
    
    [11] Dai J X, Li S F Y, Cao Z Y, et al, A new form of vanadium oxide for use as a cathode material in lithium batteries, J Power Sources, 1998, 74: 40-45
    
    [12] Bruce P G, Scrosati B, Tarascon J M, Nanomaterials for rechargeable lithium batteries, Angew Chem Int Ed, 2008,47: 2-19
    [13] Lee K, Wang Y, Cao G Z, Dependence of electrochemical properties of vanadium oxide films on their nano- and microstructures, J Phys Chem B, 2005, 109 (35): 16700-16704
    [14] Ma H, Zhang S Y, Ji W Q, et al, α-CuV_2O_6 nanowires: hydrothermal synthesis and primary lithium battery application, J Am Chem Soc, 2008, 130: 5361-5367
    [15] Wei Y J, Ryu C W, Kim K B, Improvement in electrochemical performance of V_2O_5 by Cu doping, J Power Sources, 2007,165: 386-392
    [16] Park H K, Manganese vanadium oxides as cathodes for lithium batteries, Solid State Ionics, 2004, 176:307-312
    [17] Leger C, Bach S, Soudan P, Evaluation of the sol-gel mixed oxide Cr_(0.11)V_O_(5.16) as a rechargeable positive electrode working in the potential range 3.8/1.5 V vs. Li, Solid State Ionics, 2005, 176 : 1365-1369
    [18] Souza E, Lourenc A, Gorenstein O A, Structural, chemical and electrochemical analyses of Cu_xV_2O_5 bronzes thin films, Solid State Ionics, 2007, 178: 381-385
    
    [19] Kostikova G P, Korol'kov D V, Kostikov Y P, Valence states of lead and bismuth atoms in the high-temperature superconductor BaPb_(1-x)Bi_xO_3, Russ Chem Rev, 1997, 66: 281-300
    [20] Mendialdua J, Casanova R, Barbaux Y, XPS Studies of V_2O_5, V_6O_(13), VO_2 and V_2O_3, J Electron Spectrosc Relat Phenom, 1995, 71: 249-261
    [21] Silversmit G, Depla D, Poelman H, et al, Determination of the V2p XPS binding energies for different vanadium oxidation states (V_(5+) to V~(0+)), J Electron Spectrosc Relat Phenom, 2004, 135: 167-175
    [22] Bondarenka V, Martunas Z, Kaciulis S, et al, Sol-gel synthesis and XPS characterization of sodium-vanadium oxide bronze thin films, J Electron Spectrosc Relat Phenom, 2003, 131-132:99-103
    [23] Baddour-Hadjean R, Pereira-Ramos J P, Navone C, Raman microspectrometry study of electrochemical lithium intercalation into sputtered crystalline V_2O_5 thin films, Chem Mater, 2008, 20: 1916-1923
    [24] Wu Q H, Thipen A, Jaegermann W, XPS and UPS study of Na deposition on thin film V_2O_5 App Surf Sci, 2005, 252: 1801-1805
    [25] Nordlinder S, Nyholm L, Gustafsson T, et al, Lithium insertion into vanadium oxide nanotubes: Electrochemical and structural aspects, Chem Mater, 2006, 18: 495-503
    [26] Meisel A, Hallmeier K H, Szargan R, et al, Investigation of Soft-X-Ray emission and K-edge absorption-spectra of V_2O_5 and Li_xV_2O_5 electrodes, Phys Scripta, 1990,41: 513-516
    [27] Pohl M M, Radnik J, Schneider M, et al, Bimetallic PdAu-KOac/SiO_2 catalysts for vinyl acetate monomer (YAM) synthesis: insights into deactivation under industrial conditions, insights into deactivation under industrial conditions, J Catal, 2009, 262, 314-323
    [28] Reddy E P, Davydov L, Smirniotis P G, Characterization of titania loaded V-, Fe-, and Cr-incorporated MCM-41 by XRD, TPR, UV-vis, Raman, and XPS techniques, J Phys Chem B, 2002, 106: 3394-3401
    [29] Swaddle T W, Activation parameters for the aquation of acidopentaaquochromium (III) complexes, nitratopentaaquochromium (III) ion, J Am Chem Soc, 1967, 89: 4338-4344
    [30] Sliversmit G, Poelman H, Depla D, et al, A comparative XPS and UPS study of VO_X layers mineral TiO_2(001)-anatase supports, Surf Interface Anal, 2006, 38: 1257-1265
    
    [31] Wu Q H, Thipen A A, Jaegermann W, et al, Resonant photoemission spectroscopy study of electronic structure of V_2O_5, Chem Phys Lett, 2006, 430: 309-313
    [32] Krischok S, Hofft O, Gunster J, et al, H_2O interaction with bare and Li-precovered TiO_2: studies with electron spectroscopies (MIES and UPS (Hel and II)), Surf Sci, 2001,495: 8-18
    [33] Krischok S, Hofft O, Kempter V, Interaction of alkali atoms with water multilayers adsorbed on TiO_2(110): a study with MIES and UPS, Surf Sci, 2003, 532: 370-376

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700