用户名: 密码: 验证码:
基于碳纳米管的电离式微气体传感器的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气体离化传感器通过加局部高电场,使待测气体电离、发生放电来进行对气体的检测。不同的气体具有不同的击穿电压。利用这一指纹特性,电离式气体传感器可以识别气体的种类。与吸附式传感器相比,离化式传感器不受被测气体化学吸附性的影响,并且具有灵敏度高,响应速度快,恢复时间短的优势。
     本文提出了一种将MEMS加工方法与碳纳米管薄膜沉积相集成的、基于电离原理的微气体传感器:
     1)应用了气体电离检测方法,不再受被测气体化学吸附性的影响,具有灵敏度高,响应速度快,恢复时间短的优势;
     2)应用了碳纳米管作为电极功能材料,发挥了碳纳米管的一维结构、场发射性能和负电子亲合势等优越性,进一步增强了离化电场,降低了器件的工作电压
     3)在离化器件中引入了介电阻挡层(DBD)结构,对击穿时电荷的增长、放电电流的突变进行了有效的控制,减小了气体击穿对器件寿命的影响
     4)总结了一套使用电泳电镀相结合的方法沉积镍-碳纳米管复合薄膜的方法,作为的制备和研究此传感器的基础。与丝网印刷、混合电镀、电泳等方法相比,镍-碳纳米管复合薄膜密度可控、排布均匀、表面平整,并且具有较小的表面电阻、较好的场发射性能,更易与MEMS加工方法结合;
     5)设计并加工实现了两种微电极系统电离式气体传感器。综合了MEMS加工方法和碳纳米管复合薄膜沉积方法,大幅减小了器件结构中阴阳两极间距,增强了离化电场,使空气等8种气体的击穿电压降至36V以下,成功在低于人体工程学安全电压的条件下,应用气体击穿电压的指纹特性,对8种气体进行了识别;同时对离化传感器对呼吸和对有机混合气体敏感的特性和也作了研究。
Ionization gas sensors are working on ionization of gas molecular since the partial strong electrical field. Based on the breakdown voltage’s finger print character, each gas can be identified by its unique ionization or breakdown voltage. Ionization gas sensors have much shorter response time, better sensitivity, and shorter recovering time than the normal absorption sensors.
     We have demonstrated here a MEMS based ionization micro gas sensor with these works:
     1) The sensor is working on the ionization principle, which means it would not be affected by the affinity energy and chemistry absorption properties of gases; on the contrary, it would be equipped with shorter response time, better sensitivity, and shorter recovering time;
     2) We have used CNT (Carbon Nanotubes) as the functional material in the electrodes, there would be greater electrical field and lower working voltage because of the one-dimensional structure and negative electron affinity of CNT;
     3) DBD (dielectric barrier discharge) principle has been introduced to the device, experiments results prove that it could increase electrical field and reduce the working voltage;
     4) We have concluded a method of deposition Nickel-coated-CNTF (Carbon Nanotube Film) as the fundamental of fabrication of CNT based ionization device. Experiments results prove that the Nickel-coated-CNTF has flat surface, controllable density, uniform arrangement, better performance of field emission, and could be integrated with MEMS processes easier.
     5) We have designed and fabricated two structures of micro electrode device. The advantage of using MEMS processes and Nickel-coated-CNTF deposition method ensures the device has shorter distance between the electrodes and higher electrical field, which makes it’s possible to ionization 8 gases under a working voltage less than 36V. Based on this fingerprint principle, the device could successfully identify these 8 different gases. Besides that, we also concentrate on the property of the response on human breath and on mixed organic gases.
引文
[1] B. Adhikari and S. Majumdar, "Polymers in sensor applications," Progress in Polymer Science, vol. 29, pp. 699-766, 2004.
    [2] E. Schaller, J. O. Bosset, and F. Escher, "'Electronic noses' and their application to food," Food Science and Technology-Lebensmittel-Wissenschaft & Technologie, vol. 31, pp. 305-316, 1998.
    [3] J. Janata, M. Josowicz, P. Vanysek, and D. M. DeVaney, "Chemical sensors," Analytical Chemistry, vol. 70, pp. 179R-208R, 1998.
    [4] M. Liess, "Using the differential principle in chemical micro-sensors," Sensors and Actuators B-Chemical, vol. 95, pp. 46-50, 2003.
    [5] N. Docquier and S. Candel, "Combustion control and sensors: a review," Progress in Energy and Combustion Science, vol. 28, pp. 107-150, 2002.
    [6] K. Beck, T. Kunzelmann, M. von Schickfus, and S. Hunklinger, "Contactless surface acoustic wave gas sensor," Sensors and Actuators a-Physical, vol. 76, pp. 103-106, 1999.
    [7] P. Li, X. X. Li, G. M. Zuo, J. Liu, Y. L. Wang, M. Liu, and D. Z. Jin, "Silicon dioxide microcantilever with piezoresistive element integrated for portable ultraresoluble gaseous detection," Applied Physics Letters, vol. 89, pp. -, 2006.
    [8] K. Yamashita, A. Murata, and M. Okuyama, "Miniaturized infrared sensor using silicon diaphragm based on Golay cell," Sensors and Actuators a-Physical, vol. 66, pp. 29-32, 1998.
    [9] J. Kong, N. R. Franklin, C. W. Zhou, M. G. Chapline, S. Peng, K. J. Cho, and H. J. Dai, "Nanotube molecular wires as chemical sensors," Science, vol. 287, pp. 622-625, 2000.
    [10] T. Someya, J. Small, P. Kim, C. Nuckolls, and J. T. Yardley, "Alcohol vapor sensors based on single-walled carbon nanotube field effect transistors," Nano Letters, vol. 3, pp. 877-881, 2003.
    [11] Q. F. Pengfei, O. Vermesh, M. Grecu, A. Javey, O. Wang, H. J. Dai, S. Peng, and K. J. Cho, "Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection," Nano Letters, vol. 3, pp. 347-351, 2003.
    [12] J. P. Novak, E. S. Snow, E. J. Houser, D. Park, J. L. Stepnowski, and R. A. McGill, "Nerve agent detection using networks of single-walled carbon nanotubes," Applied Physics Letters, vol. 83, pp. 4026-4028, 2003.
    [13] K. C. Cattanach, K. Parikh, R. Rao, and S. Manohar, "Flexible carbon nanotube sensors for chemical warfare agent (CWA) detection.," Abstracts of Papers of the American Chemical Society, vol. 229, pp. U99-U99, 2005.
    [14] E. S. Snow, F. K. Perkins, and J. A. Robinson, "Chemical vapor detection using single-walled carbon nanotubes," Chemical Society Reviews, vol. 35, pp. 790-798, 2006.
    [15] J. A. Robinson, E. S. Snow, and F. K. Perkins, "Improved chemical detection using single-walled carbon nanotube network capacitors," Sensors and Actuators a-Physical, vol. 135, pp. 309-314, 2007.
    [16] E. S. Snow, F. K. Perkins, E. J. Houser, S. C. Badescu, and T. L. Reinecke, "Chemical detection with a single-walled carbon nanotube capacitor," Science, vol. 307, pp. 1942-1945, 2005.
    [17] E. S. Snow and F. K. Perkins, "Capacitance and conductance of single-walled carbonnanotubes in the presence of chemical vapors," Nano Letters, vol. 5, pp. 2414-2417, 2005.
    [18] A. Modi, N. Koratkar, E. Lass, B. Q. Wei, and P. M. Ajayan, "Miniaturized gas ionization sensors using carbon nanotubes," Nature, vol. 424, pp. 171-174, 2003.
    [19] B. Deb, S. Desai, G. U. Sumanasekera, and M. K. Sunkara, "Gas sensing behaviour of mat-like networked tungsten oxide nanowire thin films," Nanotechnology, vol. 18, pp. -, 2007.
    [20] A. Bogaerts, E. Neyts, R. Gijbels, and J. van der Mullen, "Gas discharge plasmas and their applications," Spectrochimica Acta Part B-Atomic Spectroscopy, vol. 57, pp. 609-658, 2002.
    [21] M. S. Peterson, W. Zhang, T. S. Fisher, and S. V. Garimella, "Low-voltage ionization of air with carbon-based materials," Plasma Sources Science & Technology, vol. 14, pp. 654-660, 2005.
    [22] D. F. Farson, H. W. Choi, and S. I. Rokhlin, "Electrical discharges between platinum nanoprobe tips and gold films at nanometre gap lengths," Nanotechnology, vol. 17, pp. 132-139, 2006.
    [23] G. Auriemma, D. Fidanza, G. Pirozzi, and C. Satriano, "Experimental determination of the Townsend coefficient for argon-CO2 gas mixtures at high fields," Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment, vol. 513, pp. 484-489, 2003.
    [24] Z. Y. Hou, H. H. Wu, W. M. Zhou, X. Wei, D. Xu, Y. F. Zhang, and B. C. Cai, "A MEMS-based ionization gas sensor using carbon nanotubes," Ieee Transactions on Electron Devices, vol. 54, pp. 1545-1548, 2007.
    [25] Z. Y. Hou, D. Xu, and B. C. Cai, "Ionization gas sensing in a microelectrode system with carbon nanotubes," Applied Physics Letters, vol. 89, pp. -, 2006.
    [26] W. Zhang, T. S. Fisher, and S. V. Garimella, "Simulation of ion generation and breakdown in atmospheric air," Journal of Applied Physics, vol. 96, pp. 6066-6072, 2004.
    [27] M. J. Brunger and S. J. Buckman, "Electron-molecule scattering cross-sections. I. Experimental techniques and data for diatomic molecules," Physics Reports-Review Section of Physics Letters, vol. 357, pp. 215-458, 2002.
    [28] P. G. Slade and E. D. Taylor, "Electrical breakdown in atmospheric air between closely spaced (0.2 mu m-40 mu m) electrical contacts," Ieee Transactions on Components and Packaging Technologies, vol. 25, pp. 390-396, 2002.
    [29] D. Ferrer, T. Tanii, I. Matsuya, G. Zhong, S. Okamoto, H. Kawarada, T. Shinada, and I. Ohdomari, "Enhancement of field emission characteristics of tungsten emitters by single-walled carbon nanotube modification," Applied Physics Letters, vol. 88, pp. -, 2006.
    [30] Y. Saito, K. Hamaguchi, R. Mizushima, S. Uemura, T. Nagasako, J. Yotani, and T. Shimojo, "Field emission from carbon nanotubes and its application to cathode ray tube lighting elements," Applied Surface Science, vol. 146, pp. 305-311, 1999.
    [31] U. Kogelschatz, "Twenty years of Hakone symposia: From basic plasma chemistry to billion dollar markets," Plasma Processes and Polymers, vol. 4, pp. 678-681, 2007.
    [32] U. Kogelschatz, "Dielectric-barrier discharges: Their history, discharge physics, and industrial applications," Plasma Chemistry and Plasma Processing, vol. 23, pp. 1-46, 2003.
    [33] S. J. Oh, J. Zhang, Y. Cheng, H. Shimoda, and O. Zhou, "Liquid-phase fabrication of patterned carbon nanotube field emission cathodes," Applied Physics Letters, vol. 84, pp. 3738-3740, 2004.
    [34] W. B. Choi, Y. W. Jin, H. Y. Kim, S. J. Lee, M. J. Yun, J. H. Kang, Y. S. Choi, N. S. Park, N. S.Lee, and J. M. Kim, "Electrophoresis deposition of carbon nanotubes for triode-type field emission display," Applied Physics Letters, vol. 78, pp. 1547-1549, 2001.
    [35] A. R. Boccaccini, J. Cho, J. A. Roether, B. J. C. Thomas, E. J. Minay, and M. S. P. Shaffer, "Electrophoretic deposition of carbon nanotubes," Carbon, vol. 44, pp. 3149-3160, 2006.
    [36] J. Hahn, S. M. Jung, H. Y. Jung, S. B. Heo, J. H. Shin, and J. S. Suh, "Fabrication of clean carbon nanotube field emitters," Applied Physics Letters, vol. 88, pp. -, 2006.
    [37] S. Arai, M. Endo, S. Hashizume, and Y. Shimojima, "Nickel-coated carbon nanofibers prepared by electroless deposition," Electrochemistry Communications, vol. 6, pp. 1029-1031, 2004.
    [38] A. Agarwal and N. B. Dahotre, "Synthesis of boride coating on steel using high energy density processes: Comparative study of evolution of microstructure," Materials Characterization, vol. 42, pp. 31-44, 1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700