用户名: 密码: 验证码:
飞秒激光诱导空气等离子体的实验与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脉冲宽度在皮秒(10-12秒)至飞秒(10-15秒)之间、脉冲能量在毫焦耳量级的超短脉冲激光具有极短的持续时间和极高的峰值功率。这样的超短脉冲激光在与物质相互作用过程中会产生很多的非线性现象。其中,飞秒激光诱导空气电离便是一个基本而重要的物理现象,并且也是超快激光光学诸多应用的基础。等离子体与靶材的相互作用能够导致一系列的应用,微观上飞秒激光微纳制备及光伏材料中非晶硅薄膜的晶化等有广阔的应用前景,宏观上超短脉冲激光烧蚀推进技术作为一种新型的光推进技术,有望成为未来空间推进的一种重要方式。飞秒激光诱导的等离子体韧致辐射还有可能存在受激辐射窗口,提供光增益,形成光振荡。等离子体的产生及时空演变、等离子体辐射的特性、飞秒激光与等离子体非线性相互作用是本论文的研究主线。本论文主要内容和结果如下:
     1.在实验中首次发现了一种从相对紧聚焦的飞秒激光脉冲诱导空气等离子体中产生的超亮喷射状相干光束,并对这种特殊光束的光谱特性和产生机制进行了分析研究。通过适当控制具有特定F数(f-number)的汇聚透镜的倾角或水平偏移量,我们可以在被明显扰动的锥形辐射中观察到单个或双个喷射状超亮光束。这种超亮喷射状相干光束与通常的光丝(Optical filaments)不仅在空间分布和光谱特性上存在很大的区别,而且它们产生的机制不同,非线性相移的构成也不一样。实验结果表明,超亮喷射状相干光束的产生主要源于在锥形辐射锥面上的四波混频过程。相位匹配计算获得的反斯托克斯和斯托克斯波长分别为547nm和1064nm,与光谱测量结果相吻合。该反斯托克斯波长很好地解释了实验中观察到的超亮光束所呈现出来的耀眼的亮黄色。这种独特的超亮喷射状光束经过准直后,可以在空间中传输很长的距离,因而有可能在未来的遥感探测中找到应用。
     2.针对实验所用参数,借助电子密度速率方程模拟、分析了100mm透镜聚焦条件下50fs超短脉冲激光诱导空气电离时电离区内电子密度的时空演化过程。模拟结果显示,在所用飞秒脉冲的峰值点到达焦点之前,空气已被完全电离。根据模拟得到的电子密度分布,我们求得了等离子体的折射率时空分布,并发现在电离中心区存在一个折射率变化的饱和区域(饱和等离子体的折射率值为0.9923)。基于此,我们可以借助空气-等离子体界面折射模型来直观地解释随着激光功率的增加,正常电离情况下锥形辐射的色序分布及远场衍射光斑张角先增加而后趋于不变的现象。
     3.搭建了超短脉冲激光瞬态光谱测量系统,记录了单脉冲激光诱导空气等离子体辐射谱,并利用时间分辨光谱系统研究了不同实验条件下超短脉冲激光诱导空气等离子体的动态演化特性。通过对空气等离子体辐射进行普朗克黑体辐射模拟,得出了在50fs脉冲诱导空气电离后2ns等离子体的温度为5500K。而由时间分辨光谱测量获得的微区等离子体的典型寿命约为5.5ns(f=100mm)。同时我们还比较了不同聚焦条件下不同脉冲能量和宽度的脉冲激光诱导空气等离子体的动态辐射光谱中连续谱和线谱演变的不同。在将4倍物镜电离空气形成的微区等离子体成像耦合进光谱仪竖直狭缝后进行空间分辨光谱测量的实验中,我们发现远离透镜端的等离子体具有更强的氧离子和氮离子线谱。
     4.实验研究了不同聚焦条件下,同向传输双飞秒脉冲激光诱导空气等离子体的时域特性和光谱特性。在利用焦距为100mm透镜相对浅聚焦飞秒脉冲激光电离空气的实验中,我们发现在双脉冲间隔为0-8ns之间时,双脉冲激光诱导空气电离产生的等离子体辐射比单一先到脉冲电离辐射有明显的增强。而相比之下,在10倍物镜紧聚焦电离空气的实验中,我们只在双脉冲时间间隔小于0.5ns的情况下才观察到双脉冲电离产生的等离子体辐射比先到脉冲电离辐射增强;在双脉冲时间间隔达到8ns时,后续脉冲会直接穿过由前脉冲电离空气形成的等离子体膨胀所造成瞬态真空通道,而没有产生进一步的空气电离。利用这种穿孔效应有可能实现超短脉冲的动态空间滤波,而无需借助实体的滤波小孔和复杂的真空设备。
     5.研究了光学“成丝”中光强钳制效应对激光烧蚀率的影响。研究发现当入射光的功率大于自聚焦临界功率时,由于光强钳制效应的存在,不同气体氛围中的光学“成丝”烧蚀铝箔的烧蚀率并不随着入射激光功率的增加而增加,而是接近一稳定值。这一特性不仅可以帮助确定不同气体介质中飞秒脉冲激光自聚焦临界功率,同时也提供了一种确定气体介质非线性折射率系数n12的方法。应用此方法,我们测得一个大气压下空气中50fs脉冲激光的自聚焦功率为7.2GW,非线性折射率约为1.3×10-19cm2/W;而一个大气压的氩气所对应的50fs脉冲激光的自聚焦临界功率为3.8GW,非线性折射率为2.6×10-19cm2/W。
     6.在国内率先开展了利用“光丝”进行烧蚀推进的实验。在进行光学“成丝”烧蚀推进玻璃小球的实验中,我们使用焦距为111cm的透镜,我们发现光学“成丝”等离子体通道上最强荧光的产生位置并不对应最大的“成丝”烧蚀率和最远的小球推进距离。通过数值模拟,我们计算了光学“成丝”丝上不同位置的横向激光能流分布,并通过“双温”模型估算烧蚀深度,我们证实了烧蚀量在光学“成丝”推进中扮演了决定性的因素。即使是在飞秒激光“成丝”这种存在较长空气电离通道的情况下,烧蚀过程中的物质去除所导致的反冲力仍是主要的推力来源。光学“成丝”推进依然是一种依赖于激光烧蚀的推进。
     7.提出并验证了一种确定激光烧蚀竖直推进微型小球的冲量耦合系数的简易测量方法一阴影法。该方法能够直观、准确地测出被烧蚀小球的运动飞行时间,并具有较高的灵敏度和稳定性。在利用脉冲能量为毫焦量级的飞秒激光单脉冲推进质量为1.4mg小铁球的实验中,采用此阴影法测得的冲量耦合系数约为5dyne/W。利用这种方法,我们研究了不同脉冲能量和脉宽的超短激光脉冲对烧蚀推进所获得的冲量耦合系数的影响。实验结果显示,在50fs、800nm波段的激光脉冲作用下,随着入射脉冲能量的增加,冲量耦合系数呈现单调下降的趋势;而当入射脉冲能量固定、脉冲宽度改变时,冲量耦合系数先增加,在500fs左右达到最大,而后减小并最终趋于平稳。50fs的最短脉宽并未导致最大的冲量耦合系数,这主要是因为烧蚀机制由50fs时的原子化变为长脉冲下的相位爆炸所致。
Ultrashort pulses with duration from ps (10-12s) to fs (10-15s) and millijoule pulse energy can possess extremely high peak intensity and introduce many nonlinear phenomena during the interaction with all kinds of materials. Among them, femtosecond laser-induced air ionization is a topic of fundamental importance and is inevitably involved in many ultrafast-optics-related applications. The generation of plasma and its spatial-temporal evolution, the characteristics of plasma radiation and the nonlinear interaction of plasma with femtosecond laser pulses are the central issues of this thesis. It is speculated that Bremsstrahlung radiation from femtosecong laser-induced air plama may involve a stimulation process and thus provide optical gain for light amplification.In the meantime, the interaction of laser-induced plasma with solid target has found a broad range of applications. On the microscopic scale, the micro-nano-fabrication and crystallization of amorphous silicon membrane with femtosecond lasers have technically attractive advances. On the macroscopic scale, ultrashort pulse laser ablative propulsion has the potential to be an important alternative in space travel as a new type of light propulsion.
     The main contents and results in this thesis are listed as follows:
     1. For the first time, we report the observation of a novel phenomenon of the generation of super-luminescent jet light beams emanating from the micro air plasma induced by a relatively tight focused near-infrared femtosecond laser pulses. A systematic study of the key characteristics of such jet beams and its generation machanism are conducted. Single or double jet-like optical beams, being slightly divergent and coexisting with severely distorted conical emission of colored speckles, are obtainable only when the focal lens of proper f-number is slightly tilted or shifted. In addition to the apparent difference between SJBs and the conventional optical filaments (OFs) in both spatial and spectral characteristics, the two also differ substantially in the underlying generation mechanisms.(In particular, the different constituents of the nonlinear phase shift in the two cases also set them apart.) It is analyzed and confirmed that the four-wave mixing (FWM) process contributes most to the generation of such jet-like beams. The Stokes and anti-Stokes waves with distinct1064nm and547nm peak wavelengths obtained from the phase matching calculation are in good agreement with the experimentally recorded spectrum. The anti-Stokes wavelength at547nm also well explains the observed brilliant yellow color of the jet beams. As a new type of coherent optical beams from disrupted conical emission, these unique super-luminescent jet-like beams can propagate over a long distance in air after proper collimation, and very likely they may find some applications in remote sensing in future.
     2. By using electron density rate equation, we have analyzed the time evolution and spatial distribution of electron density of the air plasma induced by tightly-focused50fs laser pulses with100mm focal length lens. It reveals that for the chosen laser parameters the air can be totally ionized well before the pulse peak comes to the focusing point. The corresponding distribution of plasma related refractive index has been then obtained from the electrons density calculation, and it is found that there exists a saturation region in the central focal area where the refractive index of plasma becomes constant (~0.9923). Moreover, a simple plasma-air interface refraction model is proposed to explain the different spectral distribution and optical power dependent of the divergence of the "nonlinearly diffracted beam", namely, the divergence angle first increases fast and then stabilizes at a certain value more than twice of the ordinary diffraction angle.
     3. We have built a transient spectrum measurement system including a fast gated spectrometer. By this system we are able to record the dynamic spectra of a single pulse induced air plasma over a selectable time window. Plasma temperature of5500 K is determined by fitting the continuum spectra of plasma emission with the well-known Planck's blackbody emission formula at2ns after air ionization. Typical lifetime of the micro air plasma is determined to be~5.5ns based on the spectrally integrated and time-resolved spectral measurements. Evolution characteristics of both continuum and line spectra of the plasma are examined for various laser pulse energies associated with different pulse durations. Spatially resolved spectroscopic measurements have shown that compared with the spectra obtained from the plasma section closer to the focal lens (4X objective), the spectra from the other part of the plasma channel, namely away from the focal lens, has more pronounced oxygen and argon ionic lines.
     4. Temporal and spectral characteristics of air plasma generated by dual collinearly-propagating50femtosecond laser pulses are experimentally studied under different focusing conditions. In the case of relatively shallow focusing with a plano-convex lens of100mm focal length, enhancement of plasma emission is clearly observed for the whole inter-pulse delay range of0-8ns. In great contrast, air plasma generated with a10X objective (tightly focused) presents enhanced bremsstrahlung emission only when the inter-pulse delay is less than0.5ns, and for a longer inter-pulse delay of8ns, the delayed pulse passes through the transient vacuum channel due to the first pulse induced air plasma expansion without further inducing air ionization. This phenomenon may be utilized in dynamic spatial filtering of ultrashort and intense laser pulses without employing any hard apertures and vacuum hardwares.
     5. We have experimentally demonstrated that because of intensity clamping, when the laser peak power is higher than the critical power for self-focusing, further increase of the laser power cannot result in corresponding increase of the laser ablation rate of an aluminum foil placed in air. The ablation rate will approach a stabilized value once the incendent power is above a certain value. Also, the experimental technique implemented in our work may be used in measuring the self-focusing critical power and the nonlinear refractive index. The thus measured self-focusing critical power and the nonlinear refractive index are7.2GW and1.3×10-19cm2/W respectively under standard atmospheric pressure. While for the one atmosphere of argon gas, the corresponding values are3.8GW and2.6×10-19cm2/W respectively.
     6. We have accomplished for the first time the experiments of optical filament propulsion. In the propulsion of microbeads by femtosecond laser filament formed by111cm focal length lens, it is found that when placed at the position where the strongest filament fluorescence exists, the microbead does not obtain the maximal ablation rate as well as the maximal propelled distance. Moreover, the position where the maximal ablation rate exists is just consistent with that where the maximal propelled distance of the microbead occurs. Through numerical simulations of optical filamentation formation and adoping the two temperature model, it is confirmed that the actual ablation volumn plays a dominant role in the laser filamentation propulsion. Even in the optical filament scheme where there exists much longer air ionization channel, the thrust generated by the laser ablation of the target material remains the main origin of impulse force. In other words, optical filamentation propulsion is still a type of laser ablative propulsion.
     7. A shadowgraphic method is proposed to measure the impulse coupling coefficients of microbeads propelled vertically with femtosecond laser pulses. This method can directly record the flying time of beads with high sensitivity. In the experiments of single millijoule femtosecond laser propulsion of1.4milligram iron beads, impulse coupling coefficient of~5dyne/W is obtained. This shadowgraphic method is also employed to investigate the impulse coupling coefficients of iron beads with different pulse energies and pulse widths. For50fs laser pulses, when the pulse energy is changed from0.86mJ to1.62mJ, the generated impulse coupling coefficient decreases, which may be attributed to the dominate material removal mechanism of atomization occurred at laser fluence much higher than the optimum value. For laser pulses with fixed pulse energy of0.86mJ, as the pulse duration is increased from50fs to8ps, the generated impulse coupling coefficient doesn't achieve maximum value at50fs, it first increases sharply, reaching a maximum around500fs, and then decreases at much slower pace, approximately maintaining at a relatively high value. This is caused by the change of the ablation mechanism involved from atomization to phase explosion.
引文
[1.1]T.H. Maiman. Stimulated optical radiation in ruby [J]. Nature,1960,187:493-494.
    [1.2]H.W. Mocker, and R.J. Collins. Mode competition and self-locking effects in a Q-switched ruby laser [J]. Appl. Phys. Lett.,1965,7(10):270-273.
    [1.3]A.J. DeMaria, D.A. Stetser, and H. Heynau. Self mode-locking of lasers with saturable absorbers [J]. Appl. Phys. Lett.,1966,8(7):174-176.
    [1.4]R.L. Fork, B.I. Greene, and C.V. Shank. Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking [J]. Appl. Phys. Lett.,1981,38(9):671-672.
    [1.5]J.A. Valdmanis, and R.L. Fork. Design considerations for a femtosecond pulse laser balancing self phase modulation, group velocity dispersion, saturable absorption, and saturable gain [J]. IEEE J. Quantum Electron.,1986,22(1):112-118.
    [1.6]R.L. Fork, C.H. Brito Cruz, P.C. Becker, et al. Compression of optical pulses to six femtoseconds by using cubic phase compensation [J]. Opt. Lett.,1987,12(7):483-485.
    [1.7]P.F. Moulton. Spectroscopic and laser characteristics of Ti:Al2O3 [J]. J. Opt. Soc. Am. B, 1986,3(1):125-133.
    [1.8]R. Ell, U. Morgner, F.X. KAArtner, et al. Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser [J]. Opt. Lett.,2001,26(6):373-375.
    [1.9]D. Strickland, and G. Mourou. Compression of amplified chirped optical pulses [J]. Opt. Comm.,1985,56(7):219-221.
    [1.10]Optical Society of America. Highest Power Tabletop Laser Ever Built. ScienceDaily,2008. http://www.sciencedailv.com/releases/2008/10/081008203706.htm
    [1.11]H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Woste. Teramobile:a mobile femtosecond-terawatt laser and detection system [J]. European Physical Journal-Appl. Phys.,2002,20:183-190.
    [1.12]L.E. Nelson, D.J. Jones, K. Tamura, H.A. Haus, and E.P. Ippen. Ultrashort-pulse fiber ring lasers [J]. Appl. Phys. B,1997,65:277-294.
    [1.13]Millennia Vs J (Diode-pumped, cw Visible Laser) User's Manual. Spectral-Physics (The Solid-State Laser Compay).
    [1.14]Tsunami Mode-locked Ti:sapphire Laser User's Manual. Spectral-Physics (The Solid-State Laser Compay).
    [1.15]Evolution-30 (High Energy, High Average Power Diode-pumped, kilohertz, Q-switched, Intra-Cavity Doubled, Nd:YLF Laser) User's Manual. Spectral-Physics (The Solid-State Laser Compay).
    [1.16]SpitFire 50 fs (Multikilohertz Pulsed Ti:Sapphire Amplifier With Pulse Stretcher and Compressor) User's Manual. Spectral-Physics (The Solid-State Laser Compay).
    [1.17]J.C.M Diels, J.J. Fontaine, I.C. McMichael, and F. Simoni. Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy [J]. Appl. Optics,1985,24(9):1270-1282.
    [1.18]R.L. Fork, C.V. Shank, C. Hirlimann, R. Yen, and W.J. Tomlinson. Femtosecond white-light continuum pulses [J]. Opt. Lett.,1983,8:1-3.
    [1.19]J.A. Valdmanis, R.L. Fork, and J.P. Gordon. Generation of optical pulses as short as 27 femtoseconds directly from a laser balancing self-phase modulation, group-velocity dispersion, saturable absorption, and saturable gain [J]. Opt. Lett.,1985,10:131.
    [1.20]A. Brodeur, and S.L. Chin. Ultrafast white-light continuum generation and self-focusing in transparent condensed media [J]. J. Opt. Soc. Am. B,1999,16:637-650.
    [1.21]A.L. Gaeta. Catastrophic Collapse of Ultrashort Pulses [J]. Phys. Rev. Lett.,2000,84: 3582-3585.
    [1.22]N. Akozbek, M. Scalora, C.M. Bowden, and S.L. Chin. White light continuum generation and filamentation during the propagation of ultra-short laser pulses in air [J]. Opt. Commun.,2001,191:353-362.
    [1.23]Q. Xing, K.M. Yoo, and R.R. Alfano. Conical emission by four-photon parametric generation by using femtosecond laser pulses [J]. Appl. Opt.,193,32:2087-2089.
    [1.24]G.G. Luther, A.C. Newell, J.V. Moloney, and E.M. Wright. Short pulse conical emission and spectral broadening in normally dispersive media [J]. Opt. Lett.,1994,19 (11): 789-791.
    [1.25]P. Lallemand, and N. Bloembergen. Self-focusing of laser beams and stimulated Raman gain in liquids [J]. Phys. Rev. Lett.,1965,15:1010-1012.
    [1.26]D. Faccio, A. Averchi, A. Dubietis, P. Polesana, A. Piskarskas, T.P. Di, and A. Couairon. Stimulated-raman X-waves in ultrashort optical pulse filamentation [J]. Opt. Lett.,2007, 32(2):184.
    [1.27]J.R. Penano, P. Sprangle, P. Serafim, B. Hafizi, and A. Ting. Stimulated Raman scattering of intense laser pulses in air [J]. Phys. Rev. E,2003,68 (5):056502.
    [1.28]E.P. Ippen. Stimulated Brillouin scattering in optical fibers [J]. Appl. Phys. Lett.,1972,21: 539-540.
    [1.29]M. Hercher. Laser induced damage in transparent media [J]. J. Opt. Soc. Am.,1964,54: 563.
    [1.30]J.H. Marburger. Self-focusing:theory [J]. Prog. Quant. Electr.,1975,4:35-110.
    [1.31]Y.R. Shen. Self-focusing:experimental [J]. Prog. Quant. Electr.,1975,4:1-34.
    [1.32]A. Braun, G Kom, X. Liu, D. Du, J. Squier and G. Mourou. Self-channeling of high-peak-power femtosecond laser pulses in air [J]. Opt. Lett.,1995,20:73-75.
    [1.33]S.L. Chin, A. Brodeur, S. Petit, O.G Kosareva, and V.P. Kandidov. Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media (white light laser) [J]. J. Nonlinear Opt. Phys. Mater.,1999,8:121-146.
    [1.34]M. Mlejnek, E.M. Wright, and J.V. Moloney. Dynamic spatial replenishment of femto-second pulses propagating in air [J]. Opt. Lett.,1998,23,382-384.
    [1.35]S.L. Chin. From Multiphoton to Tunnel Ionization, in S. H. Lin, A. A. Villaeys and Y. Fujimura, eds., Advances in Multiphoton Processes and Spectroscopy [M]. Singapore: World Scientific,2004:249-272.
    [1.36]A. Brodeur, and S.L. Chin. Band-gap dependence of the ultrafast white-light continuum [J]. Phys. Rev. Lett.,1998,80:4406-4409.
    [1.37]V.P. Kandidov, O.G Kosareva, I.S. Golubtsov, W. Liu, A. Becker, N. Akozbek, C.M. Bowden and S.L. Chin. Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation) [J]. Appl. Phys. B,2003,77:149-165.
    [1.38]A. Dubietis, E. Kucinskas, G. Tamosauskas, E. Gaizauskas, M.A. Porras and P.D. Trapani. Self-reconstruction of light filaments [J]. Opt. Lett.,2004,29:2893-2894.
    [1.39]S. Skupin, L. Berge,U. Peschel, and F. Lederer. Interaction of femtosecond light filaments with obscurants in aerosols [J]. Phys. Rev. Lett.,2004,93:023901.
    [1.40]M. Kolesik, and J.V. Moloney. Self-healing femtosecond light filaments [J]. Opt. Lett., 2004,29:590-592.
    [1.41]W. Liu, F. Th6berge, E. Arevalo, J.-F. Gravel, A. Becker and S.L. Chin. Experiment and simulations on the energy reservoir effect in femtosecond light filaments [J]. Opt. Lett., 2005,30:2602-2604.
    [1.42]E.T.J. Nibbering, P.F. Curley, G Grillon, B.S. Prade, M.A. Franco, F. Salin, and A. Mysyrowicz. Conical emission from self-guided femtosecond pulses in air [J]. Opt. Lett., 1996,21:62-64.
    [1.43]O.G Kosareva, V.P. Kandidov, A. Brodeur, C.Y. Chien and S.L. Chin. Conical emission fromlaserplasma interactions in the filamentationof powerful ultrashort laser pulses in air [J]. Opt. Lett.,1997,22(17):1332-1334.
    [1.44]J. Kasparian, M. Rodriguez, G. Mejean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y-B. Andre, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Woste. White-light filaments for atmospheric analysis [J]. Science,2003,301:61-64.
    [1.45]M. Rodriguez, R. Bourayou, G. Mejean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eisloffel, U. Laux, A.P. Hatzes, R. Sauerbrey, L. Woste and J.-P. Wolf. Kilometer-range nonlinear propagation of femtosecond laser pulses [J]. Phys. Rev. E,2004, 69,036607.
    [1.46]S.A. Hosseini, Q. Luo, B. Ferland, W. Liu, S.L. Chin, O.G Kosareva, N.A. Panov, N. Akozbek and V.P. Kandidov. Competition of multiple filaments during the propagation of intense femtosecond laser pulses [J]. Phys. Rev. A,2004,70:033802.
    [1.47]J.-F. Gravel, Q. Luo, D. Boudreau, X.P. Tang and S.L. Chin. Sensing of halocarbons using femtosecond laser-induced fluorescence [J]. Anal. Chem.,2004,76,4799-4805.
    [1.48]H.L. Xu, W. Liu, and S.L. Chin. Remote time-resolved filament-induced breakdown spectroscopy of biological materials [J]. Opt. Lett.,2006,31:1540-1542.
    [1.49]H. Pepin, D. Comtois, F. Vidal, C.Y. Chien, A. Desparois, T.W. Johnston, J.C. Kieffer, B.L. Fontaine, F. Martin, F.A.M. Rizk, C. Potvin, P. Couture, H.P. Mercure, A. Bondiou-Clergerie, P. Lalande, and I. Gallimberti. Triggering and guiding high-voltage large-scale leader discharges with sub-joule ultrashort laser pulses [J]. Physics of Plasma, 2001,8:2532-2539.
    [1.50]M. Rodriguez, R. Sauerbrey, H. Wille, L. Wste, T. Fuji, Y.-B. Andr, A. Mysyrowicz, L. Klingbeil, K. Rethmeier, W. Kalkner, J. Kasparian, E. Salmon, J. Yu and J.-P. Wolf. Triggering and guiding high voltage fischarge by ohmic connection through ionized fila-ments created by femtosecond laser pulses [J]. Opt. Lett.,2002,27:112-11 A.
    [1.51]K.M. Davis, K. Miura, N. Sugimoto, and K. Hirao. Writing waveguides in glass with a femtosecond laser [J]. Opt. Lett.,1996,21:1729-1731.
    [1.52]K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao. Photowritten optical waveguides in various glasses with ultrashort pulse laser [J]. Appl. Phys. Lett.,1997,71:3329-3331.
    [1.53]A. Couairon, M. Franco, A. Mysyrowicz, J. Biegert and U. Keller. Pulse self-compression to the single-cycle limit by filamentation in a gas with a pressure gradient [J]. Opt. Lett., 2005,30:2657-2659.
    [1.54]C.P. Hauri, A. Trisorio, M. Merano, G. Rey, R.B. Lopez-Martens, and G. Mourou. Generation of high-fidelity, down-chirped sub-10 fs mJ pulses through filamentation for driving relativistic laser-matter interactions at 1 kHz [J]. Appl. Phys. Lett.,2006,89: 151125.
    [1.55]Takao Fuji, Takuya Horio, and Toshinori Suzuki. Generation of 12 fs deep-ultraviolet pulses by four-wave mixing through filamentation in neon gas [J]. Opt. Lett.,2007,32: 2481-2483.
    [2.1]W.L. Bohn. Propulsion by light:a tribute to the German pioneer Eugen Saenger [C]. In:C.R. Phipps, ed. High-power laser ablation V, Proceedings of SPIE. Taos:SPIE,2004,5448: 45-51.
    [2.2]R.L. Geisler. Laser augmented rocket propulsion and auxiliary power [J]. Air force invention (Invention disclosure),1969,6157.
    [2.3]A.N. Pirri, and R.F. Weiss. Laser propulsion [C]. American Institute of Aeronautics and Astronautics 5th fluid and plasma dynamics conference. Boston, Mass.:AIAA,1972. AIAA-72-719.
    [2.4]A.N. Pirri, M.J. Monsler, and P.E. Nebolsine. Propulsion by absorption of laser radiation [C]. AIAA J.,1974,12(9):1254-1261.
    [2.5]P.E. Nebolsine, and A.N. Pirri. Laser propulsion:the early years [C]. In:Pakhomov A V, ed. Beamed energy propulsion:1st international symposium on beamed energy propulsion, AIP conference proceedings. New York:American Institute of Physics,2003,664:11-21.
    [2.6]Y.P. Raizer. Breakdown and heating of gases under the influence of a laser beam [J]. Sov. Phys. Uspekhi,1966,8(5):650-673.
    [2.7]C.R. Phipps, G. Albrecht, H. Friedman, et al. ORION:clearing near-Earth space debris using a 20-kW,530-nm, Earth-based, repetitively pulsed laser [J]. Laser and Particle Beams,1996, 14 (1):1-44.
    [2.8]L. Shi, S.H. Zhao, S.Q. Fang, et al. Research of laser propulsion technology used in orbited space mobile carrier [J]. Laser Journal,2007,28(2):6-8 (in Chinese).
    [2.9]T. Yabe, C. Phipps, M. Yamaguchi, et al. Microairplane propelled by laser driven exotic target [J]. Appl. Phys. Lett.,2002,80(23):4318-4320.
    [2.10]T. Ohkubo, T. Yabe, S. Miyazaki, et al. Laser Propulsion Using Metal-Free Water Cannon Target [C]. In:A.V. Pakhomov, L.N. Myrabo, eds. Beamed energy propulsion:3rd international symposium on beamed energy propulsion, AIP conference proceedings. New York:American Institute of Physics,2005.766:394-405.
    [2.11]W.L. Bohn, and W.O. Schall. Laser propulsion activities in Germany [J]. American Institute of Physics,2003,664:79-91.
    [2.12]S. Scharring, H. Eckel J. Trommer, et al. Spacebome lightcraft applications-an experimental approach [J]. American Institute of Physics,2008,997:295-303.
    [2.13]V.P. Ageev, A.I. Barchukov, F.V. Bunkin, et al. Laser air-breathing jet engine [J]. Dresden: Soviet Journal of Quantum Electronics,1977,7(12):1430-1437.
    [2.14]J.R. Cook. Laser propulsion-Is it another myth or a real potential [J]. New York: American Institute of Physics,2008,997:109-118.
    [2.15]A.V. Pakhomov, T. Cohen, and J. Lin. Ablative laser propulsion:an update, part 1 [J]. New York:American Institute of Physics,2004,702:166-177.
    [2.16]A.V. Pakhomov, J. Lin, and M.S. Thompson. Ablative laser propulsion:an update, part 2 [J]. New York:American Institute of Physics,2004,702:178-189.
    [2.17]程祖海,王新兵,王又青.激光推进的理论及实验研究[J].激光与光电子学进展,2001,38(9):39.
    [2.18]柯常军,万重怡.激光推进飞行器技术[J].激光与光电子学进展,2003,40(8):18-21.
    [2.19]鲁欣,张杰,李英骏.激光等离子体推进在火箭推进技术领域的应用前景[J].物理,2002,31(12):796-799.
    [2.20]孙承纬.激光驱动空间飞行器的原理分析[C].激光的热和力学效应学术会议论文集.广西:北海,2000,1-8.
    [2.21]郑义军.激光参量对激光推进中冲量耦合系数的影响[D].中国科学院研究生院(电子学研究所),2006.
    [2.22]蔡建,王彬,胡晓军,等.激光水推进技术的实验研究[J].实验力学,2007,22(1):43-48.
    [2.23]张楠,徐智君,朱晓农,等.激光推进技术[J].红外与激光工程,2011,40(6):1025-1037.
    [2.24]N. Zhang, Y.B. Zhao, and X.N. Zhu. Light propulsion of microbeads with femtosecond laser pulses [J]. Opt. Express,2004,12:3590-3598.
    [2.25]张楠,王晓雷,王明伟,等.飞秒激光脉冲推进小球的实验研究[J].红外与激光工程,2006,35:27-32.
    [2.26]Z.J. Xu, W. Liu, N. Zhang, et al. Effect of intensity clamping on laser ablation by intense femtosecond laser pulses [J]. Opt. Express,2008,16:3604-3609.
    [2.27]N. Zhang, W. Liu, Z.J. Xu, et al. Experimental study and numerical simulation of the propulsion of microbeads by femtosecond laser filament [J]. J. Appl. Phys.,2008,104(3): 033104.
    [2.28]E.W. Davis, and F.B. Mead. Review of laser lightcraft propulsion system [J]. New York: American Institute of Physics,2008,997:283-294
    [2.29]C.R. Phipps, J.R. Luke, G.G Mcduff, et al. Laser-driven micro-rocket [J]. Appl. Phys. A, 2003,77(2):193-201.
    [2.30]李修乾,洪延姬,何国强,等.悬摆法测量气体推进剂激光推进冲量耦合系数[J].强激光与粒子束,2006,18(2):197-200.
    [2.31]C. Phipps, J. Luke, D. Funk, et al. Laser impulse coupling at 130 fs [J]. Appl. Surf. Sci., 2006,252(13):4838-4844.
    [2.32]金星,洪延姬,陈景鹏,等.激光单脉冲冲量的扭摆测量方法[J].强激光与粒子束,2006,18(11):1809-1812.
    [2.33]N. Zhang, W.T. Wang, X.N. Zhu et al. Investigation of ultrashort pulse laser ablation of solid targets by measuring the ablation-generated momentum using a torsion pendulum [J]. Opt. Express,2011,19:8870-8878.
    [2.34]K. Kremeyer, J. Lapeyre, and S. Hamann. Compact and robust laser impulse measurement device, with ultrashort pulse laser ablation results [J]. New York:American Institute of Physics,2008,997:147-158.
    [2.35]J. Kasparian, R. Sauerbrey, and S.L. Chin. The critical laser intensity of self-guided light filaments in air [J]. Appl. Phys. B,2000,71:877-879.
    [2.36]A. Becker, N. Akozbek, K. Vijayalakshmi, E. Oral, C.M. Bowden and S.L. Chin. Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas [J]. Appl. Phys. B,2001,73:287-290.
    [2.37]W. Liu, S. Petit, A. Becker, N. Akozbek, C.M. Bowden, and S.L. Chin. Intensity clamping of a femtosecond laser pulse in condensed matter [J]. Opt. Commun.,2002,202:189-197.
    [2.38]A.L. Gaeta. Catastrophic Collapse of Ultrashort Pulses [J]. Phys. Rev. Lett.,2000,84: 3582-3585.
    [2.39]N. Akozbek, M. Scalora, C.M. Bowden, and S.L. Chin. White light continuum generation and filamentation during the propagation of ultra-short laser pulses in air [J]. Opt. Commun.,2001,191:353-362.
    [2.40]N. Akozbek, A. Iwasaki, A. Becker, M. Scalora, S.L. Chin and C.M. Bowden. Third-harmonic generation and self-channeling in air using high-power femtosecond laser pulses [J]. Phys. Rev. Lett.,2002,89:143901.
    [2.41]E.T.J. Nibbering, P.F. Curley, G. Grillon, B.S. Prade, M.A. Franco, F. Salin and A. Mysyrowicz. Conical emission from self-guided femtosecond pulses in air [J]. Opt. Lett., 1996,21:62-64.
    [2.42]J. Kasparian, R. Sauerbrey, D. Mondelain, S. Niedermeier, J. Yu, J.-P. Wolf, Y.-B. Andre, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, M. Rodriguez, H. Wille and L. Woste. Infrared extension of the supercontinuum generated by femtosecond terawatt laser pulses propagating in the atmosphere [J]. Opt. Lett.,2000,25:1397-1399.
    [2.43]A. Brodeur, and S.L. Chin. Ultrafast white-light continuum generation and self-focusing in transparent condensed media [J]. J. Opt. Soc. Am. B,1999,16:637-650.
    [2.44]H.R. Lange, A. Chiron, J.-F. Ripoche, A. Mysyrowicz, P. Breger, and P. Agostini. High-order harmonic generation and quasiphase matching in xenon using self-guided femtosecond pulses [J]. Phys. Rev. Lett.,1998,81:1611-1613.
    [2.45]C.P. Hauri, W. Kornelis, F.W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller. Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation [J]. Appl. Phys. B,2004,79:673-677.
    [2.46]A. Couairon, M. Franco, A. Mysyrowicz, J. Biegert, and U. Keller. Pulse self-compression to the single-cycle limit by filamentation in a gas with a pressure gradient [J]. Opt. Lett., 2005,30:2657-2659.
    [2.47]A. Talebpour, M. Abdel-Fattah, and S.L. Chin. Focusing limits of intense ultrafast laser pulses in a high pressure gas:road to new spectroscopic source [J]. Opt. Commun.,2000, 183:479-484.
    [2.48]J. Marburger, and W. Wagner. Self-focusing as a pulse sharpening mechanism [J]. IEEE J. of Quant. Electron.,1967,3:415-416.
    [2.49]M.M.T. Loy, and Y.R. Shen. Small-scale filaments in liquids and tracks of moving Foci [J]. Phys. Rev. Lett.,1969,22:994-997.
    [2.50]A. Brodeur, C.Y. Chien, F.A. Ilkov, S.L. Chin, O.G Kosareva, and V.P. Kandidov. Moving focus in the propagation of powerful ultrashort laser pulses in air [J]. Opt. Lett.,1997,22: 304-306.
    [2.51]M. Mlejnek, E.M. Wright, and J.V. Moloney. Dynamic spatial replenishment of femto-second pulses propagating in air [J]. Opt. Lett.,1998,23:382-384.
    [2.52]Marburger, J. H. Self-focusing:theory [J]. Prog. Quantum Electron.,1975,4:35-110.
    [2.53]A Becker, N. Akozbek, K. Vijayalakshmi, E. Oral, C.M. Bowden, and S.L. Chin. Intensity clamping and refocusing of intense femtosecond laser pulses in nitrogen molecular gas [J]. Appl. Phys. B,2011,73:287-290.
    [2.54]W. Liu, and S.L. Chin. Direct measurement of the critical power of femtosecond Ti: sapphire laser pulse in air [J]. Opt. Express,2005,13:5750-5755.
    [2.55]M. Sheik-Bahae, A.A. Said, T.H. Wei, T. Hagan, and E.W. Van Stryland. Sensitive measurements of optical nonlinearities using a single beam [J]. IEEE J. Quantum. Electron., 1990,26(4):760-769.
    [2.56]E.T.J. Nibbering, G. Grillon, M.A. Franco, B.S. Prade, and A. Mysyrowicz. Determination of the inertial contribution to the nonlinear refractive index of air, N2 and 02 by use of unfocused high-intensity femtosecond laser pulses [J]. J. Opt. Soc. Am. B,1997,14: 650-660.
    [2.57]S. Akturk, C. D'Amico, M. Franco, A. Couairon, and A. Mysyrowicz. A simple method for determination of nonlinear propagation regimes in gases [J]. Opt. Express,2007,15: 15260-15267.
    [2.58]Y.B. Zhao, Y.Q. Jia, J.J. Yang, and X.N. Zhu. Influence of a half-wave plate/polarizer attenuator on broadband femtosecond laser pulses [J]. Optical Engineering,2007,46(4): 044301.
    [2.59]P. Lorazo, L.J. Lewis, and M. Meunier. Short-pulse laser ablation of solids:from phase explosion to fragmentation [J]. Phys. Rev. Lett.,2003,91(22):225502.
    [2.60]L.I. Sedov. Similarity and Dimensional Methods in Mechanics [M]. Moscow:MIR Publishers,1982.
    [2.61]N.H. Rizvi, D. Karnakis, and M.C. Gower. Micromachining of Industrial Materials with Ultrafast Lasers [J]. http://www.exitech.co.uk/pdfFiles/Micromachining%20of%20Industrial%20Materials%20 witb.%20Ultrafast%20Laser.pdf
    [2.62]V.P. Kandidov, O.G. Kosareva, I.S. Golubtsov, W. Liu, A. Becker, N. Akozbek, C.M. Bowden, and S.L. Chin. Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation) [J]. Appl. Phys. B,2003,77 (2-3):149-165.
    [2.63]M. Mlejnek, E.M. Wright, and J.V. Moloney. Dynamic spatial replenishment of femtosecond pulses propagating in air [J]. Opt. Lett.,1998,23 (5).
    [2.64]N. Akozbek, M. Scalora, C.M. Bowden, and S.L. Chin. White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air [J]. Opt. Commun.,2001,191(3-6):353-362.
    [2.65]A. Chiron, B. Lamouroux, R. Lange, J.-F. Ripoche, M. Franco, B. Prade, G. Bonnaud, G Riazuelo, and A. Mysyrowicz. Numerical simulations of the nonlinear propagation of femtosecond optical pulses in gases [J]. Eur. Phys. J. D,1999,6:383-396.
    [2.66]F. DeMartini, C.H. Townes, T.K. Gustafson, and P.L. Kelley. Self-Steepening of Light Pulses [J]. Phys. Rev.,1967,164 (2):312-323.
    [2.67]J.E. Rothenberg. Space-time focusing:breakdown of the slowly varying envelope approximation in the self-focusing of femtosecond pulses [J]. Opt. Lett.,1992,17: 1340-1342.
    [2.68]J.-F. Ripoche, G Grillon, B. Prade, M. Franco, E. Nibbering, R. Lange, and A. Mysyrowicz. Determination of the time dependence of n2 in air [J]. Opt. Commun.,1997,135(4-6): 310-314.
    [2.69]S. Anisimov, B.L. Kapeliovich, and T.L. Perel'man. Electron emission from metal surface exposed to ultrashort laser pulse [J]. Sov. Phys. JETP,1974,39:375-378.
    [2.70]X. Wang, and X. Xu. Thermoelastic Wave in Metal Induced by Ultrafast Laser Pulses [J]. J. Thermal Stresses,2002,25 (5):457-473.
    [2.71]徐智君,张楠,朱晓农.采用阴影法测量飞秒激光竖直烧蚀推进微型小球的冲量耦合系数[J].强激光与粒子束投稿中。
    [2.72]N. Zhang, Z.J. Xu, M.W. Wang, and W. Liu. Propelling micro beads with femtosecond light bullets [C]. CLEO:2008, OSA Technical Digest (online) (Optical Society of America, 2008), paper JWA136. http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=4572542
    [2.73]N. Zhang, Z.J. Xu, W. Liu, M.W. Wang, and X.N. Zhu. Understand the femtosecond laser filamentational propulsion [C]. In:Cui Y, Gong Q, Shen Y, eds. Nonlinear Optics: Technologies and Applications. Bellingham:SPIE,2008. Proc. SPIE,6839:68390A. http://dx.doi.org/10.1117/12.756323 http://www.osa-opn.org/home/gallerv/photo contests/2013/#image-1
    [3.1]S.L. Chin and N.R. Isenor. Multiphoton ionization in atomic gases with depletion of neutral atoms [J]. Can. J. Phys.,1970,48:1445-1447.
    [3.2]C.G. Morgan. Laser induced breakdown of gases [J]. Rep. Prog. Phys.,1975,38:621-665.
    [3.3]L.V. Keldysh. Ionization in the field of a strong electromagnetic wave [J]. Sov. Phys. JETP, 1965,20,1037.
    [3.4]A. Couairona, A. Mysyrowicz. Femtosecond filamentation in transparent media [J]. Phys. Rep.,2007,441:47-189.
    [3.5]J. H. Marburger. Self-focusing:theory [J]. Prog. Quantum Electron.,1975,4:35-110.
    [3.6]A. Vogel, J. Noack, G Huttman, and G Paltauf. Mechanisms of femtosecond laser surgery of cells and tissues [J]. Appl. Phs. B,2005,81:1015-1047.
    [3.7]许宽宏.飞秒激光诱导空气等离子体特性和光学相干层析系统性能研究:[博士学位论文].天津:南开大学,2011.
    [3.8][OPN After Image] After Image of the Optics & Photonics News, November 2013. Z.J. Xu. Conic Emission [J]. Optics & Photonics News,2013,24 (11):60. See more at: http://www.osa-opn.org/home/gallerv/after images.aspx
    [3.9]N. Akozbek, A. Iwasaki, A. Becker, M. Scalora, S.L. Chin and C.M. Bowden. Third-harmonic generation and self-channeling in air using high-power femtosecond laser pulses [J]. Phys. Rev. Lett.,2002,89:143901.
    [3.10]I. Golub. Optical characteristics of supercontinuum generation [J]. Opt. Lett.,1990,15(6): 305-307.
    [3.11]S. Eliezer. The Interaction of High-power Lasers With Plasmas [M]. Institute of Physics Publishing Ltd,2002.
    [3.12]赵友博.飞秒激光等离子体成像技术和超微细加工中脉宽效应的研究:[博士学位论文].天津:南开大学,2007.
    [3.13][Winner 2013 After Image photo contest.]-Z.J. Xu, Nankai University Z.J. Xu. Conic Emission [J]. Optics & Photonics News,2013,24 (11):26. See more at: http://www.osa-opn.org/home/gallery/photo contests/2013/#image-1
    [3.14]Y. Yu, Z.J. Xu, N. Zhang, and X.N. Zhu. Characteristics of Electron Density in Air Plasma Produced by Tightly-Focused 50 Fs Laser Pulses [C],2013 Conference on Lasers and Electro-Optics Pacific Rim, (Optical Society of America,2013), paper WPB_2. http://www.opticsinfobase.org/abstract.cfm?URI=CLEOPR-2013-WPB 2
    [4.1]User's guide to the Andor iStar (iStar Manual Version 5.1).
    [4.2]L. Dudragne Ph., and Adam J. Amouroux. Time-Resolved Laser-Induced Breakdown Spectroscopy:Application for Qualitative and Quantitative Detection of Fluorine, Chlorine, Sulfur, and Carbon in Air [J]. Appl. Spectrosc.,1998,52:1321-1327.
    [4.3]D.W. Hahn. Laser-induced breakdown spectroscopy for sizing and elemental analysis of discrete aerosol particles [J]. Appl. Phys. Lett.,1998,72:2960-2962.
    [4.4]L.J. Radziemski, and T.R. Loree. Laser-induced breakdown spectroscopy:Time-resolved spectrochemical applications [J]. Plasma Chemistry and Plasma Processing,1981,1.
    [4.5]David J. Hwang, Costas P. Grigoropoulos, Jong Yoo, and Richard E. Russo. Optical near-field ablation-induced plasma characteristics [J]. Appl. Phys. Lett.,2006,89:254101.
    [4.6]T. Kobayashi, and S. Nagakura. Picosecond time-resolved spectroscopy and the intersystem crossing rates of anthrone and fluorenone [J]. Chem. Phys. Lett.,1976,43: 429-434.
    [4.7]G.H. Atkinson, D. Blanchard, H. Lemaire, T.L. Brack, and H. Hayashi. Picosecond time-resolved fluorescence spectroscopy of K-590 in the bacteriorhodopsin photocycle [J]. Biophys J.,1989,55:263-274.
    [4.8]Ph. Rohwetter, J. Yu, G. Mejean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J.-P. Wolf, and W. Woste. Remote LIBS with ultrashort pulses:characteristics in picosecond and femtosecond regimes [J]. J. Anal. At. Spectrom.,2004,19:437-444.
    [4.9]K. Stelmaszczyk, P. Rohwetter, G. Mejean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Woste. Long-distance remote laser-induced breakdown spectroscopy using filamentation in air [J]. Appl. Phys. Lett.,2004,85:3977.
    [4.10]David J. Hwang, Hojeong Jeon, Costas P. Grigoropoulos, Jong Yoo, and Richard E. Russo. Femtosecond laser ablation induced plasma characteristics from submicron craters in thin mental film [J]. Appl. Phys. Lett.,2007,91:251118.
    [4.11]S. Yalcin, Y.Y. Tsui, and R. Fedosejevs. Pressure dependence of emission intensity in femtosecond laser-induced breakdown spectroscopy [J]. J. Anal. At. Spectrom.,2004,19: 1295-1301.
    [4.12]O. Albert, S. Roger, Y. Glinec, J.C. Loulergue, J. Etchepare, C. Boulmer-Leborgne, J. Perrire, and E. Millon. Time-resolved spectroscopy measurements of a titanium plasma induced by nanosecond and femtosecond lasers [J]. Appl. Phys. A,2003,76:319-323.
    [4.13]J.E. Sansonetti, W.C. Martin, and S.L. Young. Handbook of Basic Atomic Spectroscopic Data (version 1.1.2),2005 [Online] Available at http://physics.nist.gov/Handbook [2010, January 29]. National Institute of Standards and Technology, Gaithersburg, MD.
    [4.14]Z.J. Xu, and X.N. Zhu. Time resolved spectral characteristics of ultrafast laser induced air plasma. Submitted to Chinese Optics Letters.
    [5.1]E.H. Piepmeier, and H.V. Malmstadt. Q-switched laser energy absorption in the plume of an aluminium alloy [J]. Anal. Chem.,1969,41:700-707.
    [5.2]R.H. Scott, and A. Strasheim. Laser-induced plasmas for analytical spectroscopy [J]. Spectrochim. Acta Part B,1970,25:311-332.
    [5.3]D.A. Cremers, L.J. Radziemski, and T.R. Loree. Spectrochemical analysis of liquids using the laser spark [J]. Appl. Spectrosc.,1984,38:721-729.
    [5.4]J. Scaffidi, S.M. Angel, and D.A. Cremers. Emission enhancement mechanisms in dual-pulse LIBS [J]. Anal. Chem.,2006,78 (1):24-32.
    [5.5]J. Uebbing, J. Brust, W. Sdorra, F. Leis, and K. Niemax. Reheating of a laser produced plasma by a second pulse laser [J]. Appl. Spectrosc.,1991,45:1419-1423.
    [5.6]D.N. Stratis, K.L. Eland, and S.M. Angel. Dual-pulse LIBS using a preablation spark for enhanced ablation and emission [J]. Appl. Spectrosc.,2000,54:1270-1274.
    [5.7]D.N. Stratis, K.L. Eland, and S.M. Angel. Effect of pulse delay time on a preablation dual-pulse LIBS plasma [J]. Appl. Spectrosc.,2001,55:1297-1303.
    [5.8]R. Sattmann, V. Sturm, and R. Noll. Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd-Yag laser pulses [J]. J. Phys., D. Appl. Phys.,1995,28: 2181-2187.
    [5.9]F. Colao, V. Lazic, R. Fantoni, and S. Pershin. A comparison of single anddouble pulse laser-induced breakdown spectroscopy of aluminum samples [J]. Spectrochim. Acta Part B, 2002,57:1167-1179.
    [5.10]D.N. Stratis, K..L. Eland, and S.M. Angel. Enhancement of aluminium, titanium, and iron in glass using pre-ablation spark dual-pulse LIBS [J]. Appl. Spectrosc.,2000,54: 1719-1726.
    [5.11]D. Scuderi, O. Albert, D. Moreau, P.P. Pronko, and J. Etchepare. Interaction of a laser-produced plume with a second time delayed femtosecond pulse [J]. Appl. Phys. Lett., 2005,86,071502:1-3.
    [5.12]C. Gautier, P. Fichet, D. Menut, J.-L. Lacour, D. L'Hermite, and J. Dubessy. Quantification of the intensity enhancements for the double-pulse laserinduced breakdown spectroscopy in the orthogonal beam geometry [J]. Spectrochim. Acta Part B,2005,60:265-276.
    [5.13]C. Gautier, P. Fichet, D. Menut, J.-L. Lacour, D. L'Hermite, and J. Dubessy. Study of the double-pulse setupwith an orthogonal beamgeometry for laserinduced breakdown spectroscopy [J]. Spectrochim. Acta Part B,2004,59:975-986.
    [5.14]L. St-Onge, V. Detalle, and M. Sabsabi. Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses [J]. Spectrochim. Acta Part B,2002,57:121-135.
    [5.15]J. Pender, B. Pearman, J. Scaffidi, S.R. Goode, and S.M. Angel. Laser induced breakdown spectroscopy using sequential laser pulses, in:A. Miziolek, V. Palleschi, I. Schechter (Eds.), Laser Induced Breakdown Spectroscopy [M]. Cambridge:Cambridge University Press, 2006,516-538.
    [5.16]X. Mao, X. Zeng, S.-B. Wen, and R.E. Russo. Time-resolved plasma properties for double pulsed laser-induced breakdown spectroscopy of silicon [J]. Spectrochim. Acta Part B,2005, 60:960-967.
    [5.17]S.Y. Chan, and N.H. Cheung. Analysis of solids by laser ablation and resonance-enhanced laser-induced plasma spectroscopy [J]. Anal. Chem.,2000,72:2087-2092.
    [5.18]S.L. Liu, and N.H. Cheung. Minimally destructive analysis of aluminum alloys by resonance-enhanced laser-induced plasma spectroscopy [J]. Anal. Chem.,2005,77: 2617-2623.
    [5.19]A. Semerok, and C. Dutouquet. Ultrashort double pulse laser ablation of metals [J]. Thin Solid Films,2004,453-454,501-505.
    [5.20]P.P. Pronko, Z. Zhang, and P.A. VanRompay. Critical density effects in femtosecond ablation plasma and consequences for high intensity pulsed laser deposition [J]. Appl. Surf. Sci.,2003,208-209,492-501.
    [5.21]Z. Zhang, P.A. VanRompay, and P.P. Pronko. Ion characteristics of laser produced plasma using a pair of collinear femtosecond laser pulses [J]. Appl. Phys. Lett.,2003,83:431-433.
    [5.22]T.Y. Choi, D.J. Hwang, and C.P. Grigoropoulos. Femtosecond laser induced ablation of crystalline silicon upon double beamirradiation [J]. Appl. Surf. Sci.,2002,197-198, 720-725.
    [5.23]K. Hatanaka, T. Miura, H. Odaka, H. Ono & H. Fukumura. Various methods for X-ray pulse generation using a femtosecond laser and their potential for time resolved X-ray analyses [J]. Bunseki Kagaku,2003,52:373-381.
    [5.24]Ph. Rohwetter, K. Stelmaszczyk, L.Woste, R. Ackermann, G. Mejean, E. Salmon, K. Kasparian, J. Yu, and J.-P.Wolf. Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy [J]. Spectrochim. Acta Part B,2005,60:1025-1033.
    [5.25]S. Tzortzakis, G. Mechain, G. Patalano, M. Franco, B. Prade, and A. Mysyrowicz. Concatenation of plasma filaments created in air by femtosecond infrared laser pulses [J]. Appl. Phys. B,2003,76:609-612.
    [5.26]X.N. Zhu, and R.L. Fu. Emission spectra of microplasma generated by femtosecond laser pulses [C]. Proc. SPIE,2002,4914:58-67.
    [5.27]Z.J. Xu, N. Zhang, and X.N. Zhu. Temporal and spectral characteristics of the air plasma generated by dual femtosecond laser pulses. Submitted to Optics Letters, Review Status:in peer review.
    [6.1]J.H. Marburger. Self-focusing:theory [J]. Prog. Quantum Electron.,1975,4:35-110.
    [6.2]A. Brodeur, and S.L. Chin. Ultrafast white-light continuum generation and self-focusing in transparent condensed media [J]. J. Opt. Soc. Am. B,1999,16 (4):637-650.
    [6.3]S.L. Chin, A. Brodeur, S. Petit, O.G. Kosareva, and V.P. Kandidov. Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media (white light laser) [J]. J. Nonlinear Opt. Phys. Mat.,1999,8:121-146.
    [6.4]P.L. Kelley. Self-focusing of optical beams [J]. Phys. Rev. Lett.,1965,15:1005-1008.
    [6.5]A. Braun et al. Self-channeling of high-peak-power femtosecond laser pulses in air [J]. Opt. Lett.,1995,20(1):73-75.
    [6.6]A. Couairon, and A. Mysyrowicz. Femtosecond filamentation in transparent media [J]. Phys. Rep.,2007,441 (2-4):47-189.
    [6.7]L. Berg6, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf. Ultrashort filaments of light in weakly-ionized, optically-transparent media [J]. Rep. Prog. Phys.,2007,70:1633-1713.
    [6.8]S.L. Chin, A. Brodeur, S. Petit, O.G Kosareva, and V.P. Kandidov. Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media (white light laser) [J]. J. Nonlinear Opt. Phys. Mater.,1999,8:121-146.
    [6.9]M. Mlejnek, E.M. Wright, and J.V. Moloney. Dynamic spatial replenishment of femto-second pulses propagating in air [J]. Opt. Lett.,1998,23:382-384.
    [6.10]A. Dubietis, E. Kucinskas, G Tamosauskas, E. Gaizauskas, M.A. Porras, and P.D. Trapani. Self-reconstruction of light filaments [J]. Opt. Lett.,2004,29:2893-2894.
    [6.11]S. Skupin, L. Berg6, U. Peschel, and F. Lederer. Interaction of femtosecond light filaments with obscurants in aerosols [J]. Phys. Rev. Lett.,2004,93:023901.
    [6.12]M. Kolesik, and J.V. Moloney. Self-healing femtosecond light filaments [J]. Opt. Lett., 2004,29:590-592.
    [6.13]W. Liu, F. Theberge, E. Arevalo, J.-F. Gravel, A. Becker, and S.L. Chin. Experiment and simulations on the energy reservoir effect in femtosecond light filaments [J]. Opt. Lett., 2005,30:2602-2604.
    [6.14]R.H. Stolen, J.P. Gordon, W.J. Tomlison, and H.A. Haus. Raman response function of silica-core fibers [J]. J. Opt. Soc. Am. B,1989,6 (6):1159-1166.
    [6.15]R.H. Stolen, and W.J. Tomlison. Effect of the Raman part of the nonlinear refractive index on propagation of ultrashort optical pulses in fibers [J]. J. Opt. Soc. Am. B,1992,9 (4): 565-573.
    [6.16]D. Salerno, O. Jedrkiewicz, J. Trull, G. Valiulis, A. Picozzi, and P.D. Trapani. Noise-seeded spatiotemporal modulation instability in normal dispersion [J]. Phys. Rev. E,2004,70: 065603.
    [6.17]A.L. Gaeta. Catastrophic Collapse of Ultrashort Pulses [J]. Phys. Rev. Lett.,2000,84: 3582-3585.
    [6.18]N. Akozbek, M. Scalora, C.M. Bowden, and S.L. Chin. White light continuum generation and filamentation during the propagation of ultra-short laser pulses in air [J]. Opt. Commun., 2001,191:353-362.
    [6.19]Q. Xing, K.M. Yoo, and R.R. Alfano. Conical emission by four-photon parametric generation by using femtosecond laser pulses [J]. Appl. Optics,1993,32:2087-2089.
    [6.20]G.G. Luther, A.C. Newell, J.V. Moloney, and E.M. Wright. Short pulse conical emission and spectral broadening in normally dispersive media [J]. Opt. Lett.,1994,19 (11):789-791.
    [6.21]N. Akozbek, A. Iwasaki, A. Becker, M. Scalora, S.L. Chin, and C.M. Bowden. Third-harmonic generation and self-channeling in air using high-power femtosecond laser pulses [J]. Phys. Rev. Lett.,2002,89:143901.
    [6.22]P. Lallemand, and N. Bloembergen. Self-focusing of laser beams and stimulated Raman gain in liquids [J]. Phys. Rev. Lett.,1965,15:1010-1012.
    [6.23]D. Faccio, A. Averchi, A. Dubietis, P. Polesana, A. Piskarskas, P.D. Trapani, and A. Couairon. Stimulated-raman X-waves in ultrashort optical pulse filamentation [J]. Opt. Lett., 2007,32(2):184.
    [6.24]J.R. Penano, P. Sprangle, P. Serafim, B. Hafizi, and A. Ting. Stimulated Raman scattering of intense laser pulses in air [J]. Phys. Rev. E,2003,68 (5):056502.
    [6.25]E.T.J. Nibbering, P.F. Curley, G. Grillon, B.S. Prade, M.A. Franco, F. Salin, and A. Mysyrowicz. Conical emission from self-guided femtosecond pulses in air [J]. Opt. Lett., 1996,21(1):62-64.
    [6.26]L. Berge, S. Skupin, R. Nuterl, J. Kasparian, and J.-P. Wolf. Ultrashort filaments of light in weakly ionized, optically transparent media [J]. Rep. Prog. Phys.,2007,70:1633-1713.
    [6.27]R.A. Ganeev, M. Suzuki, M. Baba, H. Kuroda, and I.A. Kulagin. Third-harmonic generation in air by use of femtosecond radiation in tight focusing conditions [J]. Appl. Opt., 2005,45 (4):748-755.
    [6.28]廖延彪.光纤光学.北京:清华大学出版社,2000.
    [6.29]I. Golub. Optical characteristics of supercontinuum generation [J]. Opt. Lett.,1990,15(6): 305-307.
    [6.30]S.L. Chin. Femtosecond Laser Filamentation [M]. Springer,2009.
    [6.31]A. Talebpour, M. Abdel-Fattah, A.D. Bandrauk, and S.L. Chin. Spectroscopy of the gases interacting with intense femtosecond laser pulses [J]. Laser Phys.,2001,11:68-76.
    [6.32]X.N. Zhu, and R.L. Fu. Emission spectra of microplasma generated by femtosecond laser pulses [C]. Proc. SPIE,2002,4914:58-67.
    [6.33]X.N. Zhu, and W. Sibbett. Propagation characteristics of femtosecond pulses in erbium-doped monomode optical fibers [J]. IEEE J. Quantum Electron.,1991, QE-27,101.
    [6.34]D. Faccio et al. Conical emission, pulse splitting, and X-wave parametric amplification in nonlinear dynamics of ultrashort light pulses [J]. Phys. Rev. Lett.,2006,96:193901.
    [6.35]魏光辉,朱宝亮.激光束光学[M].北京:北京工业学院出版社,1988.
    [6.36]Y. Yu, Z J. Xu, N. Zhang, and X.N. Zhu. Characteristics of Electron Density in Air Plasma Produced by Tightly-Focused 50 Fs Laser Pulses [C].2013 Conference on Lasers and Electro-Optics Pacific Rim, (Optical Society of America,2013), paper WPB_2.
    [6.37]C. Jauregui, A. Steinmetz, J. Limpert, and A. Tunnermann. High-power efficient generation of visible and mid-infrared radiation exploiting four-wave-mixing in optical fibers [J]. Opt. Express,2012,20,24957-24965.
    [6.38]Z.J. Xu, X.N. Zhu, Y. Yu, N. Zhang, and J.F. Zhao. Super-luminescent jet light generated by femtosecond laser pulses. Submitted to Scientific Reports, Current Stage:Awaiting Revision.
    [6.39][Winner 2013 After Image photo contest.] -Z.J. Xu, Nankai University Z.J. Xu. Conic Emission [J]. Optics & Photonics News,2013,24 (11):26. See more at: http://www.osa-opn.org/home/gallery/photo contests/2013/#image-1
    [6.40][OPN After Image] After Image of the Optics & Photonics News, November 2013. Z.J. Xu. Conic Emission [J]. Optics & Photonics News,2013,24 (11):60. See more at: http://www.osa-opn.org/home/gallery/after images.aspx
    [6.41][Honorable mention 2013 After Image photo contest.]-Z.J. Xu, Nankai University Z.J. Xu. Jet Beam [J]. Optics & Photonics News,2013,24 (11):29. See more at: http://www.osa-opn.org/home/gallery/photo contests/2013/#image-5
    [6.42]徐智君,于洋,张楠,朱晓农.飞秒激光脉冲电离空气时产生的超亮喷射状相干光束[C].第十届全国光学前沿问题讨论会,黄山,2013.10.19-2013.10.23.
    [6.43]Z.J. Xu, Y. Yu, N. Zhang, J.F. Zhao, and X.N. Zhu. Generation of Super-luminescent Jet Light through Disrupted Conical Emission [C]. CLEO:2013, OSA Technical Digest (online) (Optical Society of America,2013), paper QW1E.5.
    [6.44]Z.J. Xu, X.N. Zhu, N. Zhang, and Y. Yu. Observation of Super-luminescent Jet Beam From Femtosecond Laser-induced Air Plasma [C].2013 Conference on Lasers and Electro-Optics Pacific Rim, (Optical Society of America,2013), paper WPB_1.
    [7.1]M. Lee, S. Moon, M. Hatano, and C.P. Grigoropoulos. Ultra-large lateral grain growth by double laser recrystallization of a-Si films [J]. Appl. Phys. A,2001,73:317-322.
    [7.2]B.K. Nayak, B. Eaton, J.A.A. Selvan et al. Semiconductor laser crystallization of a-Si:H on conducting tin-oxide-coated glass for solar cell and display applications [J]. Appl. Phys. A, 2005,80:1077-1080.
    [7.3]P. J. Slikkerveer. Bending the rules [J]. Information Display,2003,19(3):20-24.
    [7.4]S.Y. Yoon, J.Y. Oh, C.O. Kim, and J. Jang. Low temperature solid phase crystallization of amorphous silicon at 380℃ [J]. J. Appl. Phys.,1998,84(11):6463-6465.
    [7.5]R. Singh, M. Fakhruddin, and K.F. Poole. Rapid photothermal processing as a semiconductor manufacturing technology for the 21st century [J]. Applied Surface Science,2000,168: 198-203.
    [7.6]A. Kohno, T. Sameshima, N. Sano, M. Sekiya, and M. Hara High performance poly-Si TFTs fabricated using pulsed laser annealing and remote plasma CVD with low temperature processing [C]. Electron Devices, IEEE Transactions on,1995,42(2):251-257.
    [7.7]M. Modreanu, N. Tomozeiu, Mariuca Gartner, and P. Cosmin. Microstructural and optical properties of as-deposited LPCVD silicon films [J]. Thin Solid Films,2001,383:254-257.
    [7.8]J.S. Im, H.J. Kim and M.O. Thompson. Phase transformation mechanisms involved in excimer laser crystallization of amorphous silicon films [J]. Appl. Phys. Lett.,1993,63(14): 1969-1971.
    [7.9]R Dassow, J R Kohler, Y Helen et al. Laser crystallization of silicon for high-performance thin-film transistors [J]. Semicond. Sci. Technol.,2000,15:L31-L34.
    [7.10]B.K. Nayak, B. Eaton, J.A.A. Selvan et al. Semiconductor laser crystallization of a-Si:H on conducting tin-oxide coated glass for solar cell and display applications [J]. Appl. Phys. A, 2005,80:1077-1080.
    [7.11]曾祥斌,徐重阳,王长安.多晶硅薄膜的两步激光晶化技术[J].压电与声光,2002, 24(4):315-317.
    [7.12]刘建平,王海文,李娟等.YAG激光晶化多晶硅[J].半导体学报,2005,26(8):1572-1576.
    [7.13]袁志军,楼祺洪,周军等.平顶绿光晶化制备多晶硅薄膜[J].中国激光,2009,36(1):205-209.
    [7.14]Tae Y. Choi, David J. Hwang and Costas P. Grigoropoulos. Ultrafast laser-induced crystallization of amorphous silicon films [J]. Opt. Eng.,2003,42(11):3383-3388.
    [7.15]J.M. Shieh, Z.H. Chen, B.T. Dai et al. Near-infrared femtosecond laser-induced crystallization of amorphous silicon [J]. Appl. Phys. Lett.,2004,85(7):1232-1234.
    [7.16]J.R. Goldman, and J.A. Prybyla. Ultrafast dynamics of laser-excited electron distributions in silicon [J]. Phys. Rev. Lett.,1994,72(9):1364-1367.
    [7.17]K. Sokolowski-Tinten, J. Bialkowski, and D. von der Linde. Ultrafast laser-induced order-disorder transitions in semiconductors [J]. Phys. Rev. B,1995,51(20):14186-14198.
    [7.18]L. Huang, J.P. Callan, E.N. Glezer, and E. Mazur. GaAs under Intense Ultrafast Excitation: Response of the Dielectric Function [J]. Phys. Rev. Lett.,1998,80(1):185-188.
    [7.19]M. Sheik-Bahae, A.A. Said, T.-H. Wei, et al. Sensitive measurement of optical nonlinearities using a single beam [J]. IEEE Journal of Quantum Electronics,1990,26(4): 760-769.
    [7.20]徐智君,姚颖,朱晓农,李娟.飞秒激光脉冲诱导非晶硅薄膜晶化的实验研究[C].中国光学学会2010年学术年会,天津,2010.8.23-2013.8.26.
    [7.21]X.Y. Sun, M.W. Wang, J.J. Yang, Y. Yao, Z.J. Xu, Y. Li, L. Wei, and X.N. Zhu. Applications of ultrashort pulse laser in micro-nano-machining of functional materials [C]. The 7th Asia Pacific Laser Symposium (APLS), APLS 2010, Korea,12th May-15th May 2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700